Paper Title
Machine Learning based Nutritional assistant using Convolution-al Neural Network
Article Identifiers
Authors
Ranjeesh R , Ravikumar P , Vijayaprabu R , Vishnu V , Jaipriya S
Keywords
Nutrional Assistant, Diet Planning, Machine Learning, Neural Network
Abstract
The nutrition assistant system proposed in the study is a technology-based solution to help individuals make healthier dietary choices. The system uses advanced machine learning techniques, specifically a convolution-al neural network (CNN), to accurately identify food items from images taken by the user's smartphone camera. The CNN model was trained on a large dataset of food images to ensure accurate identification of food items. The diet plan application integrated with the CNN model allows users to set their health goals and dietary preferences, such as vegetarian or gluten-free diets. Based on this information, the system provides personalized dietary recommendations and meal plans that meet the user's nutritional needs. The system not only identifies food items but also estimates portion sizes of the foods in the image, which is used to provide more accurate nutrient content information and track the user's daily caloric intake. The user study conducted to evaluate the system found that the system helped users make healthier food choices and understand their nutritional needs. The system's ability to provide personalized dietary recommendations was particularly valued by participants, who reported that it helped them better understand their nutritional needs and make more informed food choices. Overall, the nutrition assistant system has the potential to prevent diet-related health issues by providing tailored dietary recommendations that are specific to each individual's health goals and dietary preferences.
Downloads
How To Cite (APA)
Ranjeesh R, Ravikumar P, Vijayaprabu R, Vishnu V, & Jaipriya S (March-2023). Machine Learning based Nutritional assistant using Convolution-al Neural Network. INTERNATIONAL JOURNAL OF NOVEL RESEARCH AND DEVELOPMENT, 8(3), b485-b489. https://ijnrd.org/papers/IJNRD2303158.pdf
Issue
Volume 8 Issue 3, March-2023
Pages : b485-b489
Other Publication Details
Paper Reg. ID: IJNRD_188645
Published Paper Id: IJNRD2303158
Downloads: 000121980
Research Area: Information TechnologyÂ
Country: Kanyakumari, Tamil Nadu, India
Published Paper PDF: https://ijnrd.org/papers/IJNRD2303158.pdf
Published Paper URL: https://ijnrd.org/viewpaperforall?paper=IJNRD2303158
About Publisher
Journal Name: INTERNATIONAL JOURNAL OF NOVEL RESEARCH AND DEVELOPMENT(IJNRD)
ISSN: 2456-4184 | IMPACT FACTOR: 8.76 Calculated By Google Scholar | ESTD YEAR: 2016
An International Scholarly Open Access Journal, Peer-Reviewed, Refereed Journal Impact Factor 8.76 Calculate by Google Scholar and Semantic Scholar | AI-Powered Research Tool, Multidisciplinary, Monthly, Multilanguage Journal Indexing in All Major Database & Metadata, Citation Generator
Publisher: IJNRD (IJ Publication) Janvi Wave | IJNRD.ORG | IJNRD.COM | IJPUB.ORG
Licence
This work is licensed under a Creative Commons Attribution 4.0 International License and The Open Definition


Publication Timeline
Article Preview: View Full Paper
Call For Paper
IJNRD is a Scholarly Open Access, Peer-reviewed, and Refereed Journal with a High Impact Factor of 8.76 (calculated by Google Scholar & Semantic Scholar | AI-Powered Research Tool). It is a Multidisciplinary, Monthly, Low-Cost Journal that follows UGC CARE 2025 Peer-Reviewed Journal Policy norms, Scopus journal standards, and Transparent Peer Review practices to ensure quality and credibility. IJNRD provides indexing in all major databases & metadata repositories, a citation generator, and Digital Object Identifier (DOI) for every published article with full open-access visibility.
The INTERNATIONAL JOURNAL OF NOVEL RESEARCH AND DEVELOPMENT (IJNRD) aims to advance applied, theoretical, and experimental research across diverse fields. Its goal is to promote global scientific information exchange among researchers, developers, engineers, academicians, and practitioners. IJNRD serves as a platform where educators and professionals can share research evidence, models of best practice, and innovative ideas, contributing to academic growth and industry relevance.
Indexing Coverage includes Google Scholar, SSRN, ResearcherID-Publons, Semantic Scholar (AI-Powered Research Tool), Microsoft Academic, Academia.edu, arXiv.org, ResearchGate, CiteSeerX, ResearcherID (Thomson Reuters), Mendeley, DocStoc, ISSUU, Scribd, and many more recognized academic repositories.
How to submit the paper?
By Our website
Click Here to Submit Paper Online
Important Dates for Current issue
Paper Submission Open For: October 2025
Current Issue: Volume 10 | Issue 10 | October 2025
Impact Factor: 8.76
Last Date for Paper Submission: Till 31-Oct-2025
Notification of Review Result: Within 1-2 Days after Submitting paper.
Publication of Paper: Within 01-02 Days after Submititng documents.
Frequency: Monthly (12 issue Annually).
Journal Type: IJNRD is an International Peer-reviewed, Refereed, and Open Access Journal with Transparent Peer Review as per the new UGC CARE 2025 guidelines, offering low-cost multidisciplinary publication with Crossref DOI and global indexing.
Subject Category: Research Area
Call for Paper: More Details