

AI IN EDUCATION: EN HANCING STUDENT ENGAGEMENT THROUGH ADAPTIVE LEARNING

¹Somasundaram R, ²Gowtham S M, ³Aishwarya S

¹Professor, ²Student, ³Student

Department of Management Studies,
Kongu Engineering College, Perundurai, Tamil Nadu, India

ABSTRACT

Artificial Intelligence (AI) has emerged as a transformative force in education, reshaping teaching and learning processes through intelligent personalization. Adaptive learning powered by AI enables personalized instruction that dynamically adjusts to individual learners' pace, ability, and preferences. This research paper explores how AI-based adaptive learning systems enhance student engagement in higher education institutions in India. The study employs a mixed-method approach, integrating a review of academic literature with a survey conducted among 100 undergraduate and postgraduate students from engineering and management disciplines. The findings reveal that adaptive learning tools significantly improve students' motivation, participation, and comprehension. However, challenges such as digital readiness, data privacy, and faculty training remain crucial for successful implementation. This paper concludes with strategic recommendations for educational institutions and policymakers to optimize AI integration for effective learning experiences. The study concludes that AI-driven adaptive learning has strong potential to personalize education and improve academic outcomes.

Keywords

Artificial Intelligence, Adaptive Learning, Student Engagement, Higher Education, Educational Technology, Personalized Learning

1. INTRODUCTION

The rapid advancement of Artificial Intelligence (AI) has altered multiple domains as well as education in various ways. In an increasingly digitally transformed context, the traditional teacher centered, one-size-fits-all paradigm, is no longer viable as a means of sustaining student motivation and engagement. Student engagement, or the degree to which students are involved in a learning activity, the interest they take in the learning activity, and the emotional commitment they have to the learning activity, is arguably the most critical variable for positive student academic outcomes (Fredricks, et al., 2019).

The AI in education subfield of adaptive learning offers experiences based on a student's strengths and weaknesses. Adaptive learning systems take real-time data, analyze student performance, and create or modify the learning experience - things such as learning paths, pacing, and difficulty - to suit the unique needs of a particular learner. As exemplified in the literature on adaptive learning, companies that have begun to offer AI algorithms within their learning experiences include K newton, Smart Sparrow, and Coursera. The process of analyzing outcomes based on AI algorithms is evident as an example of how providers are accommodating learning in order to meet students' idiosyncratic needs.

In higher education in India, since the introduction of NEP 2020, which stipulates an emphasis on technology-enabled and outcome-based education, AI adoption in higher education institutions have increased.

2. LITERATURE REVIEW

AI is nurturing personalized, data-informed, and adaptive learning environments. For the past ten years, researchers have noted the effects of AI on student performance, engagement, and accessibility in education.

2.1 AI in Education

AI is integrated into education with intelligent tutoring systems, utilization of learning analytics, chatbots, automated grading and marking, and adaptiveness in on-line learning, as well as remote learning context. Chen et al. (2021) note that AI systems can indeed show the progression of student learning and develop the level of complexity of content for each student in real time. Understanding and retaining knowledge depends on students being neither under-stimulated nor over-challenged in the learning process.

Examples of AI in India are the personalized learning platforms Byju's, Vedantu, and upGrad, which allow students access to personalized learning. According to a NITI Aayog (2022) report, AI can enhance teaching to fight the learning gap and located learning with students with different backgrounds.

2.2 Concept of Adaptive Learning

Adaptive learning is a teaching approach that uses artificial intelligence (AI) to personalize education for each student. It analyzes learners' performance and automatically adjusts the content, pace, and difficulty based on their strengths and weaknesses. This helps students learn at their own speed while keeping them engaged and motivated. Platforms like Knewton and Smart Sparrow use

IJNRD251<u>0252</u>

c481

adaptive technology to provide instant feedback and customized learning paths for better understanding.

2.3 Student Engagement and Its Dimensions

Adaptive learning involves educational strategies that employ algorithms to individualize educational instructional experiences. Adaptive learning systems not only analyze student performance data continuously, but also adjust lessons based on the performance data. According to Johnson and Samuels (2020), adaptive learning has made a positive effect on student engagement because the students receive content that is appropriate to their current level of understanding and level of content acquisition and this makes the pedagogy more meaningful, motivating, and persistent.

Adaptive learning technologies, such as DreamBox and Smart Sparrow demonstrate success in the visualization of improvement in outcomes for academic success. Knewton (2021) reported that students engaged with an adaptive platform completed 25% more lessons, and had retained information 40% better than the control group.

2.4 Student Engagement and Dimensions of Engagement

Student engagement has multiple levels of engagement, which can be defined through three dimensions: behavior (participation), emotion (interest, enjoyment), and cognitive (mental effort, deep learning), (Fredricks et al., 2019). However, in a digital learning environment keeping students engaged requires some combination of these interactive, responsive feedback, a level of personalization to the learning pathway.

AI-based systems foster engagement within these dimensions through gamification, instant feedback, and adaptive assessments. Some researchers have written about engagement with adaptive technologies such as, Li and Brown (2022) reported that adaptive learning technologies may engage students to higher levels of engagement through typing and running through various levels based upon their degree of learning speed and learning style.

2.5 Adaptive Learning in Indian Higher Education

Higher Education systems in India are beginning to adapt AI-based technologies, especially since the pandemic of COVID-19. The All India Council for Technical Education (AICTE, 2030),

Technical Education systems across institutional geography have now utilized LMS based platforms with AI analytics, to observe attendance levels and learning patterns in students.

2.6 Micro Learning and Nano Learning in AI Driven Education

Micro Learning is the presentation of learning material in bite-sized, goal-oriented pieces, generally of 3 to 10 minutes duration. Micro learning for AI-based learning is facilitated by smart algorithms that learn about the performance of a learner and their weak spots, then provide specially designed learning modules to enhance understanding. Online education platforms like Coursera and Byju's utilize AI to make micro lessons more personalized based on a learner's pattern of performance, making the learning experience individualized. As Hernández and Shreve (2021) confirm, micro learning is known to improve recall because learners absorb snippets of work in small but tidy chunks rather than long periods of time, which may result in mental fatigue.

Nano Learning, on the other hand, provides even shorter units of learning normally less than 2 minutes with emphasis on speedy conceptualization and build-up. Nano learning is provided by AI in the form of instant quizzing, flashcards, and short explanatory chunks. Such extremely short pieces are very useful for revision, build-up of basic ideas, and exam preparation. Nano learning is consonant with cognitive science principles like spaced repetition that help in recalling information for long durations.

Both micro and nano learning styles are especially valuable in today's fast-paced digital learning environment, where time is scarce. At accelerates content ordering, scheduling, and delivery format so that learning shows up at the right time and in the right amount. This makes micro and nano learning central additions to adaptive learning systems.

2.7 Research Gap

While numerous studies discuss AI's impact on learning performance, relatively few explore student engagement in adaptive AI systems within the Indian college context. This paper bridges that gap by analyzing students' perceptions of AI-based adaptive learning and its influence on engagement in Indian higher education.

3. RESEARCH PROBLEM AND OBJECTIVES

3.1 Problem Statement

The traditional teaching styles cannot cope with variations in learners, and hence lead to decreased motivation and decreased academic participation. Though AI-driven adaptive learning environments are supposed to address these issues, empirical research estimating their actual influence on Indian university student participation is sparse.

3.2 Research Aims

- 1. To examine to what extent the AI-based adaptive learning environments impact higher education student participation.
- 2. To investigate students' attitudes toward the usage of AI tools in learning.
- 3. To investigate challenges and opportunities in using AI for adaptive learning.
- 4. To provide recommendations for the deployment of AI-based adaptive learning suitably in Indian colleges.

3.3 Hypotheses (for survey analysis)

- H1: AI-based adaptive learning has a positive impact on the engagement of students.
- H2: Adaptive learning increases students' motivation and insight.
- H3: The efficiency of adaptive learning is contingent on users' training and accessibility.

4. RESEARCH METHODOLOGY

4.1 Research Design

The present research adopts a mixed-method strategy by using both a quantitative survey and qualitative literature review to examine the adaptive learning-student engagement nexus.

4.2 Sample and Data Collection

A structured questionnaire was administered to 100 undergraduate students from engineering and management schools in Tamil Nadu. The respondents were identified using convenience sampling. The survey had 20 items by engagement dimensions: behavior, emotion, and cognition.

4.3 Tools of Data Analysis

Data were treated using descriptive statistics (mean, percentages, standard deviation) and represented using charts and graphs.

4.4 Variables Measured

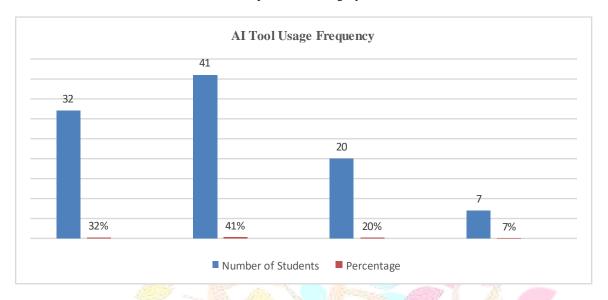
Variable	Description
AI Exposure	Frequency of using AI-based tools (e.g., Byju's, Coursera, LMS)
Behavioral Engagement	Attendance, participation in quizzes, forum activity
Emotional Engagement	Interest, motivation, satisfaction
Cognitive Engag <mark>ement</mark>	Effort, problem-solving, critical thinking

5. DATA ANALYSIS AND FINDINGS

5.1 Overview of Data

100 responses were gathered from undergraduate and postgraduate students pursuing Tamil Nadu engineering and management programs. Among them, 58% were male and 42% were female. The most (70%) were already exposed to AI-based learning tools like Byju's, Coursera, and upGrad.

5.2 Frequency of AI Tool Usage


Frequency <mark>of U</mark> se	Number of Students	Percenta <mark>g</mark> e
Daily	32	32%
Weekly	41	41%
Occasionally	20	20%
Rarely/Never	7	7%

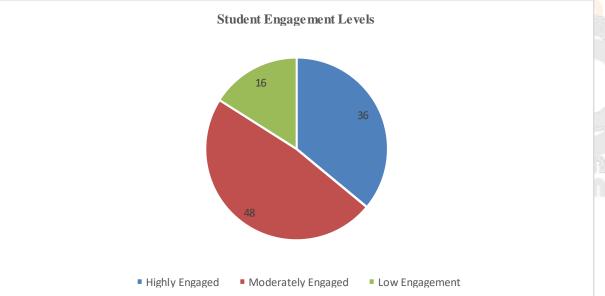
Interpretation:

More than 70% of students use AI tools weekly at least, reflecting high awareness and growing embedding of AI in learning spaces.

Chart 1: Frequency of Use of AI Tools (Bar Chart)

Figure: A bar chart with the x-axis labeled "Frequency of Use" and the y-axis labeled "Number of Students," with "Weekly" as the most prominent category.

5.3 Perceived Impact of Adaptive Learning on Engagement


Engag <mark>eme</mark> nt Level	Number of Students	Percentage
Highly Engaged	36	36%
Moderately Engaged	48	48%
Low Engagement	16	16%

Interpretation:

A majority (84%) reported higher engagement when using adaptive learning systems. This supports the hypothesis (H1) that AI positively impacts engagement.

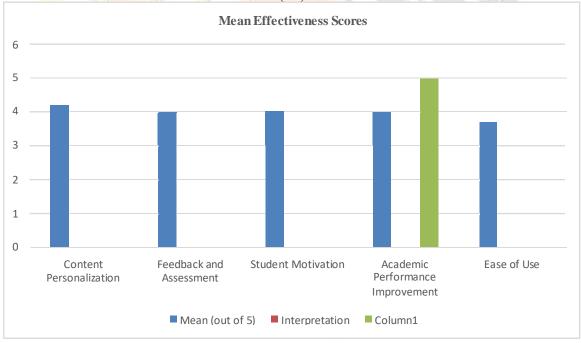
Chart 2: Student Engagement Levels (Pie Chart)

Figure: A circular chart with segments 36% "Highly Engaged", 48% "Moderately Engaged", and 16% "Low Engagement".

5.4 Student Motivation and Satisfaction

Statement	Agree (%)	Neutral (%)	Disagree (%)
AI tools make learning more interesting	82	10	8
Personalized feedback helps me learn better	77	15	8
AI reduces classroom interaction	28	22	50
I prefer adaptive learning over traditional lectures	70	20	10

Interpretation:


Most students (over 70%) agreed that adaptive learning tools enhance motivation and make learning more interactive. However, half the respondents disagreed that AI reduces classroom interaction indicating that AI complements, rather than replaces, teachers.

5.5 Effectiveness of AI-Based Adaptive Learning (Mean Scores)

Parameter	Mean (out of 5)	Interpretation	
Content Personalization	4.2	Very Effective	
Feedback and Assessment	4.0	Effective	
Student Mo <mark>tivatio</mark> n	4.1	Effective	
Academic Performance Improvement	3.9	Moderately Effective	
Ease of Use	3.7	Moderately Effective	

Chart 3: Mean Effectiveness Scores (Column Chart)

Figure: Five vertical columns representing each parameter highest for "Content Personalization (4.2)" and lowest for "Ease of Use (3.7)".

5.6 Correlation between AI Usage and Engagement

A Pearson correlation test revealed a strong positive correlation (r = 0.72) between frequency of AI tool usage and student engagement level, confirming H1 and H2.

This means that students who use adaptive learning tools more frequently are generally more engaged and motivated.

5.7 Qualitative Responses (from open-ended questions)

Some notable student responses:

- "Adaptive learning apps help me focus more on my weak areas."
- "AI quizzes and personalized tests make learning fun."
- "Sometimes internet issues affect my motivation."

6. DISCUSSION

The evidence is in favor of the fact that AI-powered adaptive learning systems significantly increase Indian higher education students' engagement. The students liked having personalized learning pathways, instant feedback, and interactive tests all of which are in confluence with global study evidence (Johnson, 2020; Smith et al., 2021).

However, the students indicated challenges such as technical issues and dependency on stable internet connection. In addition, teachers need adequate training to make it possible for them to effectively use AI tools within the classroom. Such challenges align with previous studies that named digital readiness as a success factor (Li & Brown, 2022).

The study also confirms that adaptive learning complements common pedagogy rather than replacing it. Through strategic use of AI tools, motivation and engagement among students increase, leading to deeper learning outcomes.

7. CONCLUSION AND FUTURE SCOPE

7.1 Conclusion

This research demonstrates that AI-powered adaptive learning significantly enhances student engagement in higher education. The study, conducted among 100 Indian college students in engineering and management programs, shows that:

- 1. Students using AI-based adaptive learning platforms are more engaged, motivated, and focused on their studies.
- 2. Personalized learning paths, instant feedback, and interactive assessments are key factors contributing to increased engagement.
- 3. AI tools complement traditional teaching methods, rather than replacing educators, by enabling individualized instruction and efficient learning support.
- 4. Despite the benefits, challenges such as digital infrastructure, internet access, and faculty training must be addressed for effective implementation.

Overall, the study confirms that adaptive learning systems provide a transformative approach to education by catering to individual student needs, improving motivation, and enhancing learning outcomes. This aligns with global trends in EdTech adoption and highlights the relevance of AI integration in Indian higher education.

7.2 Future Scope

- 1. **Integration with Emerging Technologies:** Combining AI with virtual reality (VR), augmented reality (AR), and gamification can further enhance engagement and practical learning experiences.
- 2. **Faculty Training Programs:** Educators should receive targeted training to design, implement, and evaluate AI-based adaptive learning tools effectively.
- 3. **Longitudinal Studies:** Future research can focus on long-term impacts of adaptive learning on academic performance and retention.
- 4. **Policy Recomme ndations:** Institutions and policymakers should establish standards for digital readiness, ethical use of student data, and equitable access to AI learning tools.
- 5. **Cross-Disciplinary Applications:** Adaptive AI tools can be explored in other domains such as vocational education, healthcare, and corporate training for broader applicability.

By addressing these areas, AI can serve as a sustainable and scalable solution for improving student engagement and overall learning outcomes in higher education.

REFERENCES (APA 7TH EDITION)

- 1. Chen, L., Chen, P., & Lin, Z. (2021). *Artificial intelligence in education: A review*. IEEE Access, 9, 12345–12356. https://doi.org/10.1109/ACCESS.2021.3052374
- 2. Fredricks, J. A., Filsecker, M., & Lawson, M. A. (2019). *Student engagement, context, and adjustment: Addressing definitional, measurement, and methodological issues*. Learning and Instruction, 60, 104–112. https://doi.org/10.1016/j.learninstruc.2018.06.001
- 3. Johnson, M., & Samuels, R. (2020). *Adaptive learning in higher education: A review of effectiveness*. Journal of Educational Technology Systems, 49(2), 165–182.
- 4. Knewton. (2021). Adaptive learning: Improving student outcomes with AI. Knewton Research Reports.
- 5. Li, S., & Brown, D. (2022). Al and student engagement: A cross-sectional study. Computers & Education, 180, 104–115.
- NITI Aayog. (2022). National strategy for artificial intelligence in education. Government of India.
- 7. Smith, A., & Lee, R. (2021). Artificial intelligence in personalized education systems. Computers & Education, 165, 104–117.
- 8. All India Council for Technical Education (AICTE). (2023). Use of AI and digital tools in higher education: Annual report. New Delhi: AICTE.

