Open Access
Research Paper
Peer Reviewed

Paper Title

Classification and Detection of Ultrasound Liver Tumour Using VGG-ResNet

Article Identifiers

Registration ID: IJNRD_182251

Published ID: IJNRD2208030

: Click Here to Get

Keywords

MATLAB, Convolutional Neural Network(CNN), Dataset, Learning Rate, Epoch Rate, and Minibatch Size

Abstract

Since liver cancer is the most fatal kind of cancer, it's critical to catch it early. Due to the lack of symptoms, clinical procedures make early detection hard. Reading a large number of tumour images is a perilous work for radiologists. In contemporary processes, traditional methods are employed to determine if a tumour is malignant or benign. Certain malignancies are difficult to detect visually, which leads to a high percentage of false positives and negatives. Certain tumours have comparable traits, necessitating feature extraction-based classification and identification. Due to multiple challenges,such as low contrast between the liver and other organs and tumours,and sizes of tumours,and irregular tumour growth, the existing system has not been very good at segmenting the liver and lesions. As a result, a novel technique is required to solve these challenges. The existing challenges are addressed using a CNN-based multiclass detection approach. Several designs are compared, including GoogLeNet, Inception-v3, ResNet, and VGG-Net, with the VGG architecture being most accurate CNN-based multiclass identification. The RCNN principle is put into practise. The features were retrieved and fed into the RCNN. The CNN-based detection system has three stages: training, testing, and validation. Several factors such as kernel value, filter size, bias value, learning rate, and momentum can be changed to improve the accuracy of the recommended system. A novel architecture consisting of VGG-16 and ResNet-18 architecture was developed for the classification and detection for liver tumours.

How To Cite (APA)

Anu Susan Philip, Grace Mary Abraham, Gowri S Kumar, & Rohith Balakrishnan (August-2022). Classification and Detection of Ultrasound Liver Tumour Using VGG-ResNet. INTERNATIONAL JOURNAL OF NOVEL RESEARCH AND DEVELOPMENT, 7(8), 267-271. https://ijnrd.org/papers/IJNRD2208030.pdf

Issue

Other Publication Details

Paper Reg. ID: IJNRD_182251

Published Paper Id: IJNRD2208030

Downloads: 000122254

Research Area: Engineering

Author Type: Indian Author

Country: Trivandrum, Kerala, India

Published Paper PDF: https://ijnrd.org/papers/IJNRD2208030.pdf

Published Paper URL: https://ijnrd.org/viewpaperforall?paper=IJNRD2208030

About Publisher

Journal Name: INTERNATIONAL JOURNAL OF NOVEL RESEARCH AND DEVELOPMENT(IJNRD)

UGC CARE JOURNAL PUBLICATION | ISSN: 2456-4184 | IMPACT FACTOR: 8.76 Calculated By Google Scholar | ESTD YEAR: 2016

An International Scholarly Open Access Journal, Peer-Reviewed, Refereed Journal Impact Factor 8.76 Calculate by Google Scholar and Semantic Scholar | AI-Powered Research Tool, Multidisciplinary, Monthly, Multilanguage Journal Indexing in All Major Database & Metadata, Citation Generator

Publisher: IJNRD (IJ Publication) Janvi Wave | IJNRD.ORG | IJNRD.COM | IJPUB.ORG

Copyright & License

© 2025 — Authors hold the copyright of this article. This work is licensed under a Creative Commons Attribution 4.0 International License. and The Open Definition.

You are free to share, adapt, and redistribute the material, provided proper credit is given to the original author. 🛡️ Disclaimer: The content, data, and findings in this article are based on the authors’ research and have been peer-reviewed for academic purposes only. Readers are advised to verify all information before practical or commercial use. The journal and its editorial board are not liable for any errors, losses, or consequences arising from its use.
CC OpenContant

Publication Timeline

Peer Review
Through Scholar9.com Platform

Article Preview: View Full Paper

Call For Paper

Call For Paper - Volume 10 | Issue 12 | December 2025

IJNRD is a Scholarly Open Access, Peer-Reviewed, Refereed, and UGC CARE Journal Publication with a High Impact Factor of 8.76 (calculated by Google Scholar & Semantic Scholar | AI-Powered Research Tool). It is a Multidisciplinary, Monthly, Low-Cost, and Transparent Peer Review Journal Publication that adheres to the UGC CARE 2025 Peer-Reviewed Journal Policy and aligns with Scopus Journal Publication standards to ensure the highest level of research quality and credibility.

IJNRD offers comprehensive Journal Publication Services including indexing in all major databases and metadata repositories, Digital Object Identifier (Crossref DOI) assignment for each published article with additional fees, citation generation tools, and full Open Access visibility to enhance global research reach and citation impact.

The INTERNATIONAL JOURNAL OF NOVEL RESEARCH AND DEVELOPMENT (IJNRD) aims to advance applied, theoretical, and experimental research across diverse academic and professional fields. The journal promotes global knowledge exchange among researchers, developers, academicians, engineers, and practitioners, serving as a trusted platform for innovative, peer-reviewed journal publication and scientific collaboration.

Indexing Coverage: Google Scholar, SSRN, ResearcherID-Publons, Semantic Scholar (AI-Powered Research Tool), Microsoft Academic, Academia.edu, arXiv.org, ResearchGate, CiteSeerX, ResearcherID (Thomson Reuters), Mendeley, DocStoc, ISSUU, Scribd, and many other recognized academic repositories.

How to submit the paper?

You can now publish your research in IJNRD. IJNRD is a Transparent Peer-Reviewed Open Access Journal Publication (Refereed Journal), aligning with New UGC and UGC CARE recommendations.


For more details, refer to the official notice: UGC Public Notice


Submit Paper Online

Important Dates for Current issue

Paper Submission Open For: December 2025

Current Issue: Volume 10 | Issue 12 | December 2025

Impact Factor: 8.76

Last Date for Paper Submission: Till 31-Dec-2025

Notification of Review Result: Within 1-2 Days after Submitting paper.

Publication of Paper: Within 01-02 Days after Submititng documents.

Frequency: Monthly (12 issue Annually).

Journal Type: IJNRD is an International Peer-reviewed, Refereed, and Open Access Journal with Transparent Peer Review as per the new UGC CARE 2025 guidelines, offering low-cost multidisciplinary publication with Crossref DOI and global indexing.

Subject Category: Research Area

Call for Paper: More Details

Approval, Licenses and Indexing: More Details