Paper Title
Data Mining for Students' Employability Prediction
Article Identifiers
Authors
SMM Malika
Keywords
Employability, Data mining, Techniques, Skills, Classification, Association
Abstract
This study has been undertaken to predict the student employability. Assessing student employability provides a method of integrating student abilities and employer business requirements, which is becoming an increasingly important concern for academic institutions. Improving student evaluation techniques for employability can help students to have a better understanding of business organizations and find the right one for them. The data for the training classification models is gathered through a survey in which students are asked to fill out a questionnaire in which they may indicate their abilities and academic achievement. This information may be used to determine their competency in a variety of skill categories, including soft skills, problem-solving skills and technical abilities and so on. The goal of this research is to use data mining to predict student employability by considering different factors such as skills that the students have gained during their diploma level and time duration with respect to the knowledge they have captured when they expect the placement at the end of graduation. Further during this research most specific skills with relevant to each job category also was identified. In this research for the prediction of the student employability different data mining models such as such as KNN, Naive Bayer’s, and Decision Tree were evaluated and out of that best model also was identified for this institute's student’s employability prediction. So, in this research classification and association techniques were used and evaluated.
Downloads
How To Cite (APA)
SMM Malika (February-2024). Data Mining for Students' Employability Prediction. INTERNATIONAL JOURNAL OF NOVEL RESEARCH AND DEVELOPMENT, 9(2), a216-a224. https://ijnrd.org/papers/IJNRD2402029.pdf
Issue
Volume 9 Issue 2, February-2024
Pages : a216-a224
Other Publication Details
Paper Reg. ID: IJNRD_213361
Published Paper Id: IJNRD2402029
Downloads: 000122001
Research Area: Computer Science & TechnologyÂ
Country: Colombo, Western Province, Sri Lanka
Published Paper PDF: https://ijnrd.org/papers/IJNRD2402029.pdf
Published Paper URL: https://ijnrd.org/viewpaperforall?paper=IJNRD2402029
About Publisher
Journal Name: INTERNATIONAL JOURNAL OF NOVEL RESEARCH AND DEVELOPMENT(IJNRD)
ISSN: 2456-4184 | IMPACT FACTOR: 8.76 Calculated By Google Scholar | ESTD YEAR: 2016
An International Scholarly Open Access Journal, Peer-Reviewed, Refereed Journal Impact Factor 8.76 Calculate by Google Scholar and Semantic Scholar | AI-Powered Research Tool, Multidisciplinary, Monthly, Multilanguage Journal Indexing in All Major Database & Metadata, Citation Generator
Publisher: IJNRD (IJ Publication) Janvi Wave | IJNRD.ORG | IJNRD.COM | IJPUB.ORG
Licence
This work is licensed under a Creative Commons Attribution 4.0 International License and The Open Definition


Publication Timeline
Article Preview: View Full Paper
Call For Paper
IJNRD is a Scholarly Open Access, Peer-reviewed, and Refereed Journal with a High Impact Factor of 8.76 (calculated by Google Scholar & Semantic Scholar | AI-Powered Research Tool). It is a Multidisciplinary, Monthly, Low-Cost Journal that follows UGC CARE 2025 Peer-Reviewed Journal Policy norms, Scopus journal standards, and Transparent Peer Review practices to ensure quality and credibility. IJNRD provides indexing in all major databases & metadata repositories, a citation generator, and Digital Object Identifier (DOI) for every published article with full open-access visibility.
The INTERNATIONAL JOURNAL OF NOVEL RESEARCH AND DEVELOPMENT (IJNRD) aims to advance applied, theoretical, and experimental research across diverse fields. Its goal is to promote global scientific information exchange among researchers, developers, engineers, academicians, and practitioners. IJNRD serves as a platform where educators and professionals can share research evidence, models of best practice, and innovative ideas, contributing to academic growth and industry relevance.
Indexing Coverage includes Google Scholar, SSRN, ResearcherID-Publons, Semantic Scholar (AI-Powered Research Tool), Microsoft Academic, Academia.edu, arXiv.org, ResearchGate, CiteSeerX, ResearcherID (Thomson Reuters), Mendeley, DocStoc, ISSUU, Scribd, and many more recognized academic repositories.
How to submit the paper?
By Our website
Click Here to Submit Paper Online
Important Dates for Current issue
Paper Submission Open For: October 2025
Current Issue: Volume 10 | Issue 10 | October 2025
Impact Factor: 8.76
Last Date for Paper Submission: Till 31-Oct-2025
Notification of Review Result: Within 1-2 Days after Submitting paper.
Publication of Paper: Within 01-02 Days after Submititng documents.
Frequency: Monthly (12 issue Annually).
Journal Type: IJNRD is an International Peer-reviewed, Refereed, and Open Access Journal with Transparent Peer Review as per the new UGC CARE 2025 guidelines, offering low-cost multidisciplinary publication with Crossref DOI and global indexing.
Subject Category: Research Area
Call for Paper: More Details