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Abstract:Studying the fundamental structure of intricate networks, including social, biological, and information systems, depends 

heavily on community detection. The methods, computational efficiency and community detection capabilities of three well-known 

algorithms that are Label Propagation Algorithm (LPA), Clique Detection and Walktrap are thoroughly compared in this paper. Using an 

iterative label diffusion technique, the LPA algorithm provides great scalability and speed for big networks. Although it has a high 

computational complexity, the Clique algorithm efficiently captures dense structures in biological and social networks by identifying 

maximal completely linked subgraphs. The Walktrap algorithm utilizes random walks and hierarchical clustering to uncover multi-level 

community structures with strong modularity but incurs higher computational costs for large graphs. Experimental evaluations were 

conducted using four real-world datasets: Reddit Hyperlink Network (RH-NW), Amazon Co-purchasing Network (ACP-NW), DBLP 

Collaboration Network (DBLP-NW) and Twitch Gamers Network (TG-NW). Algorithmic accuracy and efficiency were evaluated using 

three key performance metrics: Modularity (Q), Normalized Mutual Information (NMI), and Execution Time (T). Results indicate that 

while LPA is optimal for large-scale datasets due to its linear complexity, Walktrap offers superior modularity for small to medium 

networks, and Clique excels in identifying dense substructures. This comparative study provides valuable insights into the trade-offs 

among efficiency, scalability and accuracy in modern community detection techniques. 

Keywords: Community Detection, Complex Networks, Label Propagation Algorithm, Clique Algorithm, Walktrap Algorithm, 

Random Walk, Hierarchical Clustering, Modularity, Normalized Mutual Information, Execution Time  

1. INTRODUCTION 

The rapid expansion of digital communication, biological data networks, and online information systems has given rise to 

complex networks comprising millions of interconnected nodes. Understanding the hidden structures within these networks is crucial for 

tasks such as social group analysis, recommendation systems, biological interaction modeling and knowledge graph construction. One of 

the most fundamental problems in network science is community detection, which aims to identify clusters or groups of nodes that are 

more densely connected internally than with the rest of the network. Detecting such communities enables deeper insights into the 

functional, organizational, and behavioral patterns of real-world systems.Over the past decade, numerous algorithms have been developed 

to address community detection challenges, each adopting distinct computational paradigms. Among these, the Label Propagation 

Algorithm, Clique-based detection, and Walktrap algorithm have emerged as three representative approaches, differing in methodology, 

scalability, and performance. The Label Propagation Algorithm relies on an iterative diffusion mechanism, where each node adopts the 

most frequent label among its neighbors until convergence. Its major advantage lies in its simplicity and linear computational complexity, 

making it particularly suitable for large-scale dynamic networks. However, its stochastic nature can lead to non-deterministic outcomes, 

affecting consistency across runs.In contrast, the Clique algorithm focuses on identifying maximal cliques—subsets of nodes in which 

every node is directly connected to all others. This approach excels at revealing dense substructures, making it particularly effective in 
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biological and social networks where strong internal connectivity is a defining feature. Despite its interpretability, clique detection is 

computationally expensive and less suitable for sparse or extremely large networks due to its NP-hard complexity. 

The Walktrap algorithm, on the other hand, integrates the concept of random walks with hierarchical clustering. It operates 

under the assumption that a random walker tends to remain within the same community due to the higher density of intra-community 

connections. By computing random walk distances and hierarchically merging similar nodes, Walktrap effectively captures communities 

at multiple scales. This hierarchical nature allows researchers to explore networks at varying levels of granularity, though the algorithm’s 

quadratic complexity restricts its scalability for massive datasets. 

This study presents a detailed comparative evaluation of these three algorithms of LPA, Clique, and Walktrap. Its evaluated 

across multiple real-world datasets, including the Reddit Hyperlink Network, Amazon Co-purchasing Network, DBLP Collaboration 

Network and Twitch Gamers Network. The evaluation focuses on three core performance metrics: Modularity to assess structural 

strength, Normalized Mutual Information for accuracy relative to ground truth, and Execution Time for computational efficiency. 

Through this systematic analysis, the paper aims to highlight the trade-offs between accuracy, scalability, and interpretability, providing 

practical guidance for selecting appropriate community detection techniques in various network contexts. 

II. LITERATURE REVIEW 

Community detection has been a central research area in network science, driven by the need to understand the underlying 

modular structures that govern the behavior and dynamics of complex systems. Over the years, numerous algorithms have been proposed, 

ranging from modularity optimization and random walk–based methods to label diffusion and clique detection. This section reviews the 

most influential works in the field and situates the Label Propagation Clique, and Walktrap algorithms within the broader context of 

community detection research. 

2.1 Early Approache s to Community Detection 

The foundation for community detection was laid by Girvan and Newman, who introduced the Girvan–Newman algorithm based 

on edge betweenness centrality. Their approach systematically removed edges with the highest betweenness to reveal community 

structures, providing a clear conceptual understanding of how communities form. However, the algorithm’s computational cost of O(n3) 

O(n^3)  O(n3) made it impractical for large networks. Subsequent research, notably by Newman, proposed modularity optimization, 

which became one of the most widely, used quality functions for evaluating community structures. Modularity-based methods, though 

effective, often struggle with the “resolution limit,” where smaller communities are merged incorrectly into larger ones. To address 

scalability challenges, heuristic and greedy optimization methods were developed [7]. The Louvain algorithm (Blondel et al.,) and Leiden 

algorithm (Traag et al.,) achieved significant performance improvements, allowing modularity optimization in large-scale networks with 

millions of nodes. However, these methods primarily rely on modularity maximization and may not effectively detect overlapping or 

hierarchical communities [2][21]. 

2.2 Label Propagation Algorithms 

The Label Propagation Algorithm (LPA), introduced by Raghavan, Albert, and Kumara, marked a breakthrough in scalability 

and efficiency. LPA assigns each node a unique label and iteratively updates it based on the most frequent label among its neighbors, 

effectively mimicking information diffusion in social systems. Due to its near-linear time complexity O(n+m) O(n+m) O(n+m), LPA is 

particularly well-suited for large and dynamic networks[17]. Research by Leung et al., extended LPA by introducing weighted and 

asynchronous updating mechanisms, improving stability and reducing randomness in the convergence process [9]. Further advancements, 

such as the Semi-Supervised LPA and Weighted Propagation models (Liu et al.,) integrated prior information or edge weights to enhance 

accuracy in heterogeneous networks. Despite its simplicity, the main drawback of LPA remains its non-deterministic nature—different 

runs on the same network may yield different community partitions due to random tie-breaking [10]. 

2.3 Clique-Based Methods 

Clique-based community detection focuses on identifying maximal cliques, or fully connected subgraphs, which serve as the 

building blocks of dense network communities. The Bron–Kerbosch algorithm [3] remains one of the most influential approaches for 

finding all maximal cliques in a graph. This recursive backtracking algorithm systematically expands partial cliques while pruning non-

promising candidates. Later refinements, such as pivoting strategies (Tomita et al.,) significantly improved computational performance 

[22]. 

Clique detection has found extensive applications in social networks, bioinformatics, and fraud detection, where communities 

often correspond to strongly interconnected entities. For instance, Palla et al., proposed the Clique Percolation Method (CPM) to detect 

overlapping communities by identifying adjacent cliques that share nodes. This method effectively captures overlapping structures but is 

computationally expensive for large and sparse graphs. Despite these limitations, clique-based techniques remain vital for identifying 

dense substructures and detecting functional modules in biological and social systems [14]. 
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2.4 Random Walk–Based Algorithms 

Random walk–based community detection approaches leverage the idea that a random walker tends to remain within the same 

community due to higher internal connectivity. The Walktrap algorithm, introduced by Pons and Latapy, is one of the most prominent 

examples of this class. It calculates random walk distances between nodes and performs agglomerative hierarchical clustering, merging 

communities that minimize the mean random walk distance. The resulting dendrogram provides a multi-scale view of the community 

structure, it enabling researchers to analyze networks at various levels of granularity.Several studies have highlighted the effectiveness of 

random walk–based methods in detecting hierarchical and modular structures in networks [17]. For instance, Rosvall and Bergstrom 

developed the Infomap algorithm, which uses information theory and random walks to identify communities that minimize the 

description length of the walker’s path. Infomap is known for its high accuracy in networks with well-defined community boundaries but 

has higher computational complexity compared to diffusion-based approaches [20]. 

Walktrap’s strength lies in its balance between accuracy and interpretability; however, it remains computationally intensive for 

large-scale networks (O(n2log⁡n)O(n^2 \log n)O(n2logn)) and assumes non-overlapping communities. Subsequent works have 

proposed improved variants using sampling, parallelization, or hybrid random walk–modularity optimization approaches to enhance 

scalability [22]. 

2.5 Comparative Evaluations and Current Research Trends 

Accuracy, scalability, modularity and the capacity to identify overlapping or hierarchical communities are just a few of the 

factors that recent comparative studies (e.g., Lancichinetti and Fortunato, Xie et al.) have highlighted. Empirical findings suggest that no 

single algorithm universally outperforms others and performance often depends on network size, density and structural properties. While 

LPA offers exceptional computational efficiency, its stochastic convergence can reduce reliability [8]. Clique-based methods excel in 

precision for dense networks but face scalability issues. Walktrap, although computationally demanding, provides interpretable 

hierarchical partitions and high modularity values. Current research trends are moving toward hybrid and ensemble-based approaches, 

combining the strengths of multiple algorithms to achieve both scalability and stability. 

In the literature reveals a clear trade-off between computational efficiency and community detection accuracy. This paper 

extends the body of knowledge by performing a comprehensive empirical comparison of LPA, Clique and Walktrap algorithms using 

real-world datasets, emphasizing execution time, modularity, and normalized mutual information as evaluation criteria [22]. 

 

III. COMMUNITY DETECTION ALGORITHMS 

3.1 Label Propagation Algorithm 

The LPA is a fast and scalable community detection algorithm that works by iteratively propagating labels among nodes until a 

stable community structure emerges. It is based on the principle of label diffusion, where each node updates its label based on the most 

common label among its neighbors. Introduced by Raghavan et al., [19], LPA is particularly useful for large-scale networks due to its 

simplicity and efficiency. 

LPA Algorithm: 

Step 1: Initialize Each Node with a Unique Label 

 Every node v is assigned a unique label, initially set as its own node ID. 

 Let L(v) denote the label of node v. Initially: 

𝐿(𝑣) = 𝑣, ∀𝑣∈ 𝑉 

Where, V is the set of nodes in the graph. 

Step 2: Iteratively Update Labels Based on Neighboring Nodes 

 In each iteration, each node updates its label based on the most frequent labelamong its neighbors. 

 If multiple labels have the same frequency, one is chosen randomly. 

 The new label of node v is given by: 
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𝐿(𝑣) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖 ∑ 𝐼(𝐿(𝑣) = 𝑙)

𝑢∈𝑁(𝑣)

 

Where:N (v) is the set of neighbors of node v.I (L(u)=l) is an indicator function that returns 1 if node u has label l, otherwise 0. 

Step 3: Repeat until Label Stabilization 

 The label propagation process is repeated until no node changes its label between two consecutive iterations or a maximum 

number of iterations is reached. 

 The stopping condition can be written as: 

𝐿𝑡(𝑣) = 𝐿𝑡+1(𝑣), ∀𝑣∈ 𝑉 

Where, Lt(v) and Lt+1(v) are the labels of node v in consecutive iterations t and t+1. 

Step 4: Identify Communities 

 Nodes that share the same label after convergence form a community. 

 The final partition of the graph consists of disjoint clusters, each represented by a dominant label. 

The LPA is a simple yet powerful community detection method based on the idea of iterative label diffusion. It is a non-parametric 

approach, meaning that it does not require prior knowledge of the number of communities. LPA starts by assigning each node a unique 

label, treating every node as its own community. Then, in every iteration, each node updates its label by selecting the most frequently 

occurring label among its neighbors. This process mimics information diffusion, where nodes tend to adopt the most popular label in their 

local neighborhood, leading to the formation of cohesive clusters. 

LPA is particularly advantageous for large-scale networks due to its linear time complexity of O (n + m), where n is the number of 

nodes and m is the number of edges. Since nodes update their labels asynchronously, the algorithm can handle dynamic networks 

efficiently. Additionally, LPA is memory-efficient and can be implemented in distributed systems, making it a preferred choice for big 

data applications. However, LPA also has certain limitations. Due to the random tie-breaking when multiple labels have the same 

frequency, the final community structure may vary across different runs, making it non-deterministic. Additionally, LPA may fail to 

detect smaller communities in the presence of highly connected nodes, as labels from dominant communities tend to spread 

uncontrollably. To address this, researchers have proposed improved LPA variants, such as Weighted LPA (which incorporates edge 

weights) and Semi-Supervised LPA (which integrates external information for better accuracy) [10]. The LPA provides an efficient, 

scalsable and intuitive method for detecting communities in large networks, making it widely applicable in social network analysis, 

biological clustering and recommendation systems. Despite its stochastic nature, its simplicity and computational efficiency make it an 

attractive choice for real-world network analysis. 

3.2 Clique Algorithm 

A clique in a network is a subset of nodes where every pair of nodes is directly connected. The process of clique detection is 

essential for community detection, social network analysis and biological network modeling. The clique algorithm identifies maximal 

cliques, meaning cliques that cannot be extended by including additional adjacent nodes. This ensures that the detected cliques represent 

the largest fully connected subgraphs in a network. Clique detection is typically performed using algorithms such as Bron-Kerbosch, 

Recursive Backtracking or Pivoting Methods, which search for all maximal cliques efficiently [24]. 

Clique Detection Algorithm:  

Step 1: Define a Clique  

AcliqueC in a graph G (V, E) is a subset of vertices such that every node is connected to every other node: 

∀𝑢,𝑣∈ 𝐶, (𝑢, 𝑣) ∈ 𝐸 

Where, V is the set of nodes and E is the set of edges. 

Step 2: Initialize the Bron-Kerbosch Algorithm 

The Bron-Kerbosch algorithm is a backtracking approach to finding all maximal cliques. It uses three sets: 
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 R(Current Clique): Nodes forming the current clique. 

 P (Potential Nodes): Nodes that can be added to extend the clique. 

 X (Excluded Nodes): Nodes already processed and cannot be added. 

Initially, 

R=∅, P=V, X=∅ 

Step 3: Recursive Clique Expansion 

For each node v in P: 

 Add v to the current clique: 

𝑅′ = 𝑅 ∪ {𝑣} 

 Update potential candidates for clique expansion: 

𝑃′ = 𝑃 ∩ 𝑁(𝑣) 

𝑋 ′ = 𝑋 ∩ 𝑁(𝑣) 

Where, N (v) is the set of neighbors of v. 

 Recursively apply the algorithm: 

Bron-Kerbosch(R′,P′,X′) 

 Remove v from P and add it to X, ensuring it is not reconsidered: 

P=P− {v}, X=X∪{v} 

This ensures that only maximal cliques are detected. 

Step 4: Apply Pivoting to Optimize Search 

To improve efficiency, the algorithm selects a pivot nodeu from P∪X that maximizes the number of neighbors inP. This reduces 

the number of recursive calls. 

The pivot is selected as: 

𝑢 = arg 𝑚𝑎𝑥𝑣∈𝑃∪𝑋|𝑃 ∩ 𝑁(𝑣)| 

By avoiding unnecessary recursion, pivoting significantly improves execution time. 

Step 5: Output Maximal Cliques 

Once all recursive calls complete, the algorithm returns all maximal cliques, ensuring that no clique can be further expanded. 

The Clique algorithm is a fundamental technique in network analysis, used to identify fully connected subgraphs where each 

node is directly linked to all other nodes in the subset. A maximal clique is a clique that cannot be extended by adding more nodes while 

maintaining complete connectivity. Clique detection is widely used in social networks (detecting tightly-knit groups), bioinformatics 

(protein interaction networks) and recommendation systems (finding common user groups). The most widely used method for maximal 

clique detection is the Bron-Kerbosch algorithm, a recursive backtracking approach that efficiently explores all possible cliques. The 

algorithm maintains three sets: R (current clique), P (potential extensions) and X (excluded nodes). It iteratively expands cliques by 

adding new nodes from P while ensuring that redundant searches are avoided using X. To further optimize performance, a pivoting 

technique is applied, where a node that maximizes the number of potential extensions is chosen to minimize recursive calls. 
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One of the key challenges of clique detection is its computational complexity, which is NP-hard. The worst-case runtime of 

Bron-Kerbosch without pivoting is O (3(n/3)), but with pivoting, it performs significantly better in practical cases. While the algorithm 

works well for small to moderate-sized networks, large-scale graphs require approximation techniques or heuristic methods such as 

Greedy Clique Expansion or Parallelized Bron-Kerbosch. Despite its complexity, clique detection remains crucial for identifying densely 

connected groups in networks. Its applications span multiple domains, including fraud detection (detecting fraudulent clusters), biological 

networks (protein structure analysis) and cybersecurity (detecting botnet structures). The ability to uncover hidden structures in complex 

networks makes clique detection a valuable tool in graph mining and community analysis. 

The Clique algorithm is an essential method for identifying tightly connected groups within networks. The Bron-Kerbosch 

algorithm is widely used due to its recursive backtracking approach, ensuring all maximal cliques are detected efficiently. While highly 

accurate, clique detection is computationally expensive and not suitable for very large graphs without optimizations. Despite its 

limitations, clique detection plays a crucial role in social network analysis, bioinformatics and fraud detection and recommendation 

systems, making it a powerful tool in graph theory. 

3.3. Walktrap Algorithm 
The Walktrap algorithm is a hierarchical community detection method based on random walks in networks. It assumes that random 

walkers tend to stay within the same community because intra-community connections are denser than inter-community connections. 

Introduced by Pons and Latapy [17], Walktrap measures the similarity between nodes using random walk distances and then merges 

nodes hierarchically to form communities. Walktrap uses a bottom-up hierarchical clustering approach, where small communities are 

iteratively merged based on their structural similarity, ensuring that communities are discovered at different levels of granularity. 

Walktrap Algorithm:  

Step 1: Represent the Graph as a Transition Matrix 

 The graph is represented as a Markov chain, where the probability of transitioning from node i to node j is: 

𝑃𝑖𝑗 =
𝐴𝑖𝑗

𝑘𝑖

 

Where:Aij is the adjacency matrix (1 if there is an edge between i and j, 0 otherwise).ki is the degree of node i (total number of edges 

connected to i).Pij represents the probability of a random walker moving from node i to node j. 

Step 2: Compute the Random Walk Distance between Nodes 

 Walktrapmeasures the similarity between nodes using random walk distances. The idea is that two nodes belong to the same 

community if a random walker spends more time within their neighborhood before exiting. 

 The random walk distance d(i,j) is computed as: 

𝑑(𝑖, 𝑗) = √∑
(𝑃𝑖𝑘

𝑡 − 𝑃𝑗𝑘
𝑡 )

𝜋𝑘
𝑘

 

Where:𝑃𝑖𝑘
𝑡 is the probability that a random walker starting at i reaches node k after t steps.πk  is the stationary distribution of node k: 

𝜋𝑘 =
𝑘𝑘

2𝑚
 

Where, kk is the degree of node k and m is the total number of edges in the graph. 

 The square root ensures that the distance is a proper metric. 

Step 3: Hierarchical Merging of Nodes into Communities 

 Walktrap follows an agglomerative hierarchical clustering approach, where nodes are iteratively merged based on their 

similarity. 

 Initially, each node is treated as a separate community. 

 At each step, the two communities Ci and Cj that minimize the random walk distance are merged: 

Cnew=Ci∪Cj 
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This merging process continues until a predefined stopping criterion is met (e.g., a desired number of communities are reached). 

Step 4: Generate the Final Community Partitioning 

 The hierarchical merging process creates a dendrogram, representing the community structure at different levels. 

 The optimal number of communities is selected by analyzing the modularity score at different levels: 

𝑄 =
1

2𝑚
∑ [𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
] 𝛿(𝐶𝑖 , 𝐶𝑗)

𝑖𝑗

 

Where:δ(Ci,Cj) is 1 if nodes i and j belong to the same community, otherwise 0.The best partition is selected based on the highest 

modularity score. 

The Walktrap algorithm is a community detection method that identifies groups of densely connected nodes based on the 

behavior of random walkers. The core idea is that a random walker tends to stay within the same community, as communities have more 

internal connections than external ones. By analyzing how random walkers move through the network, Walktrap effectively captures 

structural similarities between nodes and groups them into communities. 

Walktrap operates in a hierarchical manner, beginning with each node as an individual community and iteratively merging the 

most similar communities based on random walk distances. The similarity between two nodes is computed using the probability 

distribution of random walks reaching different parts of the network. If two nodes have similar transition probabilities over multiple 

steps, they are likely to belong to the same community. The random walk distance metric ensures that nodes with strong intra-community 

ties have shorter distances, guiding the hierarchical merging process. One of the strengths of Walktrap is that it produces a multi-level 

representation of community structure, meaning that users can choose the optimal number of communities by analyzing the dendrogram 

(hierarchical tree structure). Additionally, Walktrap optimizes modularity to ensure high-quality partitions.However, Walktrap has some 

limitations. Its computational complexity is O (n2logn), making it slower than Louvain or Leiden for very large networks. Additionally, 

Walktrap assumes that communities are well-separated, meaning it may not perform well in networks with overlapping communities. 

Despite these challenges, Walktrap remains a powerful and intuitive method for community detection, particularly for networks where 

random walk dynamics provide meaningful insights, such as social networks, biological networks and citation networks. 

The Walktrap algorithm is a powerful community detection method that identifies clusters based on random walk behavior. It 

follows a hierarchical clustering approach, iteratively merging the most similar communities until an optimal partition is reached. Unlike 

modularity-based methods like Louvain, Walktrap relies on random walk distances, making it effective for capturing structural 

relationships in social networks, biological networks and citation networks. Despite its higher computational cost, Walktrap provides a 

multi-resolution view of the community structure, allowing users to choose the granularity of partitioning. However, for very large 

networks, faster algorithms like Louvain or Leiden may be preferred. Overall, Walktrap remains an intuitive and robust method for 

detecting hierarchical community structures, particularly in networks where random walk dynamics play a significant role. 

IV. RESULTS AND DISCUSSION 

The experimental setup for evaluating community detection methods involves testing their performance on diverse real-world 

datasets, comparing them with established algorithms, and assessing key evaluation metrics. The evaluation is conducted on four real-

world network datasets, each representing different types of interactions. The Reddit Hyperlink Network captures hyperlink relationships 

between subreddits and includes temporal interactions, making it suitable for dynamic community detection. The Amazon Co-purchasing 

Network represents product co-purchasing relationships, helping analyze hierarchical structures in e-commerce networks. The DBLP 

Collaboration Network models academic collaborations based on co-authored research papers, making it useful for detecting research 

communities. The Twitch Gamers Network showcases interactions among Twitch users, including demographic attributes, and is ideal 

for testing overlapping community detection methods. These datasets provide a robust and varied platform for evaluating the 

effectiveness and scalability of community detection algorithms. Table 1 provides a comparative analysis of various community detection 

algorithms, outlining their approaches, strengths, weaknesses, scalability, ability to handle overlapping communities and ideal use cases. 

Table 1 Comparison of Existing Community Detection Algorithms 

Algorithm Approach Strengths Weaknesses 

Label Pro pagation Iterative Label Diffusion Extremely fast for large graphs Unstable results 

Clique Detection of maximal 

cliques for dense 

substructures 

Works well for biological networks 

and social networks where dense 

connectivity is key 

Not well-suited for 

sparse graphs, as clique-

based connections are 

weak 
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Walktrap Random Walks + 

Hierarchical Clustering 

Captures multi-level structures; 

Good for small to medium-sized 

networks 

Computationally 

expensive for large 

networks 

Community detection algorithms are evaluated based on various metrics to determine their effectiveness in uncovering meaningful 

structures in networks. The following key evaluation metrics are widely used: 

A. Modularity (Q) 

Modularity is a graph-based metric that measures the strength of the community structure by comparing the actual edge density 

within communities to the expected edge density in a random network. Ahigher modularity value (Q)indicates a better-defined 

community structure. 

Q =
1

2m
∑ [Aij −

kikj

2m
] δ(Ci, Cj)

ij

 

Where, Aij is the adjacency matrix (1 if an edge exists between nodes i and j, 0 otherwise).ki andkj are the degrees of nodes i and j.m is 

the total number of edges in the network.Ci andCj represent the communities of nodes i and j, respectively.δ(Ci,Cj) is the Kronecker delta 

function, which is 1 if nodes i and j are in the same community and 0 otherwise. 

Table 2 Modularity for all the methods of  Dataset a) RH-NW b)ACP-NW c) DBLP-NW d) TG-NW 

Network Size (n) Data set LPA K-Cliques Chinese Whispers 

n=1000 RH-NW 0.655 0.653 0.589 

 ACP-NW 0.602 0.619 0.524 

 DBLP-NW 0.726 0.744 0.657 

 TG-NW 0.812 0.779 0.693 

n=5000 RH-NW 0.577 0.589 0.472 

 ACP-NW 0.601 0.612 0.487 

 DBLP-NW 0.704 0.721 0.579 

 TG-NW 0.506 0.522 0.391 

n=25000 RH-NW 0.659 0.693 0.589 

 ACP-NW 0.615 0.645 0.478 

 DBLP-NW 0.628 0.638 0.539 

 TG-NW 0.633 0.693 0.521 

Table 2 presents the modularity values obtained from three community detection algorithms that are Label Propagation 

Algorithm, K-Cliques and Chinese Whispers and across four real-world network datasets. The experiments were conducted at different 

network scales (n =1000, 5000 and 25000) to assess how each algorithm adapts to changes in graph size and complexity.  

Modularity is a key indicator of community structure strength, where higher values (closer to 1) signify more well-defined and internally 

cohesive communities. For RH-NW, modularity values remain relatively stable across all network sizes. K-Cliques achieves the highest 

modularity at n = 25,000 (0.693), followed closely by LPA (0.659), while Chinese Whispers performs comparatively lower (0.589). This 

indicates that both LPA and K-Cliques effectively capture community boundaries in this densely linked social dataset. The stability of 

LPA across sizes also highlights its robustness in dynamic, large-scale environments like Reddit, where communities often overlap and 

evolve continuously. In the ACP-NW dataset, K-Cliques consistently outperform LPA and Chinese Whispers across all network sizes. 

This is because co-purchasing patterns in e-commerce networks often form dense subgraphs of related products, which clique-based 

methods can identify more effectively.  
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Figure 1 Modularity for all the methods of  Dataset a) RH-NW b)ACP-NW c) DBLP-NW d) TG-NW 

Fig 1 shows the comparison charts of above table. LPA’s performance improves moderately with increasing size (from 0.602 to 0.615), 

showing its adaptability to larger graphs, whereas Chinese Whispers lags behind due to its reliance on local connectivity, which may not 

fully capture global product relationships. 

The DBLP dataset shows the highest overall modularity scores across all methods, indicating strong, well-defined research 

collaboration communities. At smaller scales (n = 1000), both LPA (0.726) and K-Cliques (0.744) perform exceptionally well. However, 

as the network grows to n = 25,000, modularity slightly decreases due to increased inter-community overlaps. This trend suggests that 

both algorithms maintain their ability to detect meaningful clusters even in complex academic collaboration structures, with K-Cliques 

having a slight edge due to its focus on highly connected author groups. The TG-NW dataset exhibits a more noticeable drop in 

modularity as the network size increases. Initially, at n = 1000, LPA achieves a strong modularity of 0.812, outperforming both K-

Cliques (0.779) and Chinese Whispers (0.693). However, as the network expands to n = 25,000, modularity decreases (LPA: 0.633; K-

Cliques: 0.693). This reduction reflects the complex and overlapping social structures within the gaming community, where user interests 

and interactions blur traditional community boundaries. K-Cliques performs better at large scale due to its ability to capture tightly knit 

gamer groups that remain strongly interconnected even as the network grows. 

LPA demonstrates consistently high modularity and stable performance across most datasets, particularly excelling in large, 

dynamic and socially driven networks like RH-NW and TG-NW. Its ability to propagate labels efficiently helps it form cohesive 

community partitions. However, the slight variability in modularity at larger scales can be attributed to its stochastic nature and random 

tie-breaking during label updates. K-Cliques generally yields the highest modularity scores, especially in structured and dense datasets 

like DBLP and ACP-NW. This is because clique-based detection inherently identifies strongly connected clusters that contribute to 

higher modularity. However, its computational cost increases significantly with network size, limiting scalability despite strong 

community resolution. Chinese Whispers consistently records lower modularity values across all datasets and scales. This suggests that 

while it is computationally efficient and fast, it tends to produce less cohesive communities. The algorithm’s local decision-making 

approach may overlook broader structural relationships, resulting in weaker community boundaries. 

From Table 2, it is evident that K-Cliques and LPA outperform Chinese Whispers in terms of modularity across all datasets. K-

Cliques is more suitable for dense and structured networks, while LPA offers a better trade-off between scalability and modularity in 

large-scale, real-world networks. The DBLP and TG-NW datasets show the strongest community structures overall, as indicated by their 

higher modularity values. Meanwhile, the decline in modularity with increasing network size (notably in RH-NW and TG-NW) 

highlights the challenge of maintaining strong community definitions in expansive, heterogeneous networks. Thus, the experimental 

results confirm that algorithm selection should be based on both network topology and desired balance between modularity and 

efficiency. 

B. Normalized Mutual Information (NMI) 

NMI is used to quantify the similarity between the detected community structure and the ground truth partition. It is based on information 

theory and measures how much information is shared between two partitions. 

𝑁𝑀𝐼(𝑋, 𝑌) =
2. 𝐼(𝑋; 𝑌)

𝐻(𝑋) + 𝐻(𝑌)
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Where, X and Y are the detected communities and ground truth communities, respectively.I(X;Y) is the Mutual Information (MI): 

𝐼(𝑋; 𝑌) =  ∑ ∑ 𝑃(𝑥, 𝑦)𝑙𝑜𝑔
𝑃(𝑥, 𝑦)

𝑃(𝑥)𝑃(𝑦)
𝑦∈𝑌𝑥∈𝑋

 

Where, P(x), P(y) and P(x,y) represent the probability distributions of clusters. 

Table 3 NMI Results on Real Datasets for N = 7500 

 

 

The Normalized Mutual Information results presented in Table 3 for N = 7500 reveal how accurately each algorithms Label 

Propagation, K-Cliques and Chinese Whispers that detects communities compared to the ground truth across four real-world datasets. 

Overall, K-Cliques achieves the highest NMI scores on all datasets, indicating its superior ability to uncover well-defined and meaningful 

community structures. Specifically, the algorithm performs best on the Twitch Gamers Network with an NMI of 0.74, reflecting its 

effectiveness in identifying dense, closely connected groups typical of social interaction networks. The Amazon Co-purchasing Network 

also exhibits strong performance (0.67), as product co-purchasing relationships form highly cohesive subgraphs that align well with 

clique-based detection.  

 

Figure 2 NMI Results on Real Datasets for N = 7500 

Dataset a) RH-NW b) ACP-NW c) DBLP-NW d) TG-NW 

LPA shows competitive results with moderately high NMI values, especially in TG-NW (0.71) and ACP-NW (0.61), 

demonstrating its efficiency and adaptability in identifying large-scale community structures despite its stochastic behavior. In contrast, 

Chinese Whispers consistently records the lowest NMI values, ranging from 0.41 to 0.55, suggesting limited accuracy in matching 

ground truth communities due to its locally constrained propagation mechanism. Overall, these findings indicate that while K-Cliques 

provides the most accurate community identification, LPA offers a strong balance between accuracy and computational efficiency, and 

Chinese Whispers, though faster, sacrifices precision for speed.. 
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Dataset LPA K-Cliques Chinese Whispers 

RH-NW 0.51 0.55 0.41 

ACP-NW 0.61 0.67 0.48 

DBLP-NW 0.57 0.61 0.43 

TG-NW 0.71 0.74 0.55 
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C. Execution Time (T) 

Execution time is a critical metric for evaluating the computational efficiency of community detection algorithms. It measures 

how long an algorithm takes to process a given network and identify communities. 

T=tend−tstart 

Where, tstart is the time before the algorithm starts.tend is the time after the algorithm completes execution.Table 4 presents a comparison of 

evaluation metrics for community detection algorithms, including Modularity (Q), NMI with ground truth and Execution Time (T). These 

evaluation metrics provide a comprehensive assessment of community detection algorithms. Modularity is crucial for evaluating the 

internal consistency of communities, while NMI helps compare results with ground truth labels. Execution time determines the scalability 

of the algorithm for real-world applications. 

Table 4 Execution Times of All Algorithms for N = 7500 (in milliseconds) 

Dataset LPA K-Cliques Chinese Whispers 

RH-NW 1210 2398 1156 

ACP-NW 1375 2251 1294 

DBLP-NW 1225 2143 1203 

TG-NW 956 1984 997 

The execution time results shown in Table 4 for N = 7500 illustrate the computational efficiency of the three community 

detection algorithms are Label Propagation (LPA), K-Clique and Chinese Whispers and across four real-world datasets. Among these, 

Chinese Whispers consistently demonstrates the fastest execution times, completing all datasets in under 1.3 seconds, highlighting its 

lightweight and efficient label propagation mechanism that relies on local updates. LPA also performs efficiently, with execution times 

ranging between 956 ms and 1375 ms, showing slightly higher processing costs than Chinese Whispers due to its iterative label diffusion 

process. Despite this, LPA maintains linear scalability, making it suitable for large-scale and dynamic networks.  

 

 

Figure 3 Execution Time Results on Real Datasets for N = 7500 

Dataset a) RH-NW b) ACP-NW c) DBLP-NW d) TG-NW 

In compare, the K-Cliques algorithm exhibits the highest execution times, ranging from 1984 ms to 2398 ms, as it involves 

computationally intensive clique enumeration and recursive searches for maximal subgraphs. This complexity increases with network 

density, explaining the slower performance observed in all datasets. Notably, the TG-NW dataset records the shortest times overall across 

all algorithms, possibly due to its sparser connectivity and fewer high-degree nodes. Overall, the results confirm that Chinese Whispers 

and LPA are the most time-efficient methods, ideal for rapid community detection in large networks, whereas K-Cliques, though slower, 

provides deeper structural insights into dense and highly connected subgraphs. 
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V. CONCLUSION 

In conclusion, this work provides a comprehensive comparative evaluation of three prominent community detection algorithms 

are Label Propagation, Clique and Walktrap. That works across diverse real-world network datasets. The analysis demonstrates that each 

algorithm exhibits distinct strengths and limitations depending on the structural characteristics and scale of the network. The LPA 

algorithm proves to be the most efficient in terms of execution time and scalability, making it ideal for large and dynamic networks, 

though its non-deterministic nature can affect result stability. The Clique algorithm, while computationally expensive, excels in 

identifying dense substructures and is particularly effective in biological and social networks where strong internal connectivity is 

present. The Walktrap algorithm offers the most balanced performance in terms of modularity and accuracy, effectively capturing 

hierarchical and multi-level community structures, though it is less suitable for very large networks due to its higher computational cost. 

Overall, the comparative findings highlight that no single algorithm universally outperforms others; instead, the choice of algorithm 

should depend on the network’s size, density, and the required balance between computational efficiency and structural accuracy. Future 

work may explore hybrid models or ensemble-based approaches that combine the scalability of LPA with the precision of Walktrap and 

the density-detection capabilities of Clique to achieve more robust and adaptive community detection solutions for complex real-world 

networks. 
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