IJNRD Research Journal

WhatsApp
Click Here

WhatsApp editor@ijnrd.org
IJNRD
INTERNATIONAL JOURNAL OF NOVEL RESEARCH AND DEVELOPMENT
International Peer Reviewed & Refereed Journals, Open Access Journal
ISSN Approved Journal No: 2456-4184 | Impact factor: 8.76 | ESTD Year: 2016
Scholarly open access journals, Peer-reviewed, and Refereed Journals, Impact factor 8.76 (Calculate by google scholar and Semantic Scholar | AI-Powered Research Tool) , Multidisciplinary, Monthly, Indexing in all major database & Metadata, Citation Generator, Digital Object Identifier(DOI)

Call For Paper

For Authors

Forms / Download

Published Issue Details

Editorial Board

Other IMP Links

Facts & Figure

Impact Factor : 8.76

Issue per Year : 12

Volume Published : 9

Issue Published : 96

Article Submitted :

Article Published :

Total Authors :

Total Reviewer :

Total Countries :

Indexing Partner

Join RMS/Earn 300

Licence

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Published Paper Details
Paper Title: An efficient Blockchain-based security Model with Incremental Learning & Dynamic Mutability for IoMT Deployments
Authors Name: Prof Radhika P.Fuke , Dr.Rekha Ranawat
Download E-Certificate: Download
Author Reg. ID:
IJNRD_209298
Published Paper Id: IJNRD2311301
Published In: Volume 8 Issue 11, November-2023
DOI:
Abstract: Abstract:The expanding deployment of Internet of Medical Things (IoMT) networks has necessitated the development of efficient and secure solutions to address the challenges of data sharing, quality of service, and security. This paper presents an efficient blockchain-based security model for IoMT deployments with incremental learning and dynamic mutability operations. This research is necessary due to the inherent requirements of IoMT networks, which include real-time data sharing, low delay, energy efficiency, throughput enhancement, and robust security. To meet these requirements, our proposed model employs the Firefly algorithm in conjunction with Particle Swarm Optimization (PSO) to determine optimal sidechain configurations that improve QoS in IoMT networks. In addition, Q-learning is used to select mutable data, enabling enhanced real-time data sharing between IoMT deployments. The proposed model consists of three major components: a sidechain configuration optimizer based on Firefly-PSO, a mutable information selector based on Q-learning, and an augmented set of blockchain-based security frameworks. The Firefly-PSO optimizer intelligently determines sidechain configurations for optimizing QoS parameters including delay, energy requirements, and throughput levels. The Q-learning component selects mutable information dynamically to enhance real-time data sharing operations. The blockchain-based security framework provides robust protection against a variety of attacks, such as Finney attacks, Distributed Denial of Service (DDoS) attacks, Man-in-the-middle (MITM) attacks, and Sybil attacks. Experimental evaluations demonstrate that the proposed model is effective. Compared to recently proposed blockchain models, our model achieves an 8.5% reduction in delay, a 12.4% reduction in energy requirements, a 19.5% increase in throughput, and enhanced security against a variety of attacks. These findings validate the importance of leveraging incremental learning, dynamic mutability, and intelligent algorithms to address the challenges of IoMT deployments, thereby improving the overall performance and security of IoMT networks. This research contributes to the development of efficient and secure IoMT solutions by facilitating real-time data sharing, enhancing QoS parameters, and mitigating security threats. The proposed model has applications in healthcare systems, remote patient monitoring, telemedicine, and other domains where reliable and secure data sharing is essential for real-time operability scenarios
Keywords: Keywords: IoMT, Machine Learning, QoS, Blockchain, Sidechain, Deployment, Scenarios
Cite Article: "An efficient Blockchain-based security Model with Incremental Learning & Dynamic Mutability for IoMT Deployments", International Journal of Novel Research and Development (www.ijnrd.org), ISSN:2456-4184, Vol.8, Issue 11, page no.d1-d11, November-2023, Available :http://www.ijnrd.org/papers/IJNRD2311301.pdf
Downloads: 000118750
ISSN: 2456-4184 | IMPACT FACTOR: 8.76 Calculated By Google Scholar| ESTD YEAR: 2016
An International Scholarly Open Access Journal, Peer-Reviewed, Refereed Journal Impact Factor 8.76 Calculate by Google Scholar and Semantic Scholar | AI-Powered Research Tool, Multidisciplinary, Monthly, Multilanguage Journal Indexing in All Major Database & Metadata, Citation Generator
Publication Details: Published Paper ID:IJNRD2311301
Registration ID: 209298
Published In: Volume 8 Issue 11, November-2023
DOI (Digital Object Identifier):
Page No: d1-d11
Country: Badnera Amravati, Maharashtra, India
Research Area: Engineering
Publisher : IJ Publication
Published Paper URL : https://www.ijnrd.org/viewpaperforall?paper=IJNRD2311301
Published Paper PDF: https://www.ijnrd.org/papers/IJNRD2311301
Share Article:
Share

Click Here to Download This Article

Article Preview
Click Here to Download This Article

Major Indexing from www.ijnrd.org
Semantic Scholar Microsaoft Academic ORCID Zenodo
Google Scholar ResearcherID Thomson Reuters Mendeley : reference manager Academia.edu
arXiv.org : cornell university library Research Gate CiteSeerX PUBLON
DRJI SSRN Scribd DocStoc

ISSN Details

ISSN: 2456-4184
Impact Factor: 8.76 and ISSN APPROVED
Journal Starting Year (ESTD) : 2016

DOI (A digital object identifier)


Providing A digital object identifier by DOI
How to Get DOI? DOI

Conference

Open Access License Policy

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Creative Commons License This material is Open Knowledge This material is Open Data This material is Open Content

Important Details

Social Media

Licence

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Join RMS/Earn 300

IJNRD