Paper Title
CROP PREDICTION BASED ON CHARACTERISTICS OF THE AGRICULTURAL ENVIRONMENT USING VARIOUS FEATURE SELECTION TECHNIQUES AND CLASSIFIERS
Article Identifiers
Authors
Mrs Dr. J. Sarada , BovillaSravani
Keywords
Crops, Zigbee, Monitoring, Soil, Temperature sensors, Security, Data models
Abstract
Agriculture is a growing field of research. In particular, crop prediction in agriculture is critical and is chiefly contingent upon soil and environment conditions, including rainfall, humidity, and temperature. In the past, farmers were able to decide on the crop to be cultivated, monitor its growth, and determine when it could be harvested. Today, however, rapid changes in environmental conditions have made it difficult for the farming community to continue to do so. Consequently, in recent years, machine learning techniques have taken over the task of prediction, and this work has used several of these to determine crop yield. To ensure that a given machine learning (ML) model works at a high level of precision, it is imperative to employ efficient feature selection methods to preprocess the raw data into an easily computable Machine Learning friendly dataset. To reduce redundancies and make the ML model more accurate, only data features that have a significant degree of relevance in determining the final output of the model must be employed. Thus, optimal feature selection arises to ensure that only the most relevant features are accepted as a part of the model. Conglomerating every single feature from raw data without checking for their role in the process of making the model will unnecessarily complicate our model. Furthermore, additional features which contribute little to the ML model will increase its time and space complexity and affect the accuracy of the model’s output. The results depict that an ensemble technique offers better prediction accuracy than the existing classification technique
Downloads
How To Cite
"CROP PREDICTION BASED ON CHARACTERISTICS OF THE AGRICULTURAL ENVIRONMENT USING VARIOUS FEATURE SELECTION TECHNIQUES AND CLASSIFIERS", IJNRD - INTERNATIONAL JOURNAL OF NOVEL RESEARCH AND DEVELOPMENT (www.IJNRD.org), ISSN:2456-4184, Vol.8, Issue 11, page no.a62-a69, November-2023, Available :https://ijnrd.org/papers/IJNRD2311007.pdf
Issue
Volume 8 Issue 11, November-2023
Pages : a62-a69
Other Publication Details
Paper Reg. ID: IJNRD_207268
Published Paper Id: IJNRD2311007
Downloads: 000121123
Research Area: Engineering
Country: warangal, TELANGANA, India
Published Paper PDF: https://ijnrd.org/papers/IJNRD2311007.pdf
Published Paper URL: https://ijnrd.org/viewpaperforall?paper=IJNRD2311007
About Publisher
Journal Name: INTERNATIONAL JOURNAL OF NOVEL RESEARCH AND DEVELOPMENT(IJNRD)
ISSN: 2456-4184 | IMPACT FACTOR: 8.76 Calculated By Google Scholar | ESTD YEAR: 2016
An International Scholarly Open Access Journal, Peer-Reviewed, Refereed Journal Impact Factor 8.76 Calculate by Google Scholar and Semantic Scholar | AI-Powered Research Tool, Multidisciplinary, Monthly, Multilanguage Journal Indexing in All Major Database & Metadata, Citation Generator
Publisher: IJNRD (IJ Publication) Janvi Wave
Licence
This work is licensed under a Creative Commons Attribution 4.0 International License and The Open Definition


Publication Timeline
Article Preview: View Full Paper
Call For Paper
IJNRD is Scholarly open access journals, Peer-reviewed, and Refereed Journals, High Impact factor 8.76 (Calculate by google scholar and Semantic Scholar | AI-Powered Research Tool), Multidisciplinary, Monthly, Indexing in all major database & Metadata, Citation Generator, Digital Object Identifier(DOI) with Open-Access Publications.
INTERNATIONAL JOURNAL OF NOVEL RESEARCH AND DEVELOPMENT (IJNRD) aims to explore advances in research pertaining to applied, theoretical and experimental Technological studies. The goal is to promote scientific information interchange between researchers, developers, engineers, students, and practitioners working in and around the world. IJNRD will provide an opportunity for practitioners and educators of engineering field to exchange research evidence, models of best practice and innovative ideas.
Indexing In Google Scholar, SSRN, ResearcherID-Publons, Semantic Scholar | AI-Powered Research Tool, Microsoft Academic, Academia.edu, arXiv.org, Research Gate, CiteSeerX, ResearcherID Thomson Reuters, Mendeley : reference manager, DocStoc, ISSUU, Scribd, and many more
How to submit the paper?
By Our website
Click Here to Submit Paper Online
Important Dates for Current issue
Paper Submission Open For: August 2025
Current Issue: Volume 10 | Issue 8
Last Date for Paper Submission: Till 31-Aug-2025
Notification of Review Result: Within 1-2 Days after Submitting paper.
Publication of Paper: Within 01-02 Days after Submititng documents.
Frequency: Monthly (12 issue Annually).
Journal Type: International Peer-reviewed, Refereed, and Open Access Journal.
Subject Category: Research Area