Paper Title
Prevention and Detection of SQL Injection Attack using Machine Learning Predictive Analytics
Article Identifiers
Authors
Akshar Patel , S Vishnu Vardhan , B Sunil Kumar , Ms. Shruti Kansal
Keywords
SQLIA, SVM Classifier, Injection of SQL, data-driven SQLIA, Big data for SQLIA.
Abstract
The back-end database is fundamental for storing enormous information created by Web trades, for example, cloud-facilitated applications and IoT shrewd gadgets. Interlopers keep on utilizing the Structured Query Language (SQL) Injection Attack (SQLIA) to take private data set data, and the outcomes will be appalling. The current methods, which are largely signature techniques, are unable to deal with new signatures hidden in internet requests because they were all developed prior to the most recent problems of massive data mining. To dissect and forestalling SQLIA, elective machine learning (ML) prescient examination gives a helpful and versatile technique for mining enormous amounts of information. Unfortunately, a common issue in SQLIA research is the lack of strong corpora, or data sets, that contain patterns and historical data items and can be used to train classifiers. In this work, we explore the construction of a data set that incorporates extraction from known attack patterns. Some examples of these patterns include SQL words and symbols that are present at injection locations. The data set is pre-processed, labeled, and feature hashed for supervised learning. The trained classifier will intercept SQLIA in internet requests, stopping malicious internet requests to get to back-end database. This paper gives broad proof of the implementation of ML predictive analysis that predicts and keeps away from SQLIA by using observational evaluations expressed in the Confusion Matrix (CM) and Receiver Operating Curve (ROC).
Downloads
How To Cite (APA)
Akshar Patel, S Vishnu Vardhan, B Sunil Kumar, & Ms. Shruti Kansal (March-2023). Prevention and Detection of SQL Injection Attack using Machine Learning Predictive Analytics. INTERNATIONAL JOURNAL OF NOVEL RESEARCH AND DEVELOPMENT, 8(3), c36-c42. https://ijnrd.org/papers/IJNRD2303207.pdf
Issue
Volume 8 Issue 3, March-2023
Pages : c36-c42
Other Publication Details
Paper Reg. ID: IJNRD_188333
Published Paper Id: IJNRD2303207
Downloads: 000121981
Research Area: Computer Science & TechnologyÂ
Country: Hyderabad, Telangana, India
Published Paper PDF: https://ijnrd.org/papers/IJNRD2303207.pdf
Published Paper URL: https://ijnrd.org/viewpaperforall?paper=IJNRD2303207
About Publisher
Journal Name: INTERNATIONAL JOURNAL OF NOVEL RESEARCH AND DEVELOPMENT(IJNRD)
ISSN: 2456-4184 | IMPACT FACTOR: 8.76 Calculated By Google Scholar | ESTD YEAR: 2016
An International Scholarly Open Access Journal, Peer-Reviewed, Refereed Journal Impact Factor 8.76 Calculate by Google Scholar and Semantic Scholar | AI-Powered Research Tool, Multidisciplinary, Monthly, Multilanguage Journal Indexing in All Major Database & Metadata, Citation Generator
Publisher: IJNRD (IJ Publication) Janvi Wave | IJNRD.ORG | IJNRD.COM | IJPUB.ORG
Licence
This work is licensed under a Creative Commons Attribution 4.0 International License and The Open Definition


Publication Timeline
Article Preview: View Full Paper
Call For Paper
IJNRD is a Scholarly Open Access, Peer-reviewed, and Refereed Journal with a High Impact Factor of 8.76 (calculated by Google Scholar & Semantic Scholar | AI-Powered Research Tool). It is a Multidisciplinary, Monthly, Low-Cost Journal that follows UGC CARE 2025 Peer-Reviewed Journal Policy norms, Scopus journal standards, and Transparent Peer Review practices to ensure quality and credibility. IJNRD provides indexing in all major databases & metadata repositories, a citation generator, and Digital Object Identifier (DOI) for every published article with full open-access visibility.
The INTERNATIONAL JOURNAL OF NOVEL RESEARCH AND DEVELOPMENT (IJNRD) aims to advance applied, theoretical, and experimental research across diverse fields. Its goal is to promote global scientific information exchange among researchers, developers, engineers, academicians, and practitioners. IJNRD serves as a platform where educators and professionals can share research evidence, models of best practice, and innovative ideas, contributing to academic growth and industry relevance.
Indexing Coverage includes Google Scholar, SSRN, ResearcherID-Publons, Semantic Scholar (AI-Powered Research Tool), Microsoft Academic, Academia.edu, arXiv.org, ResearchGate, CiteSeerX, ResearcherID (Thomson Reuters), Mendeley, DocStoc, ISSUU, Scribd, and many more recognized academic repositories.
How to submit the paper?
By Our website
Click Here to Submit Paper Online
Important Dates for Current issue
Paper Submission Open For: October 2025
Current Issue: Volume 10 | Issue 10 | October 2025
Impact Factor: 8.76
Last Date for Paper Submission: Till 31-Oct-2025
Notification of Review Result: Within 1-2 Days after Submitting paper.
Publication of Paper: Within 01-02 Days after Submititng documents.
Frequency: Monthly (12 issue Annually).
Journal Type: IJNRD is an International Peer-reviewed, Refereed, and Open Access Journal with Transparent Peer Review as per the new UGC CARE 2025 guidelines, offering low-cost multidisciplinary publication with Crossref DOI and global indexing.
Subject Category: Research Area
Call for Paper: More Details