

AI-Powered Drone Detection and Tracking Systems: Advancements and Applications in Border Surveillance and Security – A Review

Ankita Malviya, Research Scholar, Bansal Institute of Science and Technology, E-mail-

ankitamalviya15@gmail.com

Rashmi Singh, Associate Professor, Bansal Institute of Science and Technology, E-mail-

rashmi@bistbpl.in

Damodar Tiwari, Professor, Bansal Institute of Science and Technology, E-mail

damodarptiwari21@gmail.com

Ankur Taneja, Assistant Professor, Bansal Institute of Science & Technology, Bhopal, India E-mail-

ankurtaneja5@gmail.com

Rajnish Choubey, Associate Professor, Bansal Institute of Science & Technology, Bhopal, India E-mail-

rajnishbirt@gmail.com

Abstract

The increasing use of drones, particularly in the context of border security, has raised concerns about the potential for espionage, illegal surveillance, smuggling, and even terrorist activities. Drones are capable of operating in ways that bypass traditional security measures, presenting a significant challenge for authorities in border regions. In response to this challenge, AI-powered drone detection and tracking systems have emerged as a promising solution. By leveraging machine learning algorithms, computer vision, sensor fusion, and deep learning models, these systems can accurately detect and track drones in real time, providing actionable intelligence for security forces. This paper explores the role of AI-powered systems in enhancing border security by discussing their applications, the technologies that enable them, the challenges they face, and potential future advancements. It also delves into how machine learning models like Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) are used for drone detection and how they can be integrated into comprehensive security frameworks. This paper concludes with insights into the importance of continuous innovation in this field to stay ahead of emerging drone threats.

Keywords: AI, Drone Detection, Border Surveillance, Security, Machine Learning, Deep Learning, Computer Vision, Real-time Tracking, UAVs.

1. Introduction

With the proliferation of unmanned aerial vehicles (UAVs), or drones, across various sectors, national security has encountered new challenges in border protection. Drones are increasingly being used for legitimate purposes such as surveying, agriculture, and media production, but their potential for illicit activities has raised concerns. The use of drones in military surveillance, espionage, and even smuggling has made it imperative for border security systems to adapt to new technological threats. Traditional security measures, including radar systems, human patrols, and fixed surveillance cameras, have proven insufficient in detecting and mitigating drone threats, particularly in remote or complex environments. Drones can evade radar detection, fly at low altitudes, and maneuver in ways that make them difficult to track using conventional systems [1].

As such, AI-powered systems that can detect and track drones based on their size, shape, movement patterns, and other characteristics have become crucial for border security. AI-powered drone detection systems utilize machine learning models to analyze data from multiple sensor sources, including radar, infrared sensors, and visual cameras. The goal is to develop a system that can detect drones as they enter and navigate through restricted airspace, track their movements in real-time, and provide actionable intelligence to security forces. The next sections will explore the technologies that enable these AI systems, their applications, the challenges faced, and the future of AI in border security [2].

• The Growing Threat of Drone Misuse

The potential for drones to be misused for illegal activities, such as spying or smuggling contraband across borders, has become a significant concern for security agencies worldwide. The versatility and accessibility of drones make them an ideal tool for criminal organizations or hostile entities aiming to bypass traditional security measures. Their ability to fly at low altitudes and navigate through difficult terrain, often undetected by conventional radar systems, presents an increasing challenge for border defense systems. Moreover, the size and low radar signature of certain drones make them particularly difficult to detect using traditional means. In response to these threats, traditional security measures such as radar surveillance, human patrols, and fixed monitoring systems have proven inadequate [3,4]. These methods often fail to detect smaller, low-flying drones that are capable of evading radar detection. This gap in surveillance capabilities has underscored the need for more advanced and adaptive solutions capable of addressing these evolving threats.

• Adapting to Technological Advancements: The Role of AI

Artificial Intelligence (AI) has emerged as a crucial tool in addressing the limitations of traditional security systems. AI-powered drone detection systems leverage machine learning algorithms, computer vision techniques, and sensor fusion to identify, track, and mitigate drone threats in real-time [5]. These systems can analyze data from multiple sensor sources, such as radar, infrared sensors, and visual cameras, enabling them to detect drones by recognizing specific features such as their shape, size, flight patterns, and speed. By continuously learning from new data, AI systems can adapt to new drone types and tactics, making them more reliable and effective at securing borders against UAV-related threats. In this paper, we will explore how AI technologies are reshaping

border security through enhanced drone detection and tracking. We will examine the technologies driving AI-based systems, their practical applications in border surveillance, the challenges faced in integrating these technologies, and future trends that may further transform the landscape of border security [6].

2. AI Technologies for Drone Detection and Tracking

AI technologies, particularly those rooted in machine learning and deep learning, have transformed the landscape of drone detection, tracking, and classification. These systems utilize a combination of advanced algorithms, sensor inputs, and real-time data fusion to enhance the accuracy and reliability of surveillance systems. Among the most widely used approaches are Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Support Vector Machines (SVMs), Decision Trees, and real-time object detection frameworks such as YOLO (You Only Look Once). As shown in Table 1, each of these AI techniques brings specific advantages to drone detection. CNNs are particularly effective in image and video analysis tasks. They work by analyzing pixel-level features to identify drone shapes and differentiate them from other airborne or background objects. This makes them ideal for processing video feeds captured by surveillance cameras. On the other hand, RNNs are well-suited for analyzing sequential or time-series data, such as the trajectory of a flying drone. These models can learn from historical flight data and make predictions about a drone's future path, thereby enhancing proactive threat management [7].

Supervised machine learning models such as SVMs and Decision Trees are also employed in drone classification tasks. SVMs are particularly effective for binary classification problems and are used to differentiate drones from birds or other flying objects. While it excels in real-time performance, its accuracy may drop when identifying smaller objects at longer ranges. To further improve detection outcomes, these AI models are often combined with sensor fusion technologies. This involves integrating inputs from radar, infrared, acoustic, and optical sensors to develop a more holistic view of the environment. For instance, radar is highly effective at detecting larger drones over long distances, while infrared sensors work well in low-light conditions, and acoustic sensors can pick up the unique rotor sounds of drones [8].

The combined sensor data, when processed through AI algorithms, significantly reduces false positives and enhances detection robustness. In summary, AI-powered drone detection systems benefit from a wide variety of technologies tailored for different tasksfrom visual recognition to movement prediction and real-time object detection. The comparative analysis presented in Table 1 provides a consolidated view of the strengths, limitations, and ideal applications of these AI models, offering a practical reference for selecting appropriate technologies based on specific operational needs [9, 10].

 Table 1: Comparative Analysis of AI Techniques for Drone Detection

AI Technique	Key Features	Advantages	Limitations	Typical Use Cases
Convolutional Neural Network (CNN)	Image-based pattern recognition	High accuracy in visual detection		Real-time drone detection using video feed

Recurrent Neural Network (RNN)	Sequence and time-series data processing	Predictive tracking over time	Prone to vanishing gradient	Drone trajectory prediction
Support Vector Machine (SVM)	Binary classification	Works well with small datasets	Less effective for complex visual tasks	Signal classification in RF spectrum
Decision Trees / Random Forest	Rule-based classification	Easy to interpret and fast	May overfit with noisy data	Lightweight sensor data analysis
YOLO (You Only Look Once)	Real-time object detection	Fast and efficient	Lower accuracy in small object detection	UAV recognition in aerial footage

3. Applications of AI in Border Surveillance

AI-powered drone detection and tracking systems have broad applications in border surveillance.

The ability to monitor large, often remote areas in real time and track any unauthorized drone activity is invaluable for ensuring national security. Some specific applications of AI-powered drone detection in border security include:

• Detection of Small and Low-Flying Drones

One of the most significant challenges in drone detection is the identification of small and low-flying UAVs. Drones that are small in size or that fly at low altitudes may not be detected by traditional radar systems, which are designed to detect larger objects at higher altitudes. To mitigate this, AI systems must integrate multiple sensor types, such as infrared and acoustic sensors, which are better equipped to detect smaller drones. However, even these sensors face limitations. For example, small drones may blend in with background noise, making it challenging for infrared or acoustic sensors to differentiate between a drone and other environmental sounds or heat sources [11].

• False Positives and False Negatives

AI-powered drone detection systems are not immune to errors. False positives, where the system incorrectly identifies an object as a drone, and false negatives, where the system fails to detect an actual drone, remain significant issues. False positives can overwhelm security forces by generating too many alerts, while false negatives can result in undetected threats. Improving the accuracy of AI models and continuously training them on diverse datasets is crucial to reducing these errors. Nonetheless, there is always a risk of system failures, especially when drones operate in unpredictable ways or in environments with high levels of interference.

• Privacy and Ethical Concerns

AI-powered drone detection systems also raise privacy concerns, particularly in border regions where surveillance may extend into public or private spaces. These systems have the potential to capture images or video footage of individuals, raising questions about surveillance practices and data privacy. Legal frameworks and ethical guidelines must be established to regulate the use of AI-powered surveillance systems. Balancing the need for enhanced security with the protection of individual rights and freedoms is a key consideration in the deployment of these technologies [12].

4. Challenges in AI-Powered Drone Detection and Tracking

While AI-powered systems offer numerous benefits for border security, several challenges remain in their development and implementation. These challenges must be addressed to improve the efficiency and effectiveness of these systems [13].

Detection of Small and Low-Flying Drones

One of the most significant challenges in drone detection is identifying small and low-flying drones. Traditional radar systems may struggle to detect smaller drones, particularly those that are designed to be stealthy. In addition, drones that fly at low altitudes may not be picked up by radar systems. Acoustic and infrared sensors offer potential solutions to this issue, but their effectiveness can be limited by environmental factors, such as wind, temperature, and background noise [14].

False Positives and False Negatives

AI systems are not immune to errors. False positives (where non-threatening objects are incorrectly identified as drones) and false negatives (where drones go undetected) are ongoing challenges. These errors can compromise the reliability of the system, particularly in critical situations where a timely response is necessary. Continuous training of machine learning models and the use of advanced algorithms can help reduce these errors, but they cannot be entirely eliminated.

Privacy and Ethical Concerns

AI-powered drone detection systems raise privacy concerns, particularly in terms of monitoring individuals in public spaces. While these systems are designed to detect unauthorized drones, they may inadvertently capture data on private individuals or other innocent parties. Addressing these privacy concerns requires balancing the need for security with the protection of civil liberties. Legal frameworks and regulations must be put in place to govern the use of AI-powered surveillance systems [15].

5. Advancements in Real-Time Data Processing

Real-time data processing is crucial for the future of AI-powered drone detection and tracking, as it enables immediate threat identification and rapid responses, thereby significantly improving border security. By processing data in real time, security systems can detect potential threats as they occur and trigger appropriate actions without delay.

The evolving capabilities of AI models and sensor technologies play a pivotal role in this process, allowing systems to handle large volumes of data quickly and accurately. These advancements make it possible to track drones in real time, providing actionable intelligence to security forces and enhancing their ability to respond to emerging threats effectively. A major advancement in real-time data processing for drone detection is the implementation of edge computing. Edge computing involves processing data at the source, close to where it is generated, rather than transmitting it to a centralized cloud or data centre. This approach drastically reduces latency, as the data does not need to travel long distances before being analyzed. In the case of drone detection, edge computing enables faster decision-making by allowing AI algorithms to analyze sensor data immediately and directly, rather than waiting for centralized processing. This is particularly important in situations where a quick response is necessary to neutralize a drone threat, such as in high-security areas or near borders [16].

By minimizing the time between detection and action, edge computing improves the effectiveness of drone detection systems, ensuring that security forces can respond to threats without delay. Moreover, edge computing not only improves the speed of decision-making but also enhances system reliability. By processing data locally, edge computing reduces the dependency on network connections, which may be unreliable or slow, especially in remote or contested areas. In cases where communication infrastructure is compromised or unavailable, edge computing ensures that critical data processing can still occur without interruption. This level of autonomy and resilience is essential for border security systems, which often need to operate in environments with limited infrastructure or in the presence of electronic warfare tactics aimed at disrupting communications.

In addition to accelerating real-time processing, edge computing also optimizes the use of resources by reducing the need for data transmission to distant servers. This not only decreases bandwidth requirements but also lowers the operational costs associated with maintaining large-scale cloud-based infrastructures. By distributing data processing tasks to local devices, such as drones, cameras, or edge servers, the system can operate more efficiently and cost-effectively. As AI models and sensor networks become more sophisticated, the integration of edge computing in drone detection systems is expected to become even more critical. Future developments in machine learning and sensor technologies will further enhance the ability of edge devices to perform real-time analysis and make rapid, accurate decisions based on incoming data [17]. These advancements, combined with the increased deployment of edge computing, will pave the way for more robust, responsive, and cost-effective drone detection systems that can handle a wide range of potential threats in real time.

6. Integration of AI with Counter-Drone Systems

The integration of AI with counter-drone systems has revolutionized border security, addressing the growing challenges posed by drones in national defense. Traditional methods of detecting and tracking drones, such as radar and human patrols, have proven inadequate due to the stealthy nature of modern drones and their ability to fly at low altitudes, making them difficult to detect with conventional systems. AI technologies, on the other hand, bring advanced capabilities that enhance the detection, tracking, and neutralization of unauthorized drones in real-time, providing a more proactive and efficient response to potential threats. One of the most significant advantages of AI-powered systems is their ability to process large volumes of data from multiple sensor sources in real-time. These sensors include radar, infrared sensors, acoustic sensors, and visual cameras, all of which

contribute to a more comprehensive understanding of the environment. AI algorithms, especially machine learning (ML) and deep learning models, can analyze this data to identify patterns that suggest the presence of a drone, distinguishing it from other objects or environmental noise [18].

By training these algorithms on vast datasets of drone images, flight paths, and sensor readings, AI systems become increasingly adept at recognizing drones and tracking their movements accurately. Furthermore, AI systems can significantly reduce the response time to drone threats. When a drone is detected, AI models can instantly assess its behaviour and predict its trajectory, determining whether it poses a threat. Based on this analysis, the system can automatically recommend or even initiate countermeasures, such as jamming the drone's communication link or deploying an interceptor drone to neutralize the threat. This automation minimizes the reliance on human operators, allowing for faster and more efficient responses in high-stakes situations. Predictive analysis is another key strength of AI-powered counter-drone systems. By analyzing historical data and real-time movement patterns, AI can anticipate a drone's future trajectory, enabling preemptive action before the drone enters restricted airspace or reaches sensitive areas [19]. This ability to predict a drone's behaviour in advance is especially crucial in scenarios where drones are approaching military installations, government buildings, or critical infrastructure. For instance, if AI predicts that a drone is heading towards a no-fly zone, it can trigger countermeasures to prevent the drone from completing its mission.

Moreover, predictive analysis can be enhanced by environmental data such as wind speed, temperature, and other weather factors that could influence a drone's flight path. By incorporating these variables, AI systems can provide even more accurate predictions, ensuring that countermeasures are tailored to the specific circumstances surrounding the threat. This level of situational awareness gives security forces the information they need to make informed decisions, ensuring the protection of sensitive areas. In addition to enhancing the speed and accuracy of drone detection, AI integration can also help reduce false positives and negatives. Traditional systems often struggle with distinguishing between benign and malicious drones, leading to either missed detections (false negatives) or unnecessary alerts (false positives). AI models can be trained to differentiate between various drone behaviours and environmental factors, significantly improving detection accuracy and minimizing errors that could compromise security [20]. In conclusion, the integration of AI with counter-drone systems offers a powerful solution to the growing threat posed by drones in border security. By leveraging real-time data processing, machine learning, and predictive analysis, AI can detect, track, and neutralize drones more effectively than traditional systems. As drone technology continues to evolve, so too will the capabilities of AI-powered counter-drone systems, ensuring that border security agencies are well-equipped to handle emerging threats and maintain national safety.

7. Sensor Integration and Data Acquisition

The effectiveness of AI-powered drone detection and tracking systems is significantly enhanced by the integration of multiple sensor technologies. These sensors collect diverse data types that, when fused and analyzed by intelligent algorithms, enable more accurate and reliable surveillance performance across varying environments and threat scenarios. Different types of sensors each with their own strengths and limitations are commonly used in these systems [21]. Radar sensors are particularly effective for detecting larger drones at long distances and in

adverse weather conditions. However, their resolution may be insufficient to identify smaller or low-flying drones. Infrared (IR) sensors, on the other hand, are advantageous in low-visibility environments and can detect thermal signatures emitted by drones [22]. Acoustic sensors offer another complementary capability by capturing the unique sound patterns produced by drone propellers and motors, which is especially useful in environments where visual detection is obstructed. In addition, Radio Frequency (RF) sensors play a vital role in identifying drone communication signals [23]. They can monitor and classify frequency patterns to determine whether an unauthorized drone is operating in restricted airspace [24]

Table 2: Sensor Technologies Used in AI-Powered Drone Detection

Sensor Type	Data Captured	Advantages	Limitations	Integration with AI
Radar	Speed and distance	Long-range detection	Susceptible to low-altitude evasion	Deep learning models improve classification accuracy
RF Sensor	Communication signals	Passive monitoring	Can be jammed or encrypted	Used with AI for pattern recognition
Acoustic Sensor	Sound waves from rotors	Cost-effective	Affected by ambient noise	AI helps filter noise and classify sound patterns
Infrared (IR)	Heat signatures	Works at night	Limited by weather	AI enhances target discrimination
Optical/Visual	Drone shapes and movements	High resolution	Limited at night or fog	Used with CNNs and object detection models

Optical cameras, including those capable of thermal imaging, further augment visual analysis capabilities and provide crucial data for AI models such as CNNs. These various sensors are often used in a sensor fusion framework, where the data from different modalities is combined and processed to form a comprehensive situational picture. This fusion allows the system to compensate for the weaknesses of individual sensors and significantly improves detection accuracy [25]. For instance, while radar may detect a fast-moving object, the optical camera can visually confirm its identity, and the acoustic sensor can validate the sound signature all working in tandem under the control of an AI engine. Such integrated sensor architectures are vital for applications in complex terrains, such as border zones, urban areas, or densely forested regions, where single-sensor detection may lead to high false positive rates or missed threats. The fused data is then fed into machine learning or deep learning algorithms, which learn to associate sensor patterns with drone presence, thus enabling real-time classification and threat response [26]. A comparative overview of these sensor technologies and their

roles in drone detection systems is presented in **Table 2**, offering insights into their characteristics, detection capabilities, and integration potential within AI frameworks.

8. Future Directions in AI for Border Security

- Advancements in Machine Learning Algorithms: The future of AI in drone detection will rely heavily on continuous improvements in machine learning algorithms. More sophisticated models, such as reinforcement learning and unsupervised learning, will enhance the system's ability to detect and predict drones in complex environments. These algorithms will become more efficient, reducing the time needed for data processing and increasing the accuracy of threat identification.
- Enhanced Sensor Technologies: As sensor technologies evolve, their integration with AI-powered systems will become more refined. Next-generation sensors with better detection capabilities will provide more comprehensive data for AI systems to analyze. Innovations in radar, infrared, acoustic, and visual sensors will help address current limitations in detecting small and low-flying drones, thus expanding the range and precision of AI systems.
- Real-Time Data Processing Capabilities: Future AI systems will focus on further enhancing real-time data processing. Edge computing will become more prevalent, allowing data to be processed directly at the source, which will reduce latency and ensure faster decision-making. This will be crucial for applications requiring immediate action, such as border security, where timely responses can prevent potential security breaches.
- Integration with Broader Security Systems: AI-powered drone detection and tracking systems will not function in isolation but will be integrated with broader security infrastructures. For example, they may be connected to surveillance cameras, border patrol systems, and national defense networks. This holistic approach will improve situational awareness and enable a more coordinated response to threats.
- Autonomous Counter-Drone Systems: The future will see the development of fully autonomous counterdrone systems, which will not only detect and track drones but also neutralize them without human intervention. AI will enhance the decision-making process, enabling these systems to autonomously select the most appropriate countermeasure, such as jamming, interception, or even neutralizing the drone with a directed energy weapon.
- Collaborative Innovation: The rapid advancement of AI in border security will require collaboration between governments, private companies, and research institutions. Partnerships will drive the research and development of innovative technologies that can address the evolving challenges of drone threats. Cross-sector collaboration will also help ensure that the technology meets the needs of both public safety and privacy concerns.
- Ethical Considerations and Privacy Concerns: As AI systems in border security become more advanced, ethical and privacy concerns will need to be addressed. Ensuring that these technologies do not infringe on citizens' rights or violate privacy regulations will be a critical area of focus. Governments will need to develop policies and regulations that govern the use of AI-powered surveillance systems, balancing security needs with individual freedoms.

9. Comparative Evaluation: AI vs. Traditional Surveillance Methods

Table 3: Comparison of AI-Based vs Traditional Drone Detection Method

Feature	Traditional Methods	AI-Based Methods	
Detection Accuracy	Medium to low	High (with trained models)	
Adaptability	Manual calibration	Self-learning, adaptive	
Cost	Lower initial cost	Higher due to computing resources	
Real-Time Performance	Slower	Faster with optimized models	
Scalability	Limited	Scalable with cloud/edge integration	
Threat Identification	Generic (no classification)	Capable of differentiating between threats	

Traditional surveillance methods, such as manual monitoring through CCTV cameras and radar systems, often fall short in detecting and tracking small, fast-moving drones, especially in complex environments. These systems rely heavily on human interpretation, which is prone to errors, delayed responses, and limited scalability. In contrast, AI-powered systems utilize real-time data processing, pattern recognition, and predictive modelling to significantly enhance accuracy and responsiveness. AI integrates various sensor inputs, enabling automated threat identification, trajectory prediction, and adaptive learning from new drone behaviours. As shown in Table 3, AI systems offer superior performance in terms of speed, reliability, and decision support compared to conventional methods.

10. Conclusion

In conclusion, AI-powered drone detection and tracking systems represent a transformative advancement in border security, providing a much-needed solution to the growing threat posed by unmanned aerial vehicles (UAVs). With the ability to process vast amounts of real-time data from various sensors, these systems offer enhanced detection, tracking, and neutralization of drones, making them invaluable tools for safeguarding sensitive areas, military installations, and national borders. Through the integration of machine learning and deep learning algorithms, these systems are capable of distinguishing between benign and malicious drone activities, predicting drone trajectories, and even automating responses. As technology continues to evolve, real-time data processing, predictive analysis, and edge computing will further enhance the capabilities of AI-driven counter-drone systems, enabling quicker decision-making and more efficient responses to potential threats. Despite the

promising advancements, several challenges remain, including addressing privacy concerns, reducing false positives and negatives, and improving detection of smaller, low-flying drones. Overcoming these hurdles will require continued innovation in AI, sensor technologies, and regulatory frameworks that ensure these systems are used responsibly and ethically. Ultimately, the integration of AI with counter-drone systems will play a crucial role in shaping the future of border security, providing governments with the tools needed to respond effectively to emerging threats. As these systems become more sophisticated, they will not only bolster national security but also contribute to the creation of a safer and more secure global environment.

References

- 1. Singh, R., & Ansari, A. A. (2024). AI ethics and challenges in healthcare. In *Handbook on augmenting telehealth services*. CRC Press, Taylor & Francis Group, U.K.
- 2. Singh, R., & Ansari, A. A. (2023, October). AI enabled Internet of Medical Things in healthcare. In Handbook on heterogeneous computational intelligence in Internet of Things. CRC Press, Taylor & Francis Group, U.K.
- 3. Lee, K. J., & Lee, H. (2023). A survey on deep learning-based approaches for autonomous navigation of UAVs. *Journal of Robotics and Autonomous Systems*, 90, 78–92.
- 4. Zhang, Q., & Wang, Y. (2023). Multi-agent reinforcement learning for cooperative UAV navigation in cluttered environments. *IEEE Transactions on Cybernetics*, 53(1), 120–132.
- 5. Liu, Y., & Yang, S. (2023). Evolutionary algorithm-based path planning for UAVs in dynamic environments. *Engineering Applications of Artificial Intelligence*, *104*, 104309.
- 6. Zhang, Y., & Wang, C. (2022). Real-time decision making for drone navigation in dynamic environments using deep Q-network. *Robotics and Autonomous Systems*, 144, 102–115.
- 7. Kim, S., & Lee, J. (2022). Learning-based UAV navigation with human intervention for enhanced safety. *IEEE Robotics and Automation Letters*, 7(3), 4947–4954.
- 8. Wang, X., & Zhang, M. (2022). Model predictive control for autonomous UAV navigation in complex environments. *Control Engineering Practice*, *122*, 104933.
- 9. Garcia, M., & Rodriguez, A. (2021). Autonomous navigation of UAVs using deep learning techniques: A survey. *IEEE Transactions on Aerospace and Electronic Systems*, *57*(3), 1021–1035.
- 10. Zhou, Y., & Wu, H. (2021). Decision making for UAVs in uncertain environments using fuzzy logic systems. *Expert Systems with Applications*, 176, 114831.
- 11. Li, J., & Chen, H. (2021). Simultaneous localization and mapping for UAV navigation in GPS-denied environments: A review. *IEEE Access*, *9*, 102319–102335.
- 12. Singh, R., & Mannepalli, P. K. (2021, December 17–19). Invasive weed optimization algorithm based trained neural network for cloud malicious threat detection. In 2021 IEEE International Conference on Technology, Research, and Innovation for Betterment of Society (TRIBES).
- 13. Singh, R., & Mannepalli, P. K. (2021, October 22–23). Cloud malicious threat detection using convolution filter and EBPNN. In *5th International Conference on Information Systems and Computer Networks* (*ISCON*). IEEE, GLA University, Mathura, India.

- 14. Kim, S., & Park, H. (2020). Path planning and obstacle avoidance for UAVs using deep reinforcement learning. *International Journal of Control, Automation, and Systems*, 18(5), 1201–1212.
- 15. Li, W., & Liu, M. (2020). Swarm intelligence-based path planning algorithm for multiple UAVs in urban environments. *Applied Soft Computing*, 88, 106042.
- 16. Zhang, H., & Liu, K. (2020). Decision making for UAVs in emergency situations: A hybrid fuzzy logic and deep reinforcement learning approach. *Journal of Intelligent & Fuzzy Systems*, 39(2), 1459–1471.
- 17. Singh, R., & Mannepalli, P. K. (2020). Cloud malicious threat detection by features from intelligent water drop set and EBPN. *International Journal of Advanced Research in Engineering and Technology* (*IJARET*), 11(12), 868–877.
- 18. Singh, R., & Mannepalli, P. K. (2020, June). Survey on feature reduction techniques of intrusion detection system. *International Journal of Emerging Research in Computer Technology (IJERCT)*, 2(3).
- 19. Wang, L., & Chen, Q. (2019). Deep reinforcement learning-based decision making for autonomous drone navigation in unknown environments. *IEEE Transactions on Intelligent Transportation Systems*, 21(4), 1678–1687.
- 20. Wang, Z., & Zhang, L. (2019). Reinforcement learning-based navigation strategy for UAVs in GPS-denied environments. *Journal of Navigation*, 72(3), 567–580.
- 21. Wu, Y., & Wang, J. (2019). Autonomous navigation of UAVs using cooperative localization techniques. *Sensors*, 19(5), 1182.
- 22. Zhao, L., & Wang, B. (2019). Dynamic path planning for UAVs in unknown environments using Bayesian networks. *IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49*(11), 2474–2486.
- 23. Smith, J. D., & Jones, R. W. (2018). Autonomous navigation for unmanned aerial vehicles: A review of recent advances. *Journal of Intelligent Robotics*, 45(2), 123–135.
- 24. Chen, X., & Liu, Q. (2018). Path planning for UAVs in dynamic environments: A review. *IEEE Transactions on Aerospace and Electronic Systems*, 54(6), 2458–2469.
- 25. Huang, X., & Li, S. (2018). Vision-based autonomous navigation system for UAVs: A review. *Journal of Intelligent & Robotic Systems*, 90(1), 213–226.
- 26. Park, J., & Kim, H. (2018). Learning-based decision making for autonomous UAV navigation in urban environments. *Journal of Field Robotics*, *35*(5), 784–798.

Research Through Innovation