Open Access
Research Paper
Peer Reviewed

Paper Title

Rain Prediction Using Machine Learning

Article Identifiers

Registration ID: IJNRD_180981

Published ID: IJNRD2204082

: Click Here to Get

Keywords

ARIMA, CatBoost, Random Forest, Rainfall prediction, XgBoost

Abstract

As agriculture being the key point of survival, Rainfall is the important source for its cultivation. Rainfall prediction has always been a major problem as prediction of rainfall gives awareness to people and to know in advance about rain so as to take necessary precautions to protect their crops from rain. A particular dataset is taken from Kaggle community and this project predicts whether it will rain tomorrow or not by using the rainfall in dataset. CatBoost model is implemented in this project as it is an open sourced machine learning algorithm, and features great quality without the parameter tuning, categorical feature support, improved accuracy and fast prediction. CatBoost model is a gradient boosting toolkit and two critical algorithms classical and innovative are introduced to create a fight in prediction shift present in currently existing implementations of gradient boosting algorithms. CatBoost performed very well giving an AUC (Area under curve) score 0.8 and ROC ( Receiver operating characteristic curve) score as 89. ROC is called as an evaluating curve whereas AUC presents a degree or measure of separability as the model is skilled enough to distinguish between classes. An Exploratory data analysis is done to examine data distribution, outliers and provides tools for visualizing and understanding the data through graphical representation. A dashboard is implemented to showcase the information that is represented in datasets i.e. any changes in the data will result in different types of graphs. A linear SVC (Support vector classifier) provides a best fit hyperplane that divides the data and feeds some features to the classifier to detect what the predicted class is and results in desired output.

How To Cite (APA)

Vijithra Nair, Megha Mathew, Sweta Bhattacharjee, Arashdip Singh, & Prof. Payel Thakur (April-2022). Rain Prediction Using Machine Learning. INTERNATIONAL JOURNAL OF NOVEL RESEARCH AND DEVELOPMENT, 7(4), 687-693. https://ijnrd.org/papers/IJNRD2204082.pdf

Issue

Other Publication Details

Paper Reg. ID: IJNRD_180981

Published Paper Id: IJNRD2204082

Downloads: 000121992

Research Area: Computer Engineering 

Author Type: Indian Author

Country: Navi Mumbai/Raigarh, Maharashtra, India

Published Paper PDF: https://ijnrd.org/papers/IJNRD2204082.pdf

Published Paper URL: https://ijnrd.org/viewpaperforall?paper=IJNRD2204082

About Publisher

Journal Name: INTERNATIONAL JOURNAL OF NOVEL RESEARCH AND DEVELOPMENT(IJNRD)

UGC CARE JOURNAL PUBLICATION | ISSN: 2456-4184 | IMPACT FACTOR: 8.76 Calculated By Google Scholar | ESTD YEAR: 2016

An International Scholarly Open Access Journal, Peer-Reviewed, Refereed Journal Impact Factor 8.76 Calculate by Google Scholar and Semantic Scholar | AI-Powered Research Tool, Multidisciplinary, Monthly, Multilanguage Journal Indexing in All Major Database & Metadata, Citation Generator

Publisher: IJNRD (IJ Publication) Janvi Wave | IJNRD.ORG | IJNRD.COM | IJPUB.ORG

Copyright & License

© 2025 — Authors hold the copyright of this article. This work is licensed under a Creative Commons Attribution 4.0 International License. and The Open Definition.

You are free to share, adapt, and redistribute the material, provided proper credit is given to the original author. 🛡️ Disclaimer: The content, data, and findings in this article are based on the authors’ research and have been peer-reviewed for academic purposes only. Readers are advised to verify all information before practical or commercial use. The journal and its editorial board are not liable for any errors, losses, or consequences arising from its use.
CC OpenContant

Publication Timeline

Peer Review
Through Scholar9.com Platform

Article Preview: View Full Paper

Call For Paper

Call For Paper - Volume 10 | Issue 11 | November 2025

IJNRD is a Scholarly Open Access, Peer-Reviewed, Refereed, and UGC CARE Journal Publication with a High Impact Factor of 8.76 (calculated by Google Scholar & Semantic Scholar | AI-Powered Research Tool). It is a Multidisciplinary, Monthly, Low-Cost, and Transparent Peer Review Journal Publication that adheres to the UGC CARE 2025 Peer-Reviewed Journal Policy and aligns with Scopus Journal Publication standards to ensure the highest level of research quality and credibility.

IJNRD offers comprehensive Journal Publication Services including indexing in all major databases and metadata repositories, Digital Object Identifier (Crossref DOI) assignment for each published article with additional fees, citation generation tools, and full Open Access visibility to enhance global research reach and citation impact.

The INTERNATIONAL JOURNAL OF NOVEL RESEARCH AND DEVELOPMENT (IJNRD) aims to advance applied, theoretical, and experimental research across diverse academic and professional fields. The journal promotes global knowledge exchange among researchers, developers, academicians, engineers, and practitioners, serving as a trusted platform for innovative, peer-reviewed journal publication and scientific collaboration.

Indexing Coverage: Google Scholar, SSRN, ResearcherID-Publons, Semantic Scholar (AI-Powered Research Tool), Microsoft Academic, Academia.edu, arXiv.org, ResearchGate, CiteSeerX, ResearcherID (Thomson Reuters), Mendeley, DocStoc, ISSUU, Scribd, and many other recognized academic repositories.

How to submit the paper?

You can now publish your research in IJNRD. IJNRD is a Transparent Peer-Reviewed Open Access Journal Publication (Refereed Journal), aligning with New UGC and UGC CARE recommendations.


For more details, refer to the official notice: UGC Public Notice


Submit Paper Online

Important Dates for Current issue

Paper Submission Open For: November 2025

Current Issue: Volume 10 | Issue 11 | November 2025

Impact Factor: 8.76

Last Date for Paper Submission: Till 30-Nov-2025

Notification of Review Result: Within 1-2 Days after Submitting paper.

Publication of Paper: Within 01-02 Days after Submititng documents.

Frequency: Monthly (12 issue Annually).

Journal Type: IJNRD is an International Peer-reviewed, Refereed, and Open Access Journal with Transparent Peer Review as per the new UGC CARE 2025 guidelines, offering low-cost multidisciplinary publication with Crossref DOI and global indexing.

Subject Category: Research Area

Call for Paper: More Details

Approval, Licenses and Indexing: More Details