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ABSTRACT:

The innovation of natural language models has reached a point where it is practically cumbersome to tell
whether a piece of content on social media is Al-generated or human-made. This work is concerned with
the detection of deepfake tweets through the use of Convolutional Neural Networks (CNN) with FastText
word embeddings. It uses the TweepFake dataset, which includes real and bot tweets. The dataset is
processed to remove and clean the text before it is transformed and vectorized for training and
classification. Several models were tested, and the best accuracy of 93% was obtained with the CNN
model. Also, to improve detection, a hybrid CNN-Random Forest model was tested. The solution presented
is instrumental in the fight against the spread of false information and ensures the integrity of content

shared on social media.
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INTRODUCTION identifying deepfake tweets with a high level of

accuracy. This addresses the issue of deepfake
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imminent danger to social media credentialing. embeddings together with Convolutional Neural

Although a lot has been done with respect to the Networks (CNN) to convert raw text into
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therefore, a lot more dangerous. These brief texts tested on a balanced TweepFake dataset

created by machines are so advanced that even consisting of real and bot-generated tweets. The

seasoned users of social media have a hard time . . .
objective is to create an effective and easily

discerning between the real and the artificially expandable system that counters the damage

created text. This project focuses on developing

an Al-based detection system capable of
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automated misinformation systems inflict on

public conversation.

RELATED WORK

Sadig et al. (2023) proposed a CNN-based
model combined with FastText embeddings for
deepfake tweet detection using the TweepFake
dataset. Their model was able to achieve a 93%
accuracy as a CNN is competent on the text's
spatial features. Fagni et al. (2021) executed
deepfake tweet classification using transformer-
based models BERT and RoBERTa. While these
models were effective on longer texts, they
struggled with concise text which underscores
the need for deepfake detection. Zellers et al.
(2019) developed a Grover model intended for
the generation and detection of articles with the
purpose of identifying and creating fake news
articles. Although the focus was on long-form
machine-generated news detection, the model's
inability to process tweets' length and casual
tone made it of little use for social media.
Detection mechanisms for GPT-2 generated
content were examined by Radford et al., 2019.
They noted the challenge of distinguishing
human from machine-written text because of the
fluency of GPT-2. Their work highlighted the
need for effective detection strategies especially
across different content types and lengths.
Adelani et al. 2020 worked on the issue of fake
review texts created by neural models focusing
on the review’s sentiment. They demonstrated
how the consistency of the sentiment within the
text makes it more difficult to identify fakes.
Although the focus was on product reviews, the
findings can also inform the identification of

deepfake tweets.

TABLE1l. Summary of Key Literature
Contributions and Their Impact on Current
Research
Author(s) Contribution Impact on Research
Proposed a CNN Achieved 93% accuracy;
Sadiq et al. model with FastText validated CNN's
(2023) embeddings on the strength in short-text
TweepFake dataset classification
Used BERT and Highlighted challenges
Fagni et al. RoBERTa for of transformer models
(2021) deepfake tweet on short, informal texts
detection like tweets

Proved effective for
Developed the Grover
Zellers et . long-form content;
model for detecting .
al. (2019) . emphasized need for
fake news articles o
platform-specific models

Exposed limitations in
Radford et | Explored detection of
al. (2019) GPT-2 generated text | human text due to GPT-

distinguishing Al vs.

2’s high fluency

Generated fake Revealed how sentiment

Adelani et reviews maintaining | preservation complicates
al. (2020) | sentiment using neural detection; informed

language models tweet detection design

PROPOSED APPROACH

This model aims to identify deepfake tweets
using FastText word embeddings in combination
with a CNN classifier. It seeks to create an
efficient and scalable model that can identify
machine-generated and human-generated tweets.
The process starts with text preprocessing, and
in the case of tweets, it is the removal of
stopwords, punctuation, and special characters as
well as changing the text to lowercase which
cleans the tweet content. Consistency is critical
in this case and enhances model performance.
Following the preprocessing stage, tweets are
converted into numerical vectors using FastText
embeddings. FastText works well for noisy
social media data as it captures the semantic

relationships of even rare or misspelled words.
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With these embeddings, the CNN model, which
extracts spatial features and learns the patterns
characteristic of human or bot language, is
trained. The CNN structure has a feature
extraction convolutional layer, pooling layers for
dimensionality reduction, and dense layers for
classification. The model undergoes training and
validation with the TweepFake dataset, which
has real and Al bot user labeled tweets. To
further improve the accuracy, a hybrid model
that combines CNN with a Random Forest
model is tested. The combination of CNN's
feature extraction and Random Forest's decision-
making capability adds accuracy to the model.
This data-centric approach provides the ability to
pinpoint and detect deepfake content with

certainty across social networking platforms.
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Figure 1: A robust framework for detecting

deepfake tweets

1. Dataset Acquisition and Exploration:
The project uses the publicly available
TweepFake dataset, which includes a mixture of

human-written and Al-generated tweets labeled

accordingly. The dataset is imported using
Python libraries like Pandas, and preliminary
analysis is conducted to understand its structure

and class distribution.

2. Data Preprocessing:
Text cleaning is essential to improve model
accuracy. This includes converting text to
lowercase, removing stopwords, punctuation,
hashtags, numbers, and unnecessary whitespace.
Natural Language Toolkit (NLTK) is used for
lemmatization and stemming to standardize text.

This cleaned text is then ready for embedding.

3. Text Embedding with FastText:
FastText, developed by Facebook, converts
words into vector representations while
capturing semantic context. It breaks words into
subword units, making it effective for handling
rare and noisy data common in tweets. FastText
embeddings are computed and used as feature

inputs for model training.

4. CNN Model Training:
A Convolutional Neural Network (CNN) is
employed for classification. The architecture
includes convolutional and pooling layers
followed by dense layers. The model is trained
using 80% of the dataset, with 20% reserved for
testing. It is compiled using the Adam optimizer
and categorical cross-entropy as the loss

function.

5. Hybrid Extension with Random Forest:
To enhance prediction reliability, a hybrid model
is introduced where CNN-extracted features are
fed into a Random Forest classifier. This
combines the deep learning capability of CNN
with the ensemble power of Random Forest,

leading to improved accuracy.
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6. Deployment and Interface:
A web-based interface using Flask allows users
to input tweets for real-time classification. The
interface also displays algorithm performance
metrics, offering a user-friendly way to monitor

and validate results.

RESULTS

The experimental results of this project
demonstrate the effectiveness of combining
FastText embeddings with a Convolutional
Neural Network (CNN) for deepfake tweet
detection. After preprocessing the TweepFake
dataset and transforming the tweets into
FastText vector representations, several machine
learning models were trained and evaluated,
including Naive Bayes, Logistic Regression,
Decision Tree, Random Forest, LSTM, and
CNN.

Among all the models, the CNN achieved the
highest performance, attaining an accuracy of
93%, along with strong precision, recall, and F1-
score metrics. This confirms CNN’s strength in
capturing relevant spatial and semantic features

from embedded tweet data.

In addition to the base CNN model, a hybrid
model was implemented by feeding CNN-
generated features into a Random Forest
classifier. This hybrid approach further
improved classification robustness, particularly
in edge cases where the tweet text closely

mimicked human writing.

Performance metrics, including confusion
matrices and classification reports, were
visualized to assess model reliability. These

results validate the suitability of CNN and

FastText for real-time tweet classification,
showing consistent accuracy across various test

sets.
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DISCUSSION

The findings from this study highlight the
increasing threat posed by Al-generated content
on social media and the necessity for automated
detection systems. Tweets, due to their brevity
and informal structure, present unique
challenges for classification, especially when

generated by advanced language models like
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GPT-2 or LSTM. Traditional machine learning
models, while useful, lack the sophistication to

capture the nuanced patterns in short-form text.

The integration of FastText embeddings with a
Convolutional Neural Network (CNN) has
proven highly effective in this context.
FastText’s ability to handle subword information
ensures robust text representation, even when
tweets contain slang, abbreviations, or typos.
CNN, typically used in image processing,
successfully extracts high-level features from
these embeddings, making it suitable for tweet

classification tasks.

The hybrid extension with Random Forest
further reinforces the model’s accuracy,
especially  when  distinguishing  between
borderline cases where machine-generated text is
nearly indistinguishable from human-written
content. This ensemble approach combines the
strengths of both deep and classical learning

paradigms.

CONCLUSION

The deepfake tweets detection framework built
in this project illustrates the power of FastText
embeddings and Convolutional Neural Networks
(CNN). The model is built to tackle the problem
of short-form text generated by machines in
social media, distinguishing between human and
Al authored tweets. Integrating FastText
substantially improves semantic comprehension,
and CNN is unrivaled in extracting deep textual
features. Moreover, the incorporation of a hybrid
model with CNN and Random Forest
substantially improves predictive accuracy and
reliability. Tested on the TweepFake dataset, this

system outperformed conventional machine

learning techniques, achieving a remarkable
93% accuracy. Additionally, a web interface was
created, showcasing the model’s capabilities in
real-time. This research marks a critical
advancement in the preservation of online
conversations in the context of growing digital
deceit. It enhances the academic discourse on
deepfake detection while  simultaneously
addressing the need for safeguarding the

integrity of information shared on social media.
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