Paper Title
An Empirical Study on Fake News Detection on Social Media using Deep Learning Techniques
Article Identifiers
Authors
Indu Bala , Dr. Sunita
Keywords
NLP, DNN, AI, CNN, deep learning, machine learning, fake news
Abstract
News, when conveyed via newspapers, journalists, radio, media, and TV, the news is considered to be reliable information. The contemporary century is a technological age therefore news is disseminated instantly throughout the globe via social media. Technologies are also very important in turning real news into a hoax, false information, rumor, or fake news. This false information has an impact on all spheres of life, including social and economic ones. Diverse AI, machine learning, and deep learning techniques are putting a lot of effort into identifying and detecting it. Deep learning approaches can offer accurate findings when compared to the other two approaches. This study places a strong emphasis on the numerous cutting-edge methods. To increase the popularity of their publications, fake news publishers employ several stylistic strategies, one of which is to encourage the dissemination of false material on social media. This evaluation examines the whole rationale for identifying and detecting bogus news. The study also focuses on traits, features, various types of news data, classifications of false news, and methods for identifying fake news. To provide a thorough analysis of the numerous literary works that have contributed to this topic, the research, in particular, discusses the underlying theory of the relevant work. In addition, various deep-learning approaches are used to evaluate the effectiveness of fake news identification. We start by noting the prevalence of fake news, the proportion of false information on social media, its effects on various platforms and social media apps, and its various subtypes. Following that, we continue our study of earlier deep learning studies. To organize, a thorough overview of deep learning-based methods has been supplied. However, we argue that further work is needed to enhance fake news detection techniques in future research paths.
Downloads
How To Cite
"An Empirical Study on Fake News Detection on Social Media using Deep Learning Techniques", IJNRD - INTERNATIONAL JOURNAL OF NOVEL RESEARCH AND DEVELOPMENT (www.IJNRD.org), ISSN:2456-4184, Vol.8, Issue 5, page no.h484-h494, May-2023, Available :https://ijnrd.org/papers/IJNRD2305766.pdf
Issue
Volume 8 Issue 5, May-2023
Pages : h484-h494
Other Publication Details
Paper Reg. ID: IJNRD_197134
Published Paper Id: IJNRD2305766
Downloads: 000121203
Research Area: Computer Science & TechnologyÂ
Country: Gurdaspur, Punjab, India
Published Paper PDF: https://ijnrd.org/papers/IJNRD2305766.pdf
Published Paper URL: https://ijnrd.org/viewpaperforall?paper=IJNRD2305766
About Publisher
Journal Name: INTERNATIONAL JOURNAL OF NOVEL RESEARCH AND DEVELOPMENT(IJNRD)
ISSN: 2456-4184 | IMPACT FACTOR: 8.76 Calculated By Google Scholar | ESTD YEAR: 2016
An International Scholarly Open Access Journal, Peer-Reviewed, Refereed Journal Impact Factor 8.76 Calculate by Google Scholar and Semantic Scholar | AI-Powered Research Tool, Multidisciplinary, Monthly, Multilanguage Journal Indexing in All Major Database & Metadata, Citation Generator
Publisher: IJNRD (IJ Publication) Janvi Wave
Licence
This work is licensed under a Creative Commons Attribution 4.0 International License and The Open Definition


Publication Timeline
Article Preview: View Full Paper
Call For Paper
IJNRD is Scholarly open access journals, Peer-reviewed, and Refereed Journals, High Impact factor 8.76 (Calculate by google scholar and Semantic Scholar | AI-Powered Research Tool), Multidisciplinary, Monthly, Indexing in all major database & Metadata, Citation Generator, Digital Object Identifier(DOI) with Open-Access Publications.
INTERNATIONAL JOURNAL OF NOVEL RESEARCH AND DEVELOPMENT (IJNRD) aims to explore advances in research pertaining to applied, theoretical and experimental Technological studies. The goal is to promote scientific information interchange between researchers, developers, engineers, students, and practitioners working in and around the world. IJNRD will provide an opportunity for practitioners and educators of engineering field to exchange research evidence, models of best practice and innovative ideas.
Indexing In Google Scholar, SSRN, ResearcherID-Publons, Semantic Scholar | AI-Powered Research Tool, Microsoft Academic, Academia.edu, arXiv.org, Research Gate, CiteSeerX, ResearcherID Thomson Reuters, Mendeley : reference manager, DocStoc, ISSUU, Scribd, and many more
How to submit the paper?
By Our website
Click Here to Submit Paper Online
Important Dates for Current issue
Paper Submission Open For: August 2025
Current Issue: Volume 10 | Issue 8
Last Date for Paper Submission: Till 31-Aug-2025
Notification of Review Result: Within 1-2 Days after Submitting paper.
Publication of Paper: Within 01-02 Days after Submititng documents.
Frequency: Monthly (12 issue Annually).
Journal Type: International Peer-reviewed, Refereed, and Open Access Journal.
Subject Category: Research Area