Paper Title
Parkinson’s Diseases Prediction and Comparison of Machine Learning Algorithms
Article Identifiers
Authors
Ujjwal Chandrakant Chaudhari , Mansi Ingle , Anchal Barbate , Palak Bhagat
Keywords
Parkinson's disease, machine learning, prediction, XGBoost, Random Forest, KNN
Abstract
Parkinson's disease (PD) is a neurological disorder that affects a significant number of people worldwide. Timely and accurate prediction of PD can help in early intervention and treatment, improving patient outcomes. While there is currently no known cure for the disease, early detection and treatment can reduce the cost of the disease and save lives. However, proper and timely detection of Parkinson's disease is challenging in underdeveloped countries due to limited resources and awareness. Additionally, symptoms vary among patients and may not all become apparent at the same stage of the disease.In this study, we investigate the application of machine learning techniques to predict PD using clinical data, with a focus on voice degradation as a symptom. We utilized various state-of-the-art machine learning algorithms, such as K-Nearest Neighbours (KNN), Logistic Regression, Support Vector Machine (SVM), Decision Tree, Random Forest Classifier, and XGBoost Classifier, to determine which algorithm is best suited for PD prediction. The performance evaluation parameters, including accuracy, precision, recall, F1 score, and Precision-Recall curve (PR curve), were used to compare the algorithms. We obtained the dataset for the study from the Oxford UCI Machine repository.Our study found that all four machine learning algorithms achieved high accuracy in predicting PD, with XGBoost achieving the highest accuracy of 96.61%, followed by Random Forest with 94.91%, KNN with 91.52%, and Decision Tree with 86.44%. Our study highlights the potential of machine learning techniques in accurately predicting PD using clinical data. The findings suggest that XGBoost, Random Forest, and KNN are effective tools for early PD prediction, providing valuable insights for clinical decision-making and personalized treatment planning.
Downloads
How To Cite
"Parkinson’s Diseases Prediction and Comparison of Machine Learning Algorithms", IJNRD - INTERNATIONAL JOURNAL OF NOVEL RESEARCH AND DEVELOPMENT (www.IJNRD.org), ISSN:2456-4184, Vol.8, Issue 4, page no.f632-f637, April-2023, Available :https://ijnrd.org/papers/IJNRD2304574.pdf
Issue
Volume 8 Issue 4, April-2023
Pages : f632-f637
Other Publication Details
Paper Reg. ID: IJNRD_192147
Published Paper Id: IJNRD2304574
Downloads: 000121173
Research Area: Information TechnologyÂ
Country: katol, maharashtra, India
Published Paper PDF: https://ijnrd.org/papers/IJNRD2304574.pdf
Published Paper URL: https://ijnrd.org/viewpaperforall?paper=IJNRD2304574
About Publisher
Journal Name: INTERNATIONAL JOURNAL OF NOVEL RESEARCH AND DEVELOPMENT(IJNRD)
ISSN: 2456-4184 | IMPACT FACTOR: 8.76 Calculated By Google Scholar | ESTD YEAR: 2016
An International Scholarly Open Access Journal, Peer-Reviewed, Refereed Journal Impact Factor 8.76 Calculate by Google Scholar and Semantic Scholar | AI-Powered Research Tool, Multidisciplinary, Monthly, Multilanguage Journal Indexing in All Major Database & Metadata, Citation Generator
Publisher: IJNRD (IJ Publication) Janvi Wave
Licence
This work is licensed under a Creative Commons Attribution 4.0 International License and The Open Definition


Publication Timeline
Article Preview: View Full Paper
Call For Paper
IJNRD is Scholarly open access journals, Peer-reviewed, and Refereed Journals, High Impact factor 8.76 (Calculate by google scholar and Semantic Scholar | AI-Powered Research Tool), Multidisciplinary, Monthly, Indexing in all major database & Metadata, Citation Generator, Digital Object Identifier(DOI) with Open-Access Publications.
INTERNATIONAL JOURNAL OF NOVEL RESEARCH AND DEVELOPMENT (IJNRD) aims to explore advances in research pertaining to applied, theoretical and experimental Technological studies. The goal is to promote scientific information interchange between researchers, developers, engineers, students, and practitioners working in and around the world. IJNRD will provide an opportunity for practitioners and educators of engineering field to exchange research evidence, models of best practice and innovative ideas.
Indexing In Google Scholar, SSRN, ResearcherID-Publons, Semantic Scholar | AI-Powered Research Tool, Microsoft Academic, Academia.edu, arXiv.org, Research Gate, CiteSeerX, ResearcherID Thomson Reuters, Mendeley : reference manager, DocStoc, ISSUU, Scribd, and many more
How to submit the paper?
By Our website
Click Here to Submit Paper Online
Important Dates for Current issue
Paper Submission Open For: August 2025
Current Issue: Volume 10 | Issue 8
Last Date for Paper Submission: Till 31-Aug-2025
Notification of Review Result: Within 1-2 Days after Submitting paper.
Publication of Paper: Within 01-02 Days after Submititng documents.
Frequency: Monthly (12 issue Annually).
Journal Type: International Peer-reviewed, Refereed, and Open Access Journal.
Subject Category: Research Area