Paper Title
FAULT DETECTION IN RAILWAY TRACKS USING IMAGE CLASSIFICATION
Article Identifiers
Authors
Srinivaas Reddy , Nikita Mali , Amaan Shaikh , Dr. Rahul Sharma
Keywords
Computer Vision, Transfer Learning, Machine Learning, Image Processing, Image Classification.
Abstract
Railway track crack detection is a critical aspect of railway infrastructure maintenance, aimed at ensuring passenger and freight safety and preventing potential accidents. The railway department is implementing several creative approaches to improve the efficiency of the inspection procedure. Various technologies, such as the Computer Vision-Based method, have been investigated in the past to detect defects on rail surfaces, but complete automation is still a long way off. Few countries utilize Deep Learning algorithms to monitor and manage the condition of train rails. This project presents a Fault detection system based on machine learning, computer vision and Image Classification based techniques to automate the process of detecting cracks in railway tracks. The methodology involves Transfer Learning using VGG19 and the collection of a diverse dataset of annotated railway track images, including both defective (cracked) and non-defective (crack-free) samples. The Images are pre-processed using various pre-processing techniques and then Machine learning algorithms are applied to train a model on this pre-processed dataset, enabling it to distinguish between defective and non-defective tracks. The proposed system offers several advantages, including early detection of cracks, reduced maintenance costs, and improved safety measures. By automating the crack detection process, the system minimizes the need for manual inspections and enables timely maintenance actions. The results demonstrate the effectiveness of the fault detection system in accurately identifying cracks on railway tracks, thereby contributing to enhanced railway safety and efficient maintenance practices. The results later are compared with RESNET50 and GoogleNet models, to understand which model gives more accurate results. The successful implementation of this system can lead to significant improvements in railway infrastructure management and overall transportation safety. IndexTerms - Computer Vision, Transfer Learning, Machine Learning, Image Processing, Image Classification.
Downloads
How To Cite (APA)
Srinivaas Reddy , Nikita Mali, Amaan Shaikh, & Dr. Rahul Sharma (November-2023). FAULT DETECTION IN RAILWAY TRACKS USING IMAGE CLASSIFICATION . INTERNATIONAL JOURNAL OF NOVEL RESEARCH AND DEVELOPMENT, 8(11), c518-c539. https://ijnrd.org/papers/IJNRD2311265.pdf
Issue
Volume 8 Issue 11, November-2023
Pages : c518-c539
Other Publication Details
Paper Reg. ID: IJNRD_209560
Published Paper Id: IJNRD2311265
Downloads: 000121986
Research Area: Computer Science & TechnologyÂ
Country: Pune, Maharashtra, India
Published Paper PDF: https://ijnrd.org/papers/IJNRD2311265.pdf
Published Paper URL: https://ijnrd.org/viewpaperforall?paper=IJNRD2311265
About Publisher
Journal Name: INTERNATIONAL JOURNAL OF NOVEL RESEARCH AND DEVELOPMENT(IJNRD)
ISSN: 2456-4184 | IMPACT FACTOR: 8.76 Calculated By Google Scholar | ESTD YEAR: 2016
An International Scholarly Open Access Journal, Peer-Reviewed, Refereed Journal Impact Factor 8.76 Calculate by Google Scholar and Semantic Scholar | AI-Powered Research Tool, Multidisciplinary, Monthly, Multilanguage Journal Indexing in All Major Database & Metadata, Citation Generator
Publisher: IJNRD (IJ Publication) Janvi Wave | IJNRD.ORG | IJNRD.COM | IJPUB.ORG
Licence
This work is licensed under a Creative Commons Attribution 4.0 International License and The Open Definition


Publication Timeline
Article Preview: View Full Paper
Call For Paper
IJNRD is a Scholarly Open Access, Peer-reviewed, and Refereed Journal with a High Impact Factor of 8.76 (calculated by Google Scholar & Semantic Scholar | AI-Powered Research Tool). It is a Multidisciplinary, Monthly, Low-Cost Journal that follows UGC CARE 2025 Peer-Reviewed Journal Policy norms, Scopus journal standards, and Transparent Peer Review practices to ensure quality and credibility. IJNRD provides indexing in all major databases & metadata repositories, a citation generator, and Digital Object Identifier (DOI) for every published article with full open-access visibility.
The INTERNATIONAL JOURNAL OF NOVEL RESEARCH AND DEVELOPMENT (IJNRD) aims to advance applied, theoretical, and experimental research across diverse fields. Its goal is to promote global scientific information exchange among researchers, developers, engineers, academicians, and practitioners. IJNRD serves as a platform where educators and professionals can share research evidence, models of best practice, and innovative ideas, contributing to academic growth and industry relevance.
Indexing Coverage includes Google Scholar, SSRN, ResearcherID-Publons, Semantic Scholar (AI-Powered Research Tool), Microsoft Academic, Academia.edu, arXiv.org, ResearchGate, CiteSeerX, ResearcherID (Thomson Reuters), Mendeley, DocStoc, ISSUU, Scribd, and many more recognized academic repositories.
How to submit the paper?
By Our website
Click Here to Submit Paper Online
Important Dates for Current issue
Paper Submission Open For: October 2025
Current Issue: Volume 10 | Issue 10 | October 2025
Impact Factor: 8.76
Last Date for Paper Submission: Till 31-Oct-2025
Notification of Review Result: Within 1-2 Days after Submitting paper.
Publication of Paper: Within 01-02 Days after Submititng documents.
Frequency: Monthly (12 issue Annually).
Journal Type: IJNRD is an International Peer-reviewed, Refereed, and Open Access Journal with Transparent Peer Review as per the new UGC CARE 2025 guidelines, offering low-cost multidisciplinary publication with Crossref DOI and global indexing.
Subject Category: Research Area
Call for Paper: More Details