Paper Title
Predictive Analysis for Construction Site using AI
Article Identifiers
Authors
Sakshi Tayade , Akash Goyal , Pranjal Wani , Sanskruti Behar , Prof. Sweta Wankhade
Keywords
Artificial intelligence (AI), Machine learning algorithms, Neural networks, Predictive modelling, Risk Management, Accuracy, Reliability, Resource optimization.
Abstract
The construction industry, characterized by its complex and dynamic nature, demands efficient project management and accurate performance predictions to ensure successful project delivery. This research paper explores the application of artificial intelligence (AI) techniques in predicting and analyzing construction project outcomes. The study leverages machine learning algorithms, neural networks, and predictive modeling to enhance the accuracy of project performance forecasts. The methodology involves collecting and analyzing historical project data, including project schedules, budgetary allocations, resource utilization, and external factors affecting construction projects. Utilizing this data, the AI models are trained to recognize patterns and relationships, enabling them to make predictions on various project parameters such as completion time, cost overruns, and resource optimization. The research aims to contribute to the field by addressing the challenges of uncertainty and risk inherent in construction projects. The AI models developed in this study offer a proactive approach to project management, allowing for real-time adjustments and resource allocations based on predictive insights. This approach empowers project stakeholders to make informed decisions, mitigate potential risks, and optimize overall project performance. The paper discusses the results of the prediction analysis, highlighting the accuracy and reliability of the AI models in comparison to traditional methods. Additionally, it explores the potential impact of AI-driven prediction on project planning, risk management, and resource allocation strategies within the construction industry.
Downloads
How To Cite (APA)
Sakshi Tayade, Akash Goyal, Pranjal Wani, Sanskruti Behar, & Prof. Sweta Wankhade (January-2024). Predictive Analysis for Construction Site using AI. INTERNATIONAL JOURNAL OF NOVEL RESEARCH AND DEVELOPMENT, 9(1), a168-a171. https://ijnrd.org/papers/IJNRD2401014.pdf
Issue
Volume 9 Issue 1, January-2024
Pages : a168-a171
Other Publication Details
Paper Reg. ID: IJNRD_211580
Published Paper Id: IJNRD2401014
Downloads: 000121980
Research Area: Engineering
Country: Pune, Maharashtra, India
Published Paper PDF: https://ijnrd.org/papers/IJNRD2401014.pdf
Published Paper URL: https://ijnrd.org/viewpaperforall?paper=IJNRD2401014
About Publisher
Journal Name: INTERNATIONAL JOURNAL OF NOVEL RESEARCH AND DEVELOPMENT(IJNRD)
ISSN: 2456-4184 | IMPACT FACTOR: 8.76 Calculated By Google Scholar | ESTD YEAR: 2016
An International Scholarly Open Access Journal, Peer-Reviewed, Refereed Journal Impact Factor 8.76 Calculate by Google Scholar and Semantic Scholar | AI-Powered Research Tool, Multidisciplinary, Monthly, Multilanguage Journal Indexing in All Major Database & Metadata, Citation Generator
Publisher: IJNRD (IJ Publication) Janvi Wave | IJNRD.ORG | IJNRD.COM | IJPUB.ORG
Licence
This work is licensed under a Creative Commons Attribution 4.0 International License and The Open Definition


Publication Timeline
Article Preview: View Full Paper
Call For Paper
IJNRD is a Scholarly Open Access, Peer-reviewed, and Refereed Journal with a High Impact Factor of 8.76 (calculated by Google Scholar & Semantic Scholar | AI-Powered Research Tool). It is a Multidisciplinary, Monthly, Low-Cost Journal that follows UGC CARE 2025 Peer-Reviewed Journal Policy norms, Scopus journal standards, and Transparent Peer Review practices to ensure quality and credibility. IJNRD provides indexing in all major databases & metadata repositories, a citation generator, and Digital Object Identifier (DOI) for every published article with full open-access visibility.
The INTERNATIONAL JOURNAL OF NOVEL RESEARCH AND DEVELOPMENT (IJNRD) aims to advance applied, theoretical, and experimental research across diverse fields. Its goal is to promote global scientific information exchange among researchers, developers, engineers, academicians, and practitioners. IJNRD serves as a platform where educators and professionals can share research evidence, models of best practice, and innovative ideas, contributing to academic growth and industry relevance.
Indexing Coverage includes Google Scholar, SSRN, ResearcherID-Publons, Semantic Scholar (AI-Powered Research Tool), Microsoft Academic, Academia.edu, arXiv.org, ResearchGate, CiteSeerX, ResearcherID (Thomson Reuters), Mendeley, DocStoc, ISSUU, Scribd, and many more recognized academic repositories.
How to submit the paper?
By Our website
Click Here to Submit Paper Online
Important Dates for Current issue
Paper Submission Open For: October 2025
Current Issue: Volume 10 | Issue 10 | October 2025
Impact Factor: 8.76
Last Date for Paper Submission: Till 31-Oct-2025
Notification of Review Result: Within 1-2 Days after Submitting paper.
Publication of Paper: Within 01-02 Days after Submititng documents.
Frequency: Monthly (12 issue Annually).
Journal Type: IJNRD is an International Peer-reviewed, Refereed, and Open Access Journal with Transparent Peer Review as per the new UGC CARE 2025 guidelines, offering low-cost multidisciplinary publication with Crossref DOI and global indexing.
Subject Category: Research Area
Call for Paper: More Details