Open Access
Research Paper
Peer Reviewed

Paper Title

Artificial intelligence based fake or fraud phone calls detection

Article Identifiers

Registration ID: IJNRD_224556

Published ID: IJNRD2407033

: Click Here to Get

About Hard Copy and Transparent Peer Review Report

Keywords

Artificial intelligence, fake or fraud phone calls detection, NLP

Abstract

Abstract The advent of telecommunications has revolutionized global connectivity, enabling rapid and efficient communication across diverse populations. However, this digital transformation has also led to a rise in fraudulent activities, particularly through deceptive phone calls. These fraudulent calls, orchestrated by sophisticated criminals, aim to exploit vulnerabilities in human trust and technological systems to deceive individuals into divulging sensitive information or participating in illicit financial transactions. Detecting and preventing such fraudulent activities presents significant challenges due to the dynamic nature of fraud tactics and the real-time demands of voice communication. This study explores the application of artificial intelligence (AI) techniques to develop robust systems for detecting and mitigating fake or fraud phone calls, thereby enhancing security in telecommunications networks. The research focuses on leveraging advanced machine learning algorithms, natural language processing (NLP) techniques, and voice analysis technologies to analyze call patterns, voice characteristics, and contextual information in real-time. By extracting meaningful features from phone call data, including audio recordings and call transcripts, AI models can discern anomalous behaviors and identify suspicious calls indicative of fraud. Key methodologies include the acquisition and preprocessing of a diverse dataset of phone call recordings, encompassing labeled examples of genuine and fraudulent calls. Privacy considerations and ethical guidelines govern the collection and anonymization of sensitive call data to protect user confidentiality while ensuring dataset integrity. Feature extraction techniques, such as spectrogram analysis for voice signal processing and NLP for linguistic pattern recognition, contribute to the development of accurate and reliable fraud detection models. The effectiveness of AI-based fraud detection systems is evaluated through rigorous model training, validation, and optimization processes. Supervised learning algorithms, including Support Vector Machines (SVM) and deep neural networks, classify calls based on extracted features and historical fraud patterns. Unsupervised learning techniques, such as anomaly detection and clustering, uncover unusual call behaviors without prior labels, enhancing detection capabilities across diverse fraud scenarios. In conclusion, the integration of artificial intelligence into fraud detection systems for identifying fake or fraud phone calls represents a significant advancement in safeguarding telecommunications infrastructure. By enhancing detection accuracy, real-time response capabilities.

How To Cite (APA)

Avula poojitha, P Satish Kumar, & Mannuru malleswari (July-2024). Artificial intelligence based fake or fraud phone calls detection. INTERNATIONAL JOURNAL OF NOVEL RESEARCH AND DEVELOPMENT, 9(7), a319-a328. https://ijnrd.org/papers/IJNRD2407033.pdf

Issue

Other Publication Details

Paper Reg. ID: IJNRD_224556

Published Paper Id: IJNRD2407033

Research Area: Computer Engineeringร‚ย 

Author Type: Indian Author

Country: Cuddapah, Andra Pradesh, India

Published Paper PDF: https://ijnrd.org/papers/IJNRD2407033.pdf

Published Paper URL: https://ijnrd.org/viewpaperforall?paper=IJNRD2407033

About Publisher

Journal Name: INTERNATIONAL JOURNAL OF NOVEL RESEARCH AND DEVELOPMENT(IJNRD)

UGC CARE JOURNAL PUBLICATION | ISSN: 2456-4184 | IMPACT FACTOR: 8.76 Calculated By Google Scholar | ESTD YEAR: 2016

An International UGC CARE JOURNAL PUBLICATION, Low Cost, Scholarly Open Access, Peer-Reviewed, Refereed Journal Impact Factor 8.76 Calculate by Google Scholar and Semantic Scholar | AI-Powered Research Tool, Multidisciplinary, Monthly, Multilanguage Journal Indexing in All Major Database & Metadata, Citation Generator

Publisher: IJNRD (IJ Publication) Janvi Wave | IJNRD.ORG | IJNRD.COM | IJPUB.ORG

Copyright & License

ยฉ 2026 - Authors hold the copyright of this article. This work is licensed under a Creative Commons Attribution 4.0 International License. and The Open Definition. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0). ๐Ÿ›ก๏ธ Disclaimer: The content, data, and findings in this article are based on the authorsโ€™ research and have been peer-reviewed for academic purposes only. Readers are advised to verify all information before practical or commercial use. The journal and its editorial board are not liable for any errors, losses, or consequences arising from its use. CC OpenContant

Publication Timeline

Peer Review
Through Scholar9.com Platform

Article Preview: View Full Paper

Call For Paper

Call For Paper - Volume 11 | Issue 2 | February 2026

IJNRD is a Scholarly Open Access, Peer-Reviewed, Refereed, and UGC CARE Journal Publication with a High Impact Factor of 8.76 (calculated by Google Scholar & Semantic Scholar | AI-Powered Research Tool). It is a Multidisciplinary, Monthly, Low-Cost, and Transparent Peer Review Journal Publication that adheres to the New UGC CARE Transparent Peer-Reviewed Journal Policy and aligns with Scopus Journal Publication standards to ensure the highest level of research quality and credibility.

IJNRD offers comprehensive Journal Publication Services including indexing in all major databases and metadata repositories, Digital Object Identifier (Crossref DOI) assignment for each published article with additional fees, citation generation tools, and full Open Access visibility to enhance global research reach and citation impact.

The INTERNATIONAL JOURNAL OF NOVEL RESEARCH AND DEVELOPMENT (IJNRD) aims to advance applied, theoretical, and experimental research across diverse academic and professional fields. The journal promotes global knowledge exchange among researchers, developers, academicians, engineers, and practitioners, serving as a trusted platform for innovative, peer-reviewed journal publication and scientific collaboration.

Indexing Coverage: Google Scholar, SSRN, ResearcherID-Publons, Semantic Scholar (AI-Powered Research Tool), Microsoft Academic, Academia.edu, arXiv.org, ResearchGate, CiteSeerX, ResearcherID (Thomson Reuters), Mendeley, DocStoc, ISSUU, Scribd, and many other recognized academic repositories.

Transparent Peer Review Journal Publication: IJNRD operates a strict double-blind peer review system managed by 3000+ expert reviewers, ensuring ethical, unbiased, and high-quality review for every research paper.

For Indian Authors : Get a transparent peer review report from Scholar9.com for just โ‚น1000. View Sample Report

For Foreign Authors : A detailed peer review report is available through Scholar9.com for $20 USD. View Sample Report


Transparent Peer Review Journal Publication


โญ Transparent Peer Review | ๐Ÿ•ต๏ธโ€โ™‚๏ธ Double-Blind | ๐Ÿ‘จโ€๐Ÿซ 3000+ Expert Reviewers | ๐Ÿ‡ฎ๐Ÿ‡ณ Report for India Author โ‚น1000 | ๐ŸŒ Report for Foreign Author $20 | ๐Ÿ“„ Sample Reports on Scholar9.com | ๐ŸŒ High Credibility | โš–๏ธ Ethical & Unbiased Evaluation

How to submit the paper?

Recently, the UGC discontinued the UGC-CARE Journal List and introduced new parameters that allow publication in Transparent Peer-Reviewed (Refereed) Journals. IJNRD is Transparent Peer Review Journal Valid As per New UGC Notification.


You can now publish your research paper in IJNRD.ORG. IJNRD is a Transparent Peer-Reviewed Open Access (Refereed Journal), UGC and UGC CARE Approved, Crossref DOI, Multidisciplinary, Impact Factor calculate by Google Scholar. As an International, open-access, and online journal, Publishing with us ensures wider reach, academic credibility, and enhanced recognition for your work.


For more details, refer to the official notice: UGC Public Notice


โญ Low Cost โ‚น1570 | ๐Ÿ“š UGC CARE Approved | ๐Ÿ” Peer-Reviewed | ๐ŸŒ Open Access | ๐Ÿ”— Crossref DOI & Global Indexing | ๐Ÿ“Š Google Scholar Impact Factor | ๐Ÿงช Multidisciplinary


Submit Paper Online  Call for Paper  About IJNRD UGC CARE Approval

Important Dates for Current issue

Paper Submission Open For: February 2026

Current Issue: Volume 11 | Issue 2 | February 2026

Impact Factor: 8.76

Last Date for Paper Submission: Till 28-Feb-2026

Notification of Review Result: Transparent peer review process - your paper is evaluated by experts, and you receive acceptance or rejection updates via email and SMS.

Publication of Paper: Once all documents are submitted, your paper is published without delay, and you can instantly download your certificate and confirmation letter online.

Frequency: Monthly (12 issue Annually).

Journal Type: IJNRD is an international open-access journal offering Low Cost Journal Publication, transparent Peer Review Journal Publication, Crossref DOI, and multidisciplinary research visibility under UGC CARE Approved Journal Publication.

Subject Category: Research Area

Approval, Licenses and Indexing: More Details


Call For Paper - Volume 11 | Issue 2 | February 2026


IJNRD.org offers low-cost journal publication starting at โ‚น1570 with UGC CARE Approved, refereed, peer-reviewed, open-access publishing. This multidisciplinary monthly journal, available in both online and print formats, features a strong Google Scholar-based impact factor of 8.76, Transparent Peer Review, CrossRef DOI, global indexing, fast publication, and complete metadata for maximum research visibility and citation impact across multidisciplinary domains.


Volume 11 | Issue 2 | February 2026 | IJNRD Transparent Peer Review Certificate | Submit Paper Online


โญ UGC CARE Approved Refereed Journal | ๐Ÿ” Transparent Peer Review | ๐ŸŒ Open Access Publishing | ๐Ÿ’ฐ Low-Cost โ‚น1570 | ๐Ÿ”— CrossRef DOI & Global Indexing | ๐Ÿ“Š Google Scholar Impact Factor 8.76 | ๐Ÿงช Multidisciplinary | Online & Print


Submit Paper Online