Open Access
Research Paper
Peer Reviewed

Paper Title

Predicting Employee Performance in Business Environments Using Effective Machine Learning Models

Article Identifiers

Registration ID: IJNRD_300317

Published ID: IJNRD2409098

: https://doi.org/10.5281/zenodo.13771036

Authors

Keywords

Employee performance, human resources dataset, extra trees, gradient boosting, machine learning, Bayesian optimization, optuna, randomize search

Abstract

The management of companies places great emphasis on human resources, seeking to choose highly skilled employees who can perform above and beyond expectations. As managers and decision-makers attempt to devise plans for locating and developing exceptional talent, human resources management (HRM) has become a crucial area of interest. A key concern lies in enhancing the performance of employees through professional skill development programs. The goal of employee performance reviews is to gauge each employee's level of dedication to the business. A company's ability to forecast employee performance is critical to its success. This study's objective was to investigate the factors influencing employee performance prediction in the workplace using ML techniques. This project aims to provide improved employee performance forecast accuracy and performance via the use of state-of-the-art ML techniques. Utilising a Human Resources dataset from Kaggle, the research involves meticulous data preprocessing steps, including balancing is conducted using SMOTE. Two machine learning models—Gradient Boosting and Extra Trees—are implemented and evaluated with hyperparameter optimisation techniques such as Optuna, Bayesian optimisation, and Randomized Search. The comparative analysis reveals that both models achieve high-performance metrics, with Gradient Boosting slightly outperforming with an accuracy0.962, precision0.955, recall0.967, and F1-score0.961. This study offers significant insights for future research, demonstrating an effectiveness of using sophisticated ML algorithms for optimising and forecasting employee performance in human resource management.

How To Cite (APA)

Himanshu Sinha (September-2024). Predicting Employee Performance in Business Environments Using Effective Machine Learning Models . INTERNATIONAL JOURNAL OF NOVEL RESEARCH AND DEVELOPMENT, 9(9), a875-a881. https://doi.org/10.5281/zenodo.13771036

Citation

Issue

Other Publication Details

Paper Reg. ID: IJNRD_300317

Published Paper Id: IJNRD2409098

Downloads: 000122257

Research Area: Science and Technology

Author Type: Indian Author

Country: Gwalior, MP, India

Published Paper PDF: https://ijnrd.org/papers/IJNRD2409098.pdf

Published Paper URL: https://ijnrd.org/viewpaperforall?paper=IJNRD2409098

Crossref DOI: https://doi.org/10.5281/zenodo.13771036

About Publisher

Journal Name: INTERNATIONAL JOURNAL OF NOVEL RESEARCH AND DEVELOPMENT(IJNRD)

UGC CARE JOURNAL PUBLICATION | ISSN: 2456-4184 | IMPACT FACTOR: 8.76 Calculated By Google Scholar | ESTD YEAR: 2016

An International Scholarly Open Access Journal, Peer-Reviewed, Refereed Journal Impact Factor 8.76 Calculate by Google Scholar and Semantic Scholar | AI-Powered Research Tool, Multidisciplinary, Monthly, Multilanguage Journal Indexing in All Major Database & Metadata, Citation Generator

Publisher: IJNRD (IJ Publication) Janvi Wave | IJNRD.ORG | IJNRD.COM | IJPUB.ORG

Copyright & License

© 2025 — Authors hold the copyright of this article. This work is licensed under a Creative Commons Attribution 4.0 International License. and The Open Definition.

You are free to share, adapt, and redistribute the material, provided proper credit is given to the original author. 🛡️ Disclaimer: The content, data, and findings in this article are based on the authors’ research and have been peer-reviewed for academic purposes only. Readers are advised to verify all information before practical or commercial use. The journal and its editorial board are not liable for any errors, losses, or consequences arising from its use.
CC OpenContant

Publication Timeline

Peer Review
Through Scholar9.com Platform

Article Preview: View Full Paper

Call For Paper

Call For Paper - Volume 10 | Issue 12 | December 2025

IJNRD is a Scholarly Open Access, Peer-Reviewed, Refereed, and UGC CARE Journal Publication with a High Impact Factor of 8.76 (calculated by Google Scholar & Semantic Scholar | AI-Powered Research Tool). It is a Multidisciplinary, Monthly, Low-Cost, and Transparent Peer Review Journal Publication that adheres to the UGC CARE 2025 Peer-Reviewed Journal Policy and aligns with Scopus Journal Publication standards to ensure the highest level of research quality and credibility.

IJNRD offers comprehensive Journal Publication Services including indexing in all major databases and metadata repositories, Digital Object Identifier (Crossref DOI) assignment for each published article with additional fees, citation generation tools, and full Open Access visibility to enhance global research reach and citation impact.

The INTERNATIONAL JOURNAL OF NOVEL RESEARCH AND DEVELOPMENT (IJNRD) aims to advance applied, theoretical, and experimental research across diverse academic and professional fields. The journal promotes global knowledge exchange among researchers, developers, academicians, engineers, and practitioners, serving as a trusted platform for innovative, peer-reviewed journal publication and scientific collaboration.

Indexing Coverage: Google Scholar, SSRN, ResearcherID-Publons, Semantic Scholar (AI-Powered Research Tool), Microsoft Academic, Academia.edu, arXiv.org, ResearchGate, CiteSeerX, ResearcherID (Thomson Reuters), Mendeley, DocStoc, ISSUU, Scribd, and many other recognized academic repositories.

How to submit the paper?

You can now publish your research in IJNRD. IJNRD is a Transparent Peer-Reviewed Open Access Journal Publication (Refereed Journal), aligning with New UGC and UGC CARE recommendations.


For more details, refer to the official notice: UGC Public Notice


Submit Paper Online

Important Dates for Current issue

Paper Submission Open For: December 2025

Current Issue: Volume 10 | Issue 12 | December 2025

Impact Factor: 8.76

Last Date for Paper Submission: Till 31-Dec-2025

Notification of Review Result: Within 1-2 Days after Submitting paper.

Publication of Paper: Within 01-02 Days after Submititng documents.

Frequency: Monthly (12 issue Annually).

Journal Type: IJNRD is an International Peer-reviewed, Refereed, and Open Access Journal with Transparent Peer Review as per the new UGC CARE 2025 guidelines, offering low-cost multidisciplinary publication with Crossref DOI and global indexing.

Subject Category: Research Area

Call for Paper: More Details

Approval, Licenses and Indexing: More Details