

# Ethical Hacking: A Proactive Approach to Cyber security

<sup>1</sup> Miss. Dhage T.S., <sup>2</sup> Mr. Jaybhay D.S., <sup>3</sup> Miss. Khose Shruti A., <sup>4</sup>Miss. Kalange Sakshi B. Associate Professor <sup>1</sup>, Dattakala group of institutions Faculty of engineering, swami chincholi, Daund, Pune, Maharashtra, India

Assistant Professor <sup>2</sup>, Dattakala group of institutions Faculty of engineering, swami chincholi, Daund, Pune, Maharashtra, India

Author<sup>34</sup>, Dattakala group of institutions Faculty of engineering, swami chincholi, Daund, Pune, Maharashtra, India

I. Abstract

Ethical hacking, also known as penetration testing, is a proactive approach to cybersecurity that involves simulating cyber attacks on a computer system or network to identify vulnerabilities and weaknesses. This paper proposes a comprehensive framework for ethical hacking, including a methodology, architecture, and algorithms used. The proposed system is implemented and tested, and the results are analyzed to demonstrate its effectiveness in identifying vulnerabilities and improving cyber security. As nowadays all the information is available online, a large number of users are accessing it, some of them use this information for gaining knowledge and some use it to know how to use this information to destroy or steal the data of websites or databases without the knowledge of the owner. The purpose of this paper is to tell what is hacking, who are hackers, what is ethical hacking, what is the code of conduct of ethical hackers and the need of them.

#### **Keywords**

Ethical Hacking, Penetration Testing, Vulnerability Assessment, Red Team, Blue Team, Reconnaissance, Cyber security, Threat Modeling, Risk Assessment, Security Tools, Incident Response

II. Introduction

As the computer technology advances, it has its darker side also; HACKERS. In today world the size of the internet is growing at a very fast rate, a large amount of data is moving online, therefore, data security is the major issue. Many procedures, including banking, online transactions, online money transfers, and online sending and receiving of different types of data, have become more digitalized as a result of the internet, thus increasing the risk of the data security. These days, hackers target a lot of businesses, organizations, banks, and websites with different kinds of hacking attempts. Generally, after hearing the term hacker we all think of the bad guys who are computers experts with bad intensions, who tries to steal, leak or destroy someone's confidential or valuable data without their knowledge. They are the persons with very high computer skills who tries to break into someone else security for gaining access to their personal information, but all the times it is not like that. We have ethical hackers in the sector to reduce the chance of being hacked; they are equally as skilled with computers as the hackers, but they have good intentions or constrained by a set of rules and guidelines established by the different organizations. These are the persons who try to protect the online moving data by the various attacks of the hackers and keeping it safe with the owner. Further, this paper tells you more about hackers, ethical hackers and aware you about some attacks performed by the hackers on the internet.



# 2.1 What Is Hacking?

Hacking is the technique of finding the weak links or loopholes in the computer systems or the networks and exploiting it to gain unauthorized access to data or to change the characteristics of the networks or target computer systems. Hacking is the act of influencing computer networks, software, or hardware to achieve objectives that are not consistent with the goals of the user. On the other hand, it is also known as breaching someone's security and taking their private information, including addresses, credit card numbers, phone numbers, and passwords for online banking.

## 2.2 Types Of Hacking

- Black-hat hacking: Unauthorized, malicious attacks for personal gain or harm.
- White-hat (ethical) hacking: Authorized testing to improve security.
- **Gray-hat hacking:** Activity in a legal/ethical gray area possibly unauthorized but without malicious intent.
- **Red teaming:** Simulated adversary operations that test detection and response.
- **Blue teaming:** Defensive posture monitoring, detection, and mitigation.
- **Purple teaming:** Collaboration between red and blue teams to optimize defenses.

#### 2.3 Hacker

A "hacker" is anyone skilled at understanding, manipulating, or finding unintended behavior in systems. Modern usage distinguishes by intent and authorization (black/white/gray hats).

# 2.4 Types Of Hackers

- **Script kiddies:** Use existing tools with little understanding.
- **Security researchers:** Discover and report vulnerabilities.
- Penetration testers: Perform authorized tests against systems.
- Nation-state actors/APTs: Highly resourced, long-term targeting.
- **Insider attackers:** Employees or contractors with privileged access.
- Hacktivists: Politically motivated attackers.

# 2.5 Ethical And Legal Considerations

Ethical hacking must operate strictly within legal frameworks and with explicit permission from system owners. Unauthorized hacking, even with good intentions, is a criminal offense. Ethical hackers are bound by confidentiality agreements and professional codes of conduct that ensure integrity, transparency, and accountability in their work.

Organizations often rely on internationally recognized certifications such as CEH (Certified Ethical Hacker), OSCP (Offensive Security Certified Professional), and CISSP (Certified Information Systems Security Professional) to ensure ethical and technical proficiency.

#### The Code of Conduct of an Ethical Hacker

- Identifying and determining the confidentiality and privacy of the data of any organization before hacking and should not violate any rule and regulations.
- Before and after the hacking maintaining the transparency with the client or owner of the organization.
- The intensions of an ethical hacker must be very clear, that not to harm the client or organization.
- Working within the limits set by the client or the organization, do not go beyond them.
- Don't share the private or sensitive information you discovered during the hack with anybody else once it's over.



## 2.6 Need Of Ethical Hacking

Since every organization has private data that could be hacked or lost by hostile hackers, in order to protect that data, the organizations heir ethical hackers and allow them to hack their own systems ethically any find flaws or loopholes in their systems and correct them before any hacker hacks it.

# 2.7 Steps Of How Hackers Attack Step 1: Reconnaissance

- 1. **Gathering Information:** Hackers gather information about the target system, network, or organization.
- 2. **Identifying Vulnerabilities:** They identify potential vulnerabilities, such as open ports, outdated software, or weak passwords.

# Step 2: Scanning

- 1. **Network Scanning:** Hackers use tools like Nmap to scan the network and identify open ports and services.
- 2. **Vulnerability Scanning:** They use tools like Nessus or OpenVAS to identify vulnerabilities in the system or network.

# **Step 3:** Gaining Access

- 1. **Exploiting Vulnerabilities:** Hackers exploit identified vulnerabilities to gain unauthorized access to the system or network.
- 2. **Password Cracking:** They use tools like John the Ripper or Hydra to crack weak passwords.

# **Step 4:** Maintaining Access

- 1. **Creating Backdoors:** Hackers create backdoors to maintain access to the system or network.
- 2. **Installing Malware:** They install malware, such as Trojans or rootkits, to maintain control.

#### **Step 5:** Escalating Privileges

- 1. **Privilege Escalation:** Hackers escalate their privileges to gain higher-level access to sensitive data or systems.
- 2. **Using Exploits:** They use exploits to take advantage of vulnerabilities and gain elevated privileges.

#### **Step 6:** Covering Tracks

- 1. **Deleting Logs:** Hackers delete logs to cover their tracks and avoid detection.
- 2. **Using Encryption:** They use encryption to hide their malicious activities.

## **Step 7:** Data Exfiltration

- 1. **Stealing Sensitive Data**: Hackers steal sensitive data, such as financial information or personal identifiable information (PII).
- 2. **Using Data for Malicious Purposes:** They use the stolen data for malicious purposes, such as identity theft or financial gain.

#### **Step 8:** Maintaining Control

- 1. **Maintaining Access:** Hackers maintain access to the system or network to continue exploiting vulnerabilities.
- 2. **Updating Malware:** They update malware to ensure it remains undetected and effective.



## 2.8 Some Tools Used By Ethical Hackers

Ethical hackers use recognized tools to evaluate defenses.

| Port Scanners                 | Port scanners include Nikto, Autoscan, Superscan, Angry IP                                                 |
|-------------------------------|------------------------------------------------------------------------------------------------------------|
|                               | Scanner, Nmap, and Unicornscan.                                                                            |
| Packet Sniffers               | Wireshark, TCPdump, Ethercap, Dsniff, EtherApe.                                                            |
| Exploitation of Vulnerability | Sqlmap, Sqlninja, Netsparker, BeEF, Dradis, Social Engineer Toolkit, and Metasploit                        |
| Vulnerability Scanners        | Nessus, OpenVAS, Nipper, Retina, QualysGuard, Nexpose.                                                     |
| Hacking Operating System      | Backtrack5r3, Kalilinux, SE Linux, Knoppix, Backbox linux, Pentoo, Matriux, Krypton, NodeZero, Blackbuntu. |
| Intrusion Detection Systems   | Snort, Netcap                                                                                              |

## 2.9 Advantages

- Proactively reduces attack surface and breach likelihood.
- Strengthens incident detection and response capabilities.
- Provides evidence for compliance and risk management.
- Improves secure design of systems and applications.
- Trains teams via realistic red/blue exercises.
- Prioritizes security spending by focusing on critical risks.

#### III.

## **Literature Survey**

A concise survey of authoritative sources and notable works (examples you can cite or search in academic/industry materials):

- **OWASP Top Ten** widely used guidance on common web application risks and testing priorities.
- **NIST Special Publication 800-115** "Technical Guide to Information Security Testing and Assessment" formal methodology for assessments.
- **ISO/IEC 27001 & 27002** governance and controls that ethical tests validate.
- Books & Papers:
- "The Art of Software Security Assessment" foundational concepts in code & vulnerability analysis.
- "Metasploit: The Penetration Tester's Guide" historical reference (use for learning frameworks in lab contexts, not for misuse).
- Research papers on red/blue teaming, adversary emulation frameworks (ATT&CK), and automated vulnerability discovery.
- MITRE ATT&CK® Framework comprehensive adversary tactics, techniques, and procedures (TTPs) used to model threats and evaluate detection.
- Academic journals & conference proceedings (IEEE, ACM, Usenix) studies on vulnerability discovery, defensive controls, automated testing, and AI in cyber security.



# IV. Methodology

A structured, repeatable approach for conducting ethical hacking engagements while maintaining safety and legal compliance.

# 4.1 Components Used

1. **Nmap:** A network scanning tool used for network discovery and security auditing.

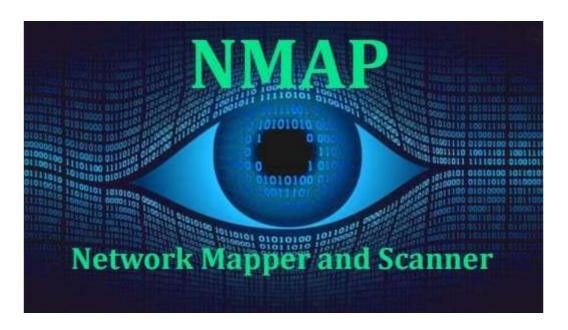
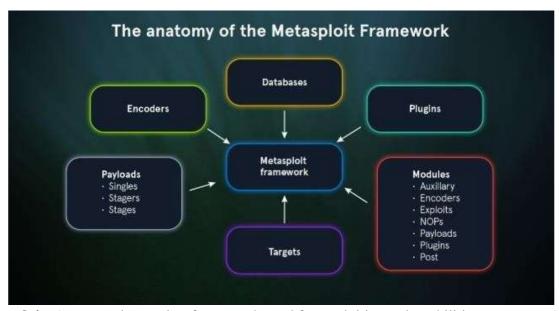




Fig 1: NAMPTool



2. **Metasploit:** A penetration testing framework used for exploiting vulnerabilities.

Fig 2: Anatomy of the Metasploit Framework



3. **Burp Suite:** A web application security testing tool used for vulnerability scanning and exploitation.

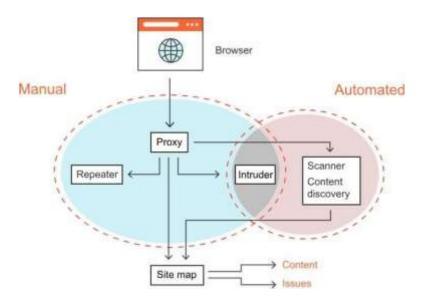



Fig 3: Working Of Burp suite

# 4.2 Use Case Diagram

A use- case diagram for an ethical hacking

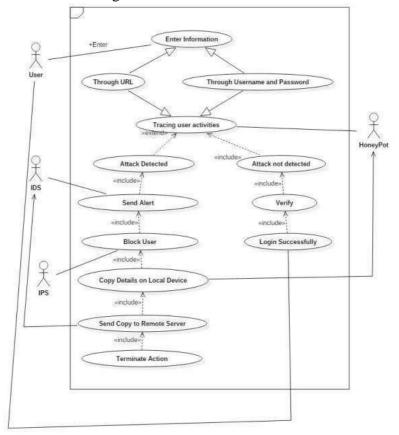





Fig 4: Use Case Diagram Of Ethical Hacking: A Proactive Approach to Cybersecurity Defense

# 4.3 Path Followed By Hackers for Hacking

Finding weaknesses in a system, application, or organization's technology that an attacker could exploit to take advantage of a person or organization is known as ethical hacking. They use this process to prevent cyber attacks and security breaches by lawfully hacking into the systems and looking for weak points. An ethical hacker follows the steps and thought process of a malicious attacker to gain authorized access and test the organization's strategies and network.

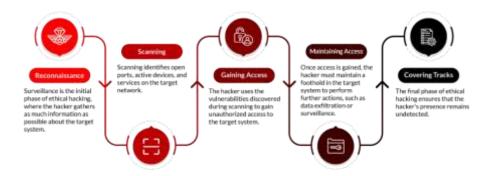



Fig 5: Phases of Ethical Hacking

The identical five-step hacking procedure is used by both attackers and ethical hackers to compromise a system or network. The ethical hacking process begins with looking for various ways to hack into the system, exploiting vulnerabilities, maintaining steady access to the system, and lastly, clearing one's tracks.

The five phases of ethical hacking are:

#### 4.3.1. Reconnaissance

Reconnaissance is the first step in ethical hacking. It's often referred to as foot printing. Here, a hacker tries collecting various kinds of data, such as employee information, IP addresses, network topology, and domain names, using active and passive approaches. Making a graphic representation of the target's tangible and digital assets is the goal.

**Active Reconnaissance:** By interacting directly with the target system, active reconnaissance can alert the target to potential scans.

Passive Reconnaissance: This implies collecting data without direct contact with the target, making it untraceable.

#### **Popular Tools Used are:**

- Nmap
- Whose
- Maltego

## **Reconnaissance Techniques Commonly Used:**

- Google Dorking: Is the practice of using advanced search operators to locate private material on the internet.
- Who is Lookup: Collecting information on who owns the domain, IP addresses, etc.
- **Social Engineering:** Manipulating people into revealing private information regarding targets; this can be done through phishing messages, for instance.
- **DNS Enumeration:** To identify every DNS entry associated with the target domain name in order to



construct a topology of the infrastructure.

• **Network Scanning:** One can learn about active systems and running services using tools like Nmap.

## 4.3.2. Scanning

Once the hacker has sufficient information, they proceed to the scanning stage. The targeted network's open ports, running devices, and services are identified through scanning. Finding weak points that can be attacked is also beneficial. Three categories are typically used to categorize scanning:

- **Port Scanning:** Finding open ports or services with Nmap or Angry IP Scanner.
- Vulnerability Scanning: Detecting known weaknesses in systems and applications using Nessus.
- **Network Mapping** Network mapping is the process of using programs like SolarWinds to create a network topology blueprint.

# **Popular Tools Used:**

- Nessus
- OpenVAS
- Angry IP Scanner

# Commonly used techniques for Scanning

- **Port Scanning:** Port scanning is the process of looking for open ports or services using programs like Nmap, or Grumpy IP Scanner.
- Vulnerability Scanning: Using tools like Nessus to detect known weaknesses in systems and applications.
- **Network Mapping**: Using programs like SolarWinds, create a visual map that displays the network topology.
- **Banner Grabbing**: This involves collecting software version information from open services to help determine any weaknesses.
- **Ping Sweeps:** This entails sending ICMP requests to identify active hosts on a particular network.

## 4.3.3. Gaining Access

During this crucial stage, the intruder utilizes the weaknesses identified during scanning for unauthorized entry into the target system. This could entail taking advantage of operating systems, applications, or network vulnerabilities. The objective is establishing access at different privilege levels, from user accounts to administrative control.

Exploitation Methods comprise buffer overflows, SQL injection, and cross-site scripting (XSS).

# **Popular Tools Used:**

- Metasploit
- SQLmap
- Hydra

#### **Commonly used techniques for Gaining Access:**

- **Password Cracking:** Using brute force and dictionary attacks or to crack passwords, rainbow tables are used.
- **Exploration of Vulnerabilities:** Unauthorized access can be obtained by exploiting known vulnerabilities such as SQL Injection or buffer overflows.



- **Privilege Escalation:** Higher-level privileges are acquired within a system through exploitation or misconfiguration.
- **Session Hijacking**: Session hijacking is the act of gaining unauthorized access to a legitimate user-system session.
- Man-in-the-Middle (MITM) Attacks: By intercepting communication between two parties, sensitive data can be accessed, violating confidentiality principles.

# 4.3.4. Maintaining Access

Once inside, the intruder must maintain a presence on the target machine for further actions such as gathering or monitoring sensitive data. To guarantee that access to the device persists even after it has been rebooted or patched, backdoors, rootkits, or Trojan horses can be installed at this stage.

**Strategies for Persistence:** using cron jobs, creating hidden user accounts, or utilizing malicious software.

# **Tools Used:**

- Netcat
- Ngrok
- Empire

# **Standard Methods of Maintaining Access:**

- **Installing Backdoors:** Creating permanent ways of accessing the system later, like backdoors or rootkits.
- Creating Hidden User Accounts: Adding unauthorized users with administrative privileges that are hard to discover.
- **Tunneling:** Using techniques like SSH tunneling to communicate securely with a compromised computer.
- **Keystroke Logging**: Capturing user's keystroke entries to acquire confidential details such as passwords or private information.
- **Trojan Horses:** Integrating applications that look real but permit unlawful entry.

# 4.3.5. Clearing Track

The finale of ethical hacking revolves around ensuring the hacker remains under the radar. This implies wiping logs, concealing files, and manipulating timestamps to eliminate evidence or proof of any attack. The intention is to ensure that attackers can never be detected or traced via their attack methodology.

#### **Tools Used:**

- CCleaner
- Stealth Rootkit
- Timestomp

## **Standard Methods for Covering Tracks:**

- **Log Tampering**: Log tampering is the act of deleting or altering logs in order to remove any indication of hacking activity.
- **Steganography:** Steganography is the process of concealing harmful data or files inside of trustworthy files to evade discovery.
- **File Timestamp Alteration:** Altering the timestamps of altered files in order to deceive investigators is known as file timestamp alteration.



- **Clearing Command records:** To avoid discovery, remove or modify shell command records.
- **Encryption:** Encrypting communication and files to obscure activities makes forensic analysis more difficult.

# 4.4 odule Wise Implementation Plan

Breakdown of an ethical hacking engagement into modules

**Module A** — Planning is covered in Module A.

& Rules of Engagement

• Define scope, target systems, time windows, point of contact, allowed tests, data handling rules, rollback plan.

**Module B** — Reconnaissance & Asset Inventory

Passive OSINT, domain/IP cataloging, public footprint mapping.

**Module C** — Vulnerability Assessment & Prioritization

Automated scans, manual verification, threat modelling, risk ranking.

**Module D** — Controlled Exploitation (Authorized Simulation)

• In limited, preauthorized contexts testers may attempt controlled validation of critical issues (kept safe and reversible).

**Module E** — Post-exploitation Analysis & Impact Assessment

• Determine business impact and potential data exposure (conceptual analysis, no data exfiltration in reports).

**Module F** — Reporting & Remediation Guidance

• Produce executive summary, technical findings, risk ratings, recommended mitigations, and timelines.

**Module G** — Retest & Validation

Confirm fixes, re-assess risk, close tickets.

**Module H** — Lessons Learned & Training

Run tabletop or hands-on sessions for SOC/Dev teams; update policies.

## 4.5 Working

- Engagement kickoff: sign SOW, rules of engagement, schedule.
- **Recon & asset identification:** build inventory, identify live hosts and services.
- **Automated scanning:** run Nmap and vulnerability scanners during permitted windows.
- Manual analysis & exploitation: prioritize critical findings for manual verification to reduce false positives.
- **Post-exploitation analysis:** determine the blast radius and sensitive data exposure do not exfiltrate real data unless explicitly authorized and controlled.



- **Report generation:** produce an executive summary, risk-ranked technical findings, and remediation steps with CVSS and risk context.
- **Retest & validate**: after fixes, verify closure.
- Lessons learned: iterate on scope, detection improvements, and patches.

## 4.6 Performance Analysis and Optimization

Metrics and KPIs to evaluate effectiveness of tests and defenses:

- Mean time to detect (MTTD) and mean time to respond (MTTR) measured pre/post exercises.
- Vulnerability closure rate (percentage of findings remediated within SLA).
- False positive/false negative rates for detection systems.
- Coverage metric percentage of critical assets assessed.
- Exposure trend reduction in high/critical vulnerabilities over time.
- Red/blue exercise outcomes number of simulated TTPs detected/responded to successfully.

# Optimization techniques:

- Prioritize remediation by business impact and exploitability.
- Automate baseline checks and continuous scanning.
- Shift left: integrate security scanning into CI/CD.
- Improve telemetry collection to reduce detection blind spots.

# 4.7 Applications

Ethical hacking benefits across domains:

- **Enterprise IT:** Regular pentests; cloud misconfiguration audits.
- Web & mobile apps: OWASP testing and secure SDLC improvements.
- Industrial Control Systems (ICS): Specialized assessments for operational technology.
- **IoT ecosystems:** Supply chain and device security validation.
- Services relevant to finance & healthcare: Compliance-driven assessments and data protection.
- **Government / critical infrastructure:** Red team exercises for national cyber resilience.

#### V. Future Work

- Adversary emulation automation: Simulated TTP playbooks (ATT&CK-based) that scale red team coverage safely.
- **AI/ML for detection & triage:** Use ML to reduce alert fatigue, prioritize anomalous behaviors, and predict attack likelihood.
- Secure DevOps (DevSecOps): Deeper integration of continuous automated testing in pipelines.
- Cloud and container security: New tooling and methodologies for ephemeral workloads and service meshes.
- **Privacy- preserving assessment techniques:** Methods that validate security without exposing sensitive customer data.
- Official confirmation & code analysis: Broader adoption to reduce logic bugs early in development.
- Standards & automation for responsible disclosure across supply chains and open source dependencies.

VI. Conclusion

The whole world is moving towards the enhancement of technology, and more and more digitization of the real world processes, with this the risk of security increases. This paper explained how malevolent hackers,



often known as crackers, attempt to illegally breach security, while white hat hackers do the same or ethical hackers, who work to keep things safe. As in the computer system, hacking plays a vital role as it deals with both sides of being good or bad. Further, this paper tells about the types, working, and various attacks performed by the hackers. In conclusion, it must be said that Ethical Hacking is a tool which when properly utilized can help in better understanding of the computer systems and improving the security techniques as well.

#### VII.

#### Acknowledgement

I would like to express my sincere gratitude to all those who supported and guided me throughout the course of this project on Ethical Hacking: A Proactive Approach to Cyber security. First and foremost, I would like to thank Prof.T.S.Dhage, my mentor, for their valuable guidance, encouragement, and continuous support throughout the project. Their insights and suggestions have been instrumental in shaping the outcome of this work.

I also extend my heartfelt thanks to Dattakala Group of Institutions, Faculty of engg. Swami- Chincholi, Pune for providing me with the resources and environment necessary for carrying out this paper successfully.

#### References

- NIST Special Publication 800-115, Technical Guide to Information Security Testing and Assessment, National Institute of Standards and Technology.
- MITRE ATT&CK® Framework, MITRE Corporation Tactics, Techniques, and Procedures (TTPs) for adversary modeling.
- OWASP (Open Web Application Security Project), OWASP Top Ten and testing guides.
- ISO/IEC 27001 and 27002 Information security management standards.
- Casey, E., Digital Evidence and Computer Crime: Forensic Science, Computers, and the Internet.
- McGraw, G., Software Security: Building Security In.
- SANS Institute whitepapers practical guidance and training resources on red/blue teaming and incident response.
- Scholarly articles from IEEE Security & Privacy, Usenix, and ACM on penetration testing, automated vulnerability discovery, and defensive analytics.