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Abstract : This research paper researches the use of GANs towards creative music making using MIDI sequences. In contrast to
conventional techniques, GANSs utilize adversarial learning between a generator and discriminator to generate coherent and
musically substantial compositions. The envisaged model employs a Dual-directional LSTM-based network for the discriminator
and an LSTM-based network for the generator, which allows it to learn intricate temporal dependencies in musical data. The
generator generates sequences of notes from the latent space, and the discriminator tests whether they are real or not versus true
MIDI sequences. Through the training of the model from a varied set of MIDI files, the system learns to create original compositions
that mimic the complex patterns in music. Our method combines data cleaning methods, like MIDI parsing also its sequence
stabilizations, to improve the effectiveness of the model. Experimental findings noting also the GAN is able to generate distinctive
and contextually relevant musical outputs with success, illustrating the promise of deep learning in advancing automatic music
composition. The research identifies some of the chief challenges, including maintaining generator-discriminator dynamics and
producing output diversity, while providing guidance for future progress in generative music systems.

IndexTerms - Generative Adversarial Neural Networks (GANs), Automated Music Generation Systems, Long Short-Term
Memory Framework, MIDI Data Sequences, and Sequence Standardization Techniques.

1 INTRODUCTION

Through a Bi-directional LSTM-based discriminator and an LSTM-based generator, the network can integrate complex temporal
dependencies in musical data. The discriminator judges note flows that are synthesized from latent space for their validity against
actual ones MIDI sequences. Under different training on MIDI files, the generative model generates new, musically significant
pieces, with the promise of deep learning for future advancement of automated music composition and insights into challenges and
opportunities improvements.

1.1 Generative Network Based on Adversarial Learning (GAN)

The arrival at scale of artificial intelligence and deep learning has had a negative impact on several activities, including music
production, where algorithms attempt to replicate the human imagination. Of the modern techniques, Generative Adversarial
Networks (GANS) have been a resounding success at creating realistic data by challenging dual neural networks, namely the
synthesizer and the classifier, in a game where the two networks are learned by increasingly dependent on one another's output.
GAN:Ss initially originated for image production, yet they have been generalized to work on other applications, e.g., music
production, where the task is to generate rich, structured information in the form of MIDI files.

1.2 MIDI: Digital Communication Standard for Musical Instruments

MIDI files, which contain musical information in digital format, provide a universal conveyance for music machine learning. They
provide neural networks for construction and knowledge of musical parameters like pitch, length, and rhythm that form a key
component in creating sound compositions. Under this framework, researchers can train models to detect structures and music
patterns and subsequently allow algorithms to learn styles, genres, or even a particular composer's style.

1.3 Short Long-Term Memory (LSTM)

It is also a crucial aspect of music synthesis with the capability to learn sequential dependencies that are crucial in maintaining the
stability of musical notes and phrases. LSTMs allow a model to recall previous notes in a sequence, which are particularly
appropriate to music synthesis problems where continuity and coherence in the time domain are appropriate.

In spite of the potential demonstrated by LSTMs and GANSs in music generation, many difficulties remain. Perhaps the most
important challenge is preserving diversity and coherence in output music. Whereas GANs can generate innovative music, they can
also fail to preserve musical structure or prevent repetitive designs. In addition, training GANSs to produce high-quality sequences
that well represent musical harmony is a matter requiring large data sets and heavy computation. One other challenge is the ability
of the model to understand both short-range dependencies (such as individual notes) and long-range dependencies (such as musical

I[JNRD2510154 ‘ International Journal of Novel Research and Development (www.ijnrd.org) b425



http://www.ijnrd.org/

© 2025 IJNRD | Volume 10, Issue 10 October 2025 | ISSN: 2456-4184 |[JNRD.ORG

phrases or sections) without losing consistency. The paper examines the design, training, and testing of a GAN-based system with
LSTM layers incorporated for producing MIDI sequences. We introduce a method to generate new, coherent music pieces and show
how GANSs, in conjunction with LSTM networks, can produce realistic and musically diverse MIDI files. Our work counteracts
structure and coherence issues in music generation, enlarging the field of Al-based music composition.

2 LITERATURE REVIEW

H. Zhang et al. [1] discuss how to apply Generative Adversarial Networks (GANS) to music generation with a focus on their ability
to reduce human intervention. It provides the basic principles of GANs, their application in music generation, the problems
encountered, and useful insights for future machine learning-based music generation research. Tony el al. [2] suggest utilizing
LSTM and GANs for music generation automatically. The LSTM model generates music from input files, and GANs produce
piano-like music from midi databases. The generated music’s quality is evaluated on the framework of harmony and aesthetics,
with potential improvement in continuity of notes. Almeida el al. [3] suggests a music generation framework built on DCGANS.
The audio samples are being converted into a usable format into time-frequency forms, the system creates music segments
comparable to the dataset. User experiments indicate that generated segments are musically coherent and not mere noise. Li, Ding
el al. [4] proposed an LSTM-GAN model-based approach for music creation to overcome issues such as slow computation and
long-term dependencies in conventional neural networks. The model integrates LSTM models combined with GANs for better
accuracy. They present a novel data cleaning conversion rule for Musical Instrument Digital Interface information and setup the
accuracy of the model based on maximum mean discrepancy. Experimental results demonstrate that the model can autonomously
produce new and high-quality music.

Maduskar el al. [5] presented a system integrating Generative Adversarial Networks (GANS) with a recurrent autoregressive model
for music generation. This approach addresses the challenge of music sequence generation by accurately capturing both global
coherence and local musical structures, overcoming the weakness of previous methods such as WaveNet. Dai el al. [6] introduced
a deep model fusing Generative Adversarial Networks (GANs) and Long Short-Term Memory (LSTM) networks are utilized to
generate music. LSTM serves as the core component in both the synthesizer and the classifier, allowing the system to create music
sequences with patterns closely resembling the input data, thereby demonstrating the effectiveness of combining GAN and LSTM
for music generation. Arora et al. [7] describe the application of a basic Generative Adversarial Network (GAN) for creating multi-
instrumental MIDI compositions. A pre-processing algorithm was developed to simplify MIDI encoding, and the GAN was
implemented using PyTorch. While the GAN produced MIDI data, the result was not musically clear and melodic because of the
insufficiency of network complexity. Z. Li et al. [8] introduce a new music generation approach, Leak-GAN, which strengthens
adversarial learning by enabling the discriminator to better lead the generator. Comparative experiments with an LSTM model
indicate that Leak-GAN produces more coherent, natural, and realistic music, as measured by statistical and music theory criteria.

Zheng and Li [9] proposed LA- SAGAN, a novel model combining Generative Adversarial Networks (GANs) and Self-Attention
(SA) for real-time, emotion-based piano music generation. The model leverages SA for long-distance dependencies and emotional
features, optimizing structure using Learning Automata. Evaluations show significant improvements in diversity, precision, recall,
and musical coherence. Adhikary et al. [10] explore the use of Wasserstein Generative Adversarial Networks (WGANSs) for
generating Indian classical music based on raga. Using Musical Instrument Digital Interface piano music as input, the WGAN
was trained using data of classical music of India. It is shown by the results that the created music is acoustically same to the
original human-generated music. Huang et al [11] proposes an LSTM-based GAN for multitrack symbolic music composition to
improve temporal correlation and musicality. By using LSTM networks in the classifier and adding a controller between the
producer and discriminator, this method enhances the synthesizer’s power to create authentic music, as demonstrated through
experimental validation. Toh and Sourin [12] propose using a Deep Convolutional Generative Adversarial Network (DCGAN) for
music generation with dynamics. By encoding MIDI data with piano-roll representation, the DCGAN learns the distribution of
music elements like pitch, time, and velocity. The generated music incorporates dynamics and syncopated rhythm, vali- dated
through user evaluation. Tang, et al [13] review three popular deep learning models for music generation: Biaxial-LSTM, DeepJ,
and MuseGAN. They compare their application scenarios and evaluation methods, addressing the lack of standard algorithms and
model evaluation criteria. The study offers a reference for future research in music generation.

2.1 Data Preprocessing

Data preprocessing involves extracting key musical features from MIDI files, encoding these features into numerical series, and
formatting them for GAN input. Parsing MIDI Files: MIDI files are parsed to extract fundamental musical components, including
individual notes, chords, tempo, and instrument type. MIDI files represent each note and chord as objects with pitch and timing
attributes, which are essential for capturing the structure of a musical sequence.

» Feature Extraction: Key features are extracted from each MIDI file:
— Notes: Each pitch, representing a distinct musical note, is recorded as a string (e.g., ”C4”).

— Chords: Chords, or sets of notes played simultaneously, are represented as groups of pitch numbers in string format (e.g.
60, 64, and 67 are assigned to represent a C major chord).

— Tempo: Tempo, defining beats per minute (BPM), is used to standardize time intervals between notes, providing rhythm.
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— Instrument Type: Although not directly used in the generation, the instrument type (e.g., piano, violin) can be retained
for a potential multi-instrument generation.
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Figure 1. Steps involved in generating new midi file

» Encoding and VVocabulary Creation: Each unique note or chord is mapped to an integer to create a vocabulary. This encoding
allows the music sequences to be represented as lists of integers, providing a standardized numerical input for the GAN.

» Sequence Preparation: Using a sliding window approach, each MIDI sequence is divided into overlapping series of a fixed
length (e.g., 100 notes), with the last note in each window serving as the target.

» Normalization and Reshaping: The integer sequences are normalized between -1 and 1 to stabilize training and reshaped into
a format compatible with LSTM layers in the discriminator.

2.2 GAN Architecture

The GAN architecture is divided into two key networks: the producer and the classifier. The producer synthesizes music sequences
from random disturbance, while the classifier assesses while sequences are true or generated. These networks are instructed
together by opposing each other, leading to the generation of realistic musical sequences.

2.2.1 Generator Architecture: The synthesizer aims to make music sequences that closely resemble true sequences. It starts with a
latent noise vector, which is transformed through multiple dense layers and non-linear activations to generate a structured
music sequence.

+ Latent Space Input: The synthesizer receives a randomly selected vector drawn from a Gaussian allocation. This vector,
denoted as z, has a predefined dimensionality (the “latent dimension™) and represents the source of randomness in the
generated sequence. z ~ N (0, 1)
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» Dense Layer Transformations: The noise vector z is passed through fully connected (dense) layers. Each dense layer
expands the dimensionality of z, progressively shaping it into a form that resembles the target music sequence.

| Input Noise (Latent z) |

| Dense Layer (256 Units) + LeakyRel.U |

| BatchNorm |

| Dense Layer (512 Units) + LeakyRel.U |

| BatchNorm |

[Dense Layer (1024 Units) + LeakyReLU

I BatchNorm I

| Dense Layer (Output Shape) + Tanh |

L

| Reshape to Sequence |

Figure 2.Generator Architecture

Each dense layer is followed by an initiation function, explained as:
x, ifx>0
LeakyReLU(x) = {ocx, ifx <0
» Batch Normalization: Batch normalization is applied after each dense layer to normalize the training by stabilizing the outputs.
This layer enhances convergence and mitigates problems like internal covariate shift. Given an input X, batch normalization
computes:
» Reshaping and Output: The final layer of the generator reshapes the dense layer output into the required sequence format. It

uses a tanh activation function to bound values between -1 and 1, preparing the data for the next steps:
X _ X

e
tanh(x) = ———
) e X +e*

The generator’s objective is to minimize the adversarial loss by “fooling” the discriminator, making it as close to classifying
generated sequences as real.

Input Sequence

[

Bi-directional LSTM (512 Units)

[

Dense Layer (512 Units) + LeakyReLU

Dense Layer (256 Units) + LeakyReLU |

Dense Layer (100 U'nits) + LeakyRelU
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Dropout (0.5)

[

Dense Layer (1 Unit) + Sigmoid

Figure 3. Discriminator Architecture

2.2.2 Discriminator Architecture: The discriminator is structured to classify sequences as real or fake. It uses a series of
LSTM and dense layers to capture temporal dependencies within sequences and perform binary classification.

» LSTM Layers: The discriminator starts with LSTM layers that capture the temporal patterns within each sequence. An LSTM
unit computes a sequence of outputs as determined by the input and its internal condition. For each timestep t, the LSTM
executes the following operations:
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— Forgot gate:

fe = o(Wy - [he_y, x.] + by)
— Entry terminal:

iy = o(W; - [he_q,x] + b))
— Cell status update:

Ce = ft+ Ceq + i - tanh(We - [he_y, %] + bc)

— Exit terminal:

0y = o(W, - [he—1, xc] + b,)
— Hidden state:

h; = o, - tanh(C,)

+ Bidirectional Layer: To improve context understanding, a bidirectional LSTM layer is used. This layer processes the input
series in both backward and forward directions, capturing data from future and past states within the sequence.

* Minibatch Discrimination; Minibatch discrimination is added to prevent mode collapse, encouraging the synthesizer to
produce a diverse set of sequences. It introduces small perturbations to the output by calculating a similarity matrix within
each batch. For an input matrix M, this operation computes.

Sij = eXP(—Y|Mi — Mj|2)
Where sij is the similarity between inputs Mi and Mj:
* Binary Classification Layer: The discriminator’s final layer uses a sigmoid activation function to classify series as real or

generated:

‘W=

The classifier’s goal is to maximize the adversarial loss by correctly distinguishing real sequences from generated ones.

2.2.3 Learning Process: The learning process includes adversarial training, where the synthesizer goals to produce sequences which
can “fool” the classifier, while the classifier learns to correctly classify and synthesized sequences. The following steps
elaborate on this process, including the loss functions used:

» Adversarial Training Objective: GAN training is an iterative process that updates the producer and classifier networks in
alternation. Each iteration of the GAN learning loop aims to optimize the following objectives for both networks:

— The synthesizer is instructed to reduce the chance that the classifier accurately classifies the synthesized outputs as fake.
— The classifier is instructed to maximize its ability to tell apart true and synthesized information.

The adversarial loss for the Generative Adversarial Network is formulated as below:

LoaN = Ereal [log(D(real))] + Eppe [log (1 — D(G(noise)))]
Here the classifier is ()D(), )G() is the synthesizer, real represents real data, and noise is random input sampled from a distribution.

» Classifier Loss Calculation: The discriminator is instructed on batches of true sequences and synthesized series. The loss for
real sequences denoted as L and for generated sequences, Lk, is explained as follows:

1 N
Lica = _NZ log(D(reali))
i=1

N
Le = —%Z log (1 - D(G(noisei)))
i=1

Where batch size is N, and D outputs the chances that a sequence is true.

The total classifier loss LD is:

1
LD = E (Lreal + Lfake)

» Generator Loss Calculation: The generator aims to pro- duce sequences that the classifier classifies as true. Thus, the
synthesizer loss, LG, is formulated as:

1
LD = E (Lreal + Lfake)

» Optimization: Generator and discriminator losses are minimized with the use of the Adam optimizer, which optimizes model
parameters by backpropagating the gradients from each network's loss function.
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2.2.4 Music Sequence Generation and Conversion:

Following training, random noise vectors are input to the trained generator to generate novel sequences. These sequences are then
projected back to the musical notes in the original vocabulary and translated into a MIDI form to be played and analyzed.

3 EXPERIMENTAL RESULTS
3.1 Brief Description of Dataset

The data employed herein is composed of MIDI files obtained from different public collections to provide a wide variety of musical
genres and styles. Each MIDI file is being read in to extract the chords and notes and subsequently processed to generate sequences
appropriate for training. Such sequences encode the detailed patterns and transitions in music that help the model learn complicated
musical structures. The overall number of notes and chords defines the size of the vocabulary employed in the model, which has a
direct impact on its capacity to produce varied compositions.

For datasets for training and testing, the dataset is categorized into 80% for learning purposes while 20% for validation. This training
dataset comprises input sequences of fixed length, the following note as the output target. This configuration enables the model to
acquire knowledge temporal relations also in predict future notes, improving its capability to produce well-coherent and contextually
correct musical pieces. The validation set is utilized to track performance and avoid overfitting to let the model will generalize well
to new datasets.

3.2 Evaluating Performance
3.2.1 Loss Comparison:

The generator loss formula is written as:

16 = -

Z log (D (G(z,-)))

i=1

2|~

Explanation of Terms:
— Le: synthesizer loss, measuring how well the synthesizer is fooling the classifier.
— N: Total number of samples.
— D(G(z)): The output of the discriminator when given a generated sample G(z;).
— G(zi): The output of the synthesizer given noise entry.
- Zi.
— log: Natural logarithm, used to calculate the adversarial component.

» Discriminator Loss Formula The discriminator loss formula consists of two components:

Lp = —%Z [log(D(xi)) + log (1 - D(G(Zi)))]
i=1

Explanation of Terms:

— Lp: classifier loss, indicating how well the classifier differentiates between true and synthesized data.

D(xi): Output of the classifier for a true sample x;.
— 1 —D(G(z)): The output indicating how much the discriminator believes a generated sample is fake.

— log: Natural logarithm, ensuring that the loss function penalizes incorrect predictions.
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Generator and Discriminator Losses
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Figure 4. Discriminator loss X generator loss

Figure 4 illustrates the loss metrics for both the synthesizer and the classifier throughout the learning process. The generator loss
(depicted in blue) and the discriminator loss (shown in red) are plotted across 100 training epochs. Initially, both models exhibit
fluctuations in their respective loss values, indicating the adversarial nature of their learning. The classifier’s loss stabilizes at higher
level,

Discriminator Accuracy Over Epochs
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Figure 5. Discriminator accuracy over epochs

While the synthesizer’s loss gradually drops and converges as learning progresses. This trend demonstrates the generator’s learning
curve as it becomes more adept at producing realistic musical sequences, effectively reducing its loss over time. The stable discriminator
loss suggests that it consistently distinguishes between real and generated sequences, maintaining a balanced training dynamic.

3.2.2 Discriminator Accuracy over epochs:

+ Discriminator accuracy:

TN +TP
FP+TP+TN +FN

Figure 5 presents the efficiency of the classifier over 100 training epochs. The accuracy metric measures how effec- tively the
discriminator classifies real and generated sequences. Initially, accuracy values show significant variability, reflect- ing the early
stages of training where the generator is still producing suboptimal outputs. Over time, accuracy stabilizes around a certain
threshold, indicating that the discriminator maintains a reliable performance level without overfitting. This stable accuracy, combined
with the decreasing generator loss from Figure 4, highlights an improvement in the generator’s ability to create plausible outputs,
achieving a balance where neither the generator nor the discriminator dominates the training process. This equilibrium is crucial for
successful GAN training, ensuring the generation of high-quality, realistic musical compositions.

Accuracy,) =

4 CONCLUSION

The research delved into the application of GANs in auto- mated music composition with the help of MIDI sequences and the
employment of an LSTM generator and a bi-directional LSTM discriminator. The results demonstrated that LSTM maodels, in
combination with GANSs, learned temporal features from the data and were capable of producing music com- positions which were
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reminiscent of human composers. The adversarial formulation of the problem ensured that the outputs had some convergence
towards a musical timing structure. Training on unstructured MIDI data helped to define the training data’s structure and aided in
the enhancement. With the inclusion of different MIDI origins, the model extrapolated multifaceted musical genres enabling it to
generate cohesive outputs. The music created through GANs was well-structured with rhythm and melody components, indicating
that deep learning has immense possibilities in creativity. Important explanations were related to the problem of training dynamics
coordination between the generator and the discriminator. Different variables led to the problem of mode collapse, which is a situation
where no variety exists in the resultant outputs. The high computational demand of LSTM-based GANSs also accentuated the lack of
efficient models.

The findings of this study call for an increased application of GANs in music creation and user-specific compositions. Further
development of these systems may improve operational constraints and take predictive music to the next level of technological
advancement.
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