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Abstract : This research paper researches the use of GANs towards creative music making  using MIDI sequences. In contrast to 

conventional techniques, GANs utilize adversarial learning between a generator and discriminator to generate coherent and 

musically substantial compositions. The envisaged model employs a Dual-directional LSTM-based network for the discriminator 

and an LSTM-based network for the generator, which allows it to learn intricate temporal dependencies in musical data. The 

generator generates sequences of notes from the latent space, and the discriminator tests whether they are real or not versus true 

MIDI sequences. Through the training of the model from a varied set of MIDI files, the system learns to create original compositions 

that mimic the complex patterns in music. Our method combines data cleaning methods, like MIDI parsing also its sequence 

stabilizations, to improve the effectiveness of the model. Experimental findings noting also the GAN is able to generate distinctive 

and contextually relevant musical outputs with success, illustrating the promise of deep learning in advancing automatic music 

composition. The research identifies some of the chief challenges, including maintaining generator-discriminator dynamics and 

producing output diversity, while providing guidance for future progress in generative music systems. 

 

IndexTerms - Generative Adversarial Neural Networks (GANs), Automated Music Generation Systems, Long Short-Term 

Memory Framework, MIDI Data Sequences, and Sequence Standardization Techniques. 

1 INTRODUCTION 

Through a Bi-directional LSTM-based discriminator and an LSTM-based generator, the network can integrate complex temporal 

dependencies in musical data. The discriminator judges note flows that are synthesized from latent space for their validity against 

actual ones MIDI sequences. Under different training on MIDI files, the generative model generates new, musically significant 

pieces, with the promise of deep learning for future advancement of automated music composition and insights into challenges and 

opportunities improvements. 

1.1 Generative Network Based on Adversarial Learning (GAN) 

The arrival at scale of artificial intelligence and deep learning has had a negative impact on several activities, including music 

production, where algorithms attempt to replicate the human imagination. Of the modern techniques, Generative Adversarial 

Networks (GANs) have been a resounding success at creating realistic data by challenging dual neural networks, namely the 

synthesizer and the classifier, in a game where the two networks are learned by increasingly dependent on one another's output. 

GANs initially originated for image production, yet they have been generalized to work on other applications, e.g., music 

production, where the task is to generate rich, structured information in the form of MIDI files. 

1.2 MIDI: Digital Communication Standard for Musical Instruments 

MIDI files, which contain musical information in digital format, provide a universal conveyance for music machine learning. They 

provide neural networks for construction and knowledge of musical parameters like pitch, length, and rhythm that form a key 

component in creating sound compositions. Under this framework, researchers can train models to detect structures and music 

patterns and subsequently allow algorithms to learn styles, genres, or even a particular composer's style. 

1.3 Short Long-Term Memory (LSTM) 

It is also a crucial aspect of music synthesis with the capability to learn sequential dependencies that are crucial in maintaining the 

stability of musical notes and phrases. LSTMs allow a model to recall previous notes in a sequence, which are particularly 

appropriate to music synthesis problems where continuity and coherence in the time domain are appropriate. 

In spite of the potential demonstrated by LSTMs and GANs in music generation, many difficulties remain. Perhaps the most 

important challenge is preserving diversity and coherence in output music. Whereas GANs can generate innovative music, they can 

also fail to preserve musical structure or prevent repetitive designs. In addition, training GANs to produce high-quality sequences 

that well represent musical harmony is a matter requiring large data sets and heavy computation. One other challenge is the ability 

of the model to understand both short-range dependencies (such as individual notes) and long-range dependencies (such as musical 
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phrases or sections) without losing consistency. The paper examines the design, training, and testing of a GAN-based system with 

LSTM layers incorporated for producing MIDI sequences. We introduce a method to generate new, coherent music pieces and show 

how GANs, in conjunction with LSTM networks, can produce realistic and musically diverse MIDI files. Our work counteracts 

structure and coherence issues in music generation, enlarging the field of AI-based music composition. 

2 LITERATURE REVIEW 

H. Zhang et al. [1] discuss how to apply Generative Adversarial Networks (GANs) to music generation with a focus on their ability 

to reduce human intervention. It provides the basic principles of GANs, their application in music generation, the problems 

encountered, and useful insights for future machine learning-based music generation research. Tony el al. [2] suggest utilizing 

LSTM and GANs for music generation automatically. The LSTM model generates music from input files, and GANs produce 

piano-like music from midi databases. The generated music’s quality is evaluated on the framework of harmony and aesthetics, 

with potential improvement in continuity of notes. Almeida el al. [3] suggests a music generation framework built on DCGANs. 

The audio samples are being converted into a usable format into time-frequency forms, the system creates music segments 

comparable to the dataset. User experiments indicate that generated segments are musically coherent and not mere noise. Li, Ding 

el al. [4] proposed an LSTM-GAN model-based approach for music creation to overcome issues such as slow computation and 

long-term dependencies in conventional neural networks. The model integrates LSTM models combined with GANs for better 

accuracy. They present a novel data cleaning conversion rule for Musical Instrument Digital Interface information and setup the 

accuracy of the model based on maximum mean discrepancy. Experimental results demonstrate that the model can autonomously 

produce new and high-quality music.  

Maduskar el al. [5] presented a system integrating Generative Adversarial Networks (GANs) with a recurrent autoregressive model 

for music generation. This approach addresses the challenge of music sequence generation by accurately capturing both global 

coherence and local musical structures, overcoming the weakness of previous methods such as WaveNet. Dai el al. [6] introduced 

a deep model fusing Generative Adversarial Networks (GANs) and Long Short-Term Memory (LSTM) networks are utilized to 

generate music. LSTM serves as the core component in both the synthesizer and the classifier, allowing the system to create music 

sequences with patterns closely resembling the input data, thereby demonstrating the effectiveness of combining GAN and LSTM 

for music generation. Arora et al. [7] describe the application of a basic Generative Adversarial Network (GAN) for creating multi-

instrumental MIDI compositions. A pre-processing algorithm was developed to simplify MIDI encoding, and the GAN was 

implemented using PyTorch. While the GAN produced MIDI data, the result was not musically clear and melodic because of the 

insufficiency of network complexity. Z. Li et al. [8] introduce a new music generation approach, Leak-GAN, which strengthens 

adversarial learning by enabling the discriminator to better lead the generator. Comparative experiments with an LSTM model 

indicate that Leak-GAN produces more coherent, natural, and realistic music, as measured by statistical and music theory criteria.  

Zheng and Li [9] proposed LA- SAGAN, a novel model combining Generative Adversarial Networks (GANs) and Self-Attention 

(SA) for real-time, emotion-based piano music generation. The model leverages SA for long-distance dependencies and emotional 

features, optimizing structure using Learning Automata. Evaluations show significant improvements in diversity, precision, recall, 

and musical coherence. Adhikary et al. [10] explore the use of Wasserstein Generative Adversarial Networks (WGANs) for 

generating Indian classical music based on raga. Using Musical Instrument Digital Interface piano music as input, the WGAN 

was trained using data of classical music of India. It is shown by the results that the created music is acoustically same to the 

original human-generated music. Huang et al [11] proposes an LSTM-based GAN for multitrack symbolic music composition to 

improve temporal correlation and musicality. By using LSTM networks in the classifier and adding a controller between the 

producer and discriminator, this method enhances the synthesizer’s power to create authentic music, as demonstrated through 

experimental validation. Toh and Sourin [12] propose using a Deep Convolutional Generative Adversarial Network (DCGAN) for 

music generation with dynamics. By encoding MIDI data with piano-roll representation, the DCGAN learns the distribution of 

music elements like pitch, time, and velocity. The generated music incorporates dynamics and syncopated rhythm, vali- dated 

through user evaluation. Tang, et al [13] review three popular deep learning models for music generation: Biaxial-LSTM, DeepJ, 

and MuseGAN. They compare their application scenarios and evaluation methods, addressing the lack of standard algorithms and 

model evaluation criteria. The study offers a reference for future research in music generation. 

2.1 Data Preprocessing 

Data preprocessing involves extracting key musical features from MIDI files, encoding these features into numerical series, and 

formatting them for GAN input. Parsing MIDI Files: MIDI files are parsed to extract fundamental musical components, including 

individual notes, chords, tempo, and instrument type. MIDI files represent each note and chord as objects with pitch and timing 

attributes, which are essential for capturing the structure of a musical sequence. 

• Feature Extraction: Key features are extracted from each MIDI file: 

– Notes: Each pitch, representing a distinct musical note, is recorded as a string (e.g., ”C4”). 

– Chords: Chords, or sets of notes played simultaneously, are represented as groups of pitch numbers in string format (e.g. 

60, 64, and 67 are assigned to represent a C major chord). 

– Tempo: Tempo, defining beats per minute (BPM), is used to standardize time intervals between notes, providing rhythm. 
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– Instrument Type: Although not directly used in the generation, the instrument type (e.g., piano, violin) can be retained 

for a potential multi-instrument generation. 

 

Figure 1. Steps involved in generating new midi file 

 

• Encoding and Vocabulary Creation: Each unique note or chord is mapped to an integer to create a vocabulary. This encoding 

allows the music sequences to be represented as lists of integers, providing a standardized numerical input for the GAN. 

• Sequence Preparation: Using a sliding window approach, each MIDI sequence is divided into overlapping series of a fixed 

length (e.g., 100 notes), with the last note in each window serving as the target. 

• Normalization and Reshaping: The integer sequences are normalized between -1 and 1 to stabilize training and reshaped into 

a format compatible with LSTM layers in the discriminator. 

 

2.2 GAN Architecture 

The GAN architecture is divided into two key networks: the producer and the classifier. The producer synthesizes music sequences 

from random disturbance, while the classifier assesses while sequences are true or generated. These networks are instructed 

together by opposing each other, leading to the generation of realistic musical sequences. 

2.2.1 Generator Architecture: The synthesizer aims to make music sequences that closely resemble true sequences. It starts with a 

latent noise vector, which is transformed through multiple dense layers and non-linear activations to generate a structured 

music sequence. 

• Latent Space Input: The synthesizer receives a randomly selected vector drawn from a Gaussian allocation. This vector, 

denoted as z, has a predefined dimensionality (the “latent dimension”) and represents the source of randomness in the 

generated sequence. z ∼ N (0, 1) 

Prepare sequences for Neural 

Network (pitch encoding, input-

output pairs) 

Train GAN by alternately 

training Generator and 

Discriminator 

Save generated MIDI file 

Generate new sequences by feeding noise into trained 

Generator 

Build Generator model to generate sequences from 

random noise 

Initialize GAN with Generator and Discriminator 

Start 

End 

Convert generated sequences to MIDI format 

Build Discriminator model with LSTM and Minibatch 
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• Dense Layer Transformations: The noise vector z is passed through fully connected (dense) layers. Each dense layer 

expands the dimensionality of z, progressively shaping it into a form that resembles the target music sequence.  

 

Figure 2.Generator Architecture 

 

Each dense layer is followed by an initiation function, explained as: 

LeakyReLU(𝑥) = {
𝑥, if 𝑥 > 0
α𝑥, if 𝑥 ≤ 0

 

• Batch Normalization: Batch normalization is applied after each dense layer to normalize the training by stabilizing the outputs. 

This layer enhances convergence and mitigates problems like internal covariate shift. Given an input x, batch normalization 

computes: 

• Reshaping and Output: The final layer of the generator reshapes the dense layer output into the required sequence format. It 

uses a tanh activation function to bound values between -1 and 1, preparing the data for the next steps: 

tanh(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒−𝑥 + 𝑒𝑥
 

The generator’s objective is to minimize the adversarial loss by ”fooling” the discriminator, making it as close to classifying 

generated sequences as real. 

 

 

Figure 3. Discriminator Architecture 

 

2.2.2 Discriminator Architecture: The discriminator is structured to classify sequences as real or fake. It uses a series of 

LSTM and dense layers to capture temporal dependencies within sequences and perform binary classification. 

• LSTM Layers: The discriminator starts with LSTM layers that capture the temporal patterns within each sequence. An LSTM 

unit computes a sequence of outputs as determined by the input and its internal condition. For each timestep t, the LSTM 

executes the following operations: 
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i 

– Forgot gate: 

𝑓𝑡 = σ(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) 

– Entry terminal: 

𝑖𝑡 = σ(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

– Cell status update: 

𝐶𝑡 = 𝑓𝑡 ⋅ 𝐶𝑡−1 + 𝑖𝑡 ⋅ tanh(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) 

– Exit terminal: 

𝑜𝑡 = σ(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 

– Hidden state: 

ℎ𝑡 = 𝑜𝑡 ⋅ tanh(𝐶𝑡) 

• Bidirectional Layer: To improve context understanding, a bidirectional LSTM layer is used. This layer processes the input 

series in both backward and forward directions, capturing data from future and past states within the sequence. 

• Minibatch Discrimination: Minibatch discrimination is added to prevent mode collapse, encouraging the synthesizer to 

produce a diverse set of sequences. It introduces small perturbations to the output by calculating a similarity matrix within 

each batch. For an input matrix M, this operation computes. 

𝑠𝑖𝑗 = exp(−γ|𝑀𝑖 −𝑀𝑗|
2) 

Where sij is the similarity between inputs Mi and Mj: 

• Binary Classification Layer: The discriminator’s final layer uses a sigmoid activation function to classify series as real or 

generated: 

𝜎(𝑥) =
1

1 + 𝑒−𝑥
 

The classifier’s goal is to maximize the adversarial loss by correctly distinguishing real sequences from generated ones. 

2.2.3 Learning Process: The learning process includes adversarial training, where the synthesizer goals to produce sequences which 

can “fool” the classifier, while the classifier learns to correctly classify and synthesized sequences. The following steps 

elaborate on this process, including the loss functions used: 

• Adversarial Training Objective: GAN training is an iterative process that updates the producer and classifier networks in 

alternation. Each iteration of the GAN learning loop aims to optimize the following objectives for both networks: 

– The synthesizer is instructed to reduce the chance that the classifier accurately classifies the synthesized outputs as fake. 

– The classifier is instructed to maximize its ability to tell apart true and synthesized information. 

The adversarial loss for the Generative Adversarial Network is formulated as below: 

𝐿GAN = 𝐸real[log(𝐷(real))] + 𝐸fake [log (1 − 𝐷(𝐺(noise)))] 

Here the classifier is ()D(), ()G() is the synthesizer, real represents real data, and noise is random input sampled from a distribution. 

• Classifier Loss Calculation: The discriminator is instructed on batches of true sequences and synthesized series. The loss for 

real sequences denoted as Lreal and for generated sequences, Lfake, is explained as follows: 

𝐿real = −
1

𝑁
∑

𝑁

𝑖=1

log(𝐷(real𝑖)) 

𝐿fake = −
1

𝑁
∑

𝑁

𝑖=1

log (1 − 𝐷(𝐺(noise𝑖))) 

Where batch size is N, and D outputs the chances that a sequence is true. 

The total classifier loss LD is: 

𝐿𝐷 =
1

2
(𝐿real + 𝐿fake) 

• Generator Loss Calculation: The generator aims to pro- duce sequences that the classifier classifies as true. Thus, the 

synthesizer loss, LG, is formulated as: 

𝐿𝐷 =
1

2
(𝐿real + 𝐿fake) 

• Optimization: Generator and discriminator losses are minimized with the use of the Adam optimizer, which optimizes model 

parameters by backpropagating the gradients from each network's loss function. 
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2.2.4 Music Sequence Generation and Conversion:  

Following training, random noise vectors are input to the trained generator to generate novel sequences. These sequences are then 

projected back to the musical notes in the original vocabulary and translated into a MIDI form to be played and analyzed. 

 

3 EXPERIMENTAL RESULTS 

3.1 Brief Description of Dataset 

The data employed herein is composed of MIDI files obtained from different public collections to provide a wide variety of musical 

genres and styles. Each MIDI file is being read in to extract the chords and notes and subsequently processed to generate sequences 

appropriate for training. Such sequences encode the detailed patterns and transitions in music that help the model learn complicated 

musical structures. The overall number of notes and chords defines the size of the vocabulary employed in the model, which has a 

direct impact on its capacity to produce varied compositions. 

For datasets for training and testing, the dataset is categorized into 80% for learning purposes while 20% for validation. This training 

dataset comprises input sequences of fixed length, the following note as the output target. This configuration enables the model to 

acquire knowledge temporal relations also in predict future notes, improving its capability to produce well-coherent and contextually 

correct musical pieces. The validation set is utilized to track performance and avoid overfitting to let the model will generalize well 

to new datasets. 

3.2 Evaluating Performance 

3.2.1 Loss Comparison: 

The generator loss formula is written as: 

𝐿𝐺 = −
1

𝑁
∑

𝑁

𝑖=1

log (𝐷(𝐺(𝑧𝑖))) 

Explanation of Terms: 

– LG: synthesizer loss, measuring how well the synthesizer is fooling the classifier. 

– N : Total number of samples. 

– D(G(zi)): The output of the discriminator when given a generated sample G(zi). 

– G(zi): The output of the synthesizer given noise entry. 

– zi. 

– log: Natural logarithm, used to calculate the adversarial component. 

• Discriminator Loss Formula The discriminator loss formula consists of two components: 

𝐿𝐷 = −
01

𝑁
∑[log(𝐷(𝑥𝑖)) + log (1 − 𝐷(𝐺(𝑧𝑖)))]

𝑁

𝑖=1

 

Explanation of Terms: 

– LD: classifier loss, indicating how well the classifier differentiates between true and synthesized data. 

– D(xi): Output of the classifier for a true sample xi. 

– 1 − D(G(zi)): The output indicating how much the discriminator believes a generated sample is fake. 

– log: Natural logarithm, ensuring that the loss function penalizes incorrect predictions. 
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Figure 4. Discriminator loss X generator loss 

Figure 4 illustrates the loss metrics for both the synthesizer and the classifier throughout the learning process. The generator loss 

(depicted in blue) and the discriminator loss (shown in red) are plotted across 100 training epochs. Initially, both models exhibit 

fluctuations in their respective loss values, indicating the adversarial nature of their learning. The classifier’s loss stabilizes at higher 

level,  

 

Figure 5. Discriminator accuracy over epochs 

While the synthesizer’s loss gradually drops and converges as learning progresses. This trend demonstrates the generator’s learning 

curve as it becomes more adept at producing realistic musical sequences, effectively reducing its loss over time. The stable discriminator 

loss suggests that it consistently distinguishes between real and generated sequences, maintaining a balanced training dynamic. 

3.2.2 Discriminator Accuracy over epochs: 

• Discriminator accuracy: 

Accuracy
𝐷
=

𝑇𝑁 + 𝑇𝑃

𝐹𝑃 + 𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁
 

Figure 5 presents the efficiency of the classifier over 100 training epochs. The accuracy metric measures how effec- tively the 

discriminator classifies real and generated sequences. Initially, accuracy values show significant variability, reflect- ing the early 

stages of training where the generator is still producing suboptimal outputs. Over time, accuracy stabilizes around a certain 

threshold, indicating that the discriminator maintains a reliable performance level without overfitting. This stable accuracy, combined 

with the decreasing generator loss from Figure 4, highlights an improvement in the generator’s ability to create plausible outputs, 

achieving a balance where neither the generator nor the discriminator dominates the training process. This equilibrium is crucial for 

successful GAN training, ensuring the generation of high-quality, realistic musical compositions. 

4 CONCLUSION 

The research delved into the application of GANs in auto- mated music composition with the help of MIDI sequences and the 

employment of an LSTM generator and a bi-directional LSTM discriminator. The results demonstrated that LSTM models, in 

combination with GANs, learned temporal features from the data and were capable of producing music com- positions which were 
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reminiscent of human composers. The adversarial formulation of the problem ensured that the outputs had some convergence 

towards a musical timing structure. Training on unstructured MIDI data helped to define the training data’s structure and aided in 

the enhancement. With the inclusion of different MIDI origins, the model extrapolated multifaceted musical genres enabling it to 

generate cohesive outputs. The music created through GANs was well-structured with rhythm and melody components, indicating 

that deep learning has immense possibilities in creativity. Important explanations were related to the problem of training dynamics 

coordination between the generator and the discriminator. Different variables led to the problem of mode collapse, which is a situation 

where no variety exists in the resultant outputs. The high computational demand of LSTM-based GANs also accentuated the lack of 

efficient models. 

The findings of this study call for an increased application of GANs in music creation and user-specific compositions. Further 

development of these systems may improve operational constraints and take predictive music to the next level of technological 

advancement. 
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