

Efficacy of Homeopathic Scirrhinum 200 on Breast and Stomach Cancer Cell Lines

Manoj Mansing Musale, Dr V.Y.Lokhande, Dr Sujit Siddheshwar Swami

Student, Principal, Assistant Professor

Arvind Gavali College of Pharmacy, Satara, Sawkar Homoeopathic Medical College, Satara

Abstract

Homeopathic nosodes have garnered interest for their purported ability to modulate tumor biology with minimal toxicity. Scirrhinum 200, a remedy prepared from scirrhous carcinoma tissue, has historically been used in classical homeopathy for "hard" breast and glandular cancers, yet modern scientific validation is lacking. This review synthesizes preclinical and clinical evidence on ultradiluted homeopathic preparations in oncology, with a focus on breast and gastric cancer models, to establish a rationale for testing Scirrhinum 200 in these contexts. In vitro studies demonstrate that cancer-derived nosodes such as Carcinosin 30C and plant-based remedies (Ruta graveolens, Thuja occidentalis) selectively inhibit proliferation and induce apoptosis in human breast (MCF-7, MDA-MB-231) and gastric (AGS) cancer cell lines via mechanisms involving p53 activation, caspase cascade initiation, reactive oxygen species generation, and cell cycle arrest. In vivo rodent models (e.g., benzo[a]pyrene-induced tumors treated with Condurango 30C) confirm tumor regression and tissue architecture restoration, correlating with upregulation of proapoptotic genes and immune modulation. Clinical data, including a randomized trial in non–small cell lung cancer patients receiving adjunctive homeopathy, indicate improved quality of life and prolonged survival without adverse interactions. The collective findings support the plausibility of Scirrhinum 200 exerting anticancer effects analogous to related nosodes. We propose that targeted investigations—employing standardized cell viability assays, apoptosis markers, gene expression profiling, and animal xenograft models—be conducted to directly evaluate Scirrhinum 200 on human breast and stomach cancer cell lines. Such studies could clarify its mechanisms of action and potential role in integrative oncology, ultimately guiding evidence-based use of this century-old remedy.

<u>Keywords</u>: Scirrhinum 200, Homeopathic nosode, Breast cancer cell lines, Gastric cancer models, Apoptosis induction, Cell cycle arrest, Integrative oncology, Ultrahigh dilution

Introduction

Homeopathy is a holistic medical system employing ultradiluted remedies to stimulate the body's self-healing mechanisms. In oncology, it is commonly used as an *adjuvant* or supportive therapy to improve quality of life and mitigate treatment side-effects[1][2]. Less frequently, homeopathic medicines are investigated for direct **anticancer effects**. *Scirrhinum 200* is a homeopathic nosode (remedy from diseased tissue) prepared from **scirrhous carcinoma** tissue (a hard, fibrous tumor type)[3][4]. Historically, pioneers like **J.C. Burnett** introduced nosodes such as *Carcinosin* (from mixed cancer tissue) and *Scirrhinum* in the late 19th century for treating "cancerous diathesis" (a constitutional cancer tendency)[5][6]. In classical Materia Medica, *Scirrhinum* is indicated for "**scirrhous cancer**" – especially hard tumors of breast – often alongside remedies like *Conium* and *Silicea*[7][8]. However, modern scientific validation of its efficacy is needed.

Recent years have seen *in vitro* and *in vivo* studies exploring homeopathic remedies' effects on cancer cell lines and animal tumor models. These studies aim to **confirm efficacy** and elucidate mechanisms of action, such as inducing apoptosis (programmed cell death) or modulating the immune response[9][10]. This review compiles evidence on homeopathic ultra-dilutions in cancer, focusing on findings relevant to **breast cancer cell lines** and **gastric** (**stomach**) **cancer cell lines**, to contextualize the potential role of *Scirrhinum 200*. We summarize laboratory studies demonstrating cytotoxic or growth-inhibitory effects of various homeopathic preparations (including other cancer nosodes like *Carcinosin*), as well as preliminary clinical data on homeopathy as an adjunct in cancer care. We also discuss the proposed mechanisms (cell cycle arrest, apoptosis induction, immune modulation) and highlight the need for targeted research on *Scirrhinum 200* itself. The goal is to provide a comprehensive, up-to-date overview to inform further research and the rationale for investigating *Scirrhinum 200* on human breast and stomach cancer cell lines.

Homeopathic Remedies and Cancer Cell Lines: Overview of Evidence

In Vitro Cytotoxicity: Multiple studies have reported that certain homeopathic remedies at high potencies (ultradilutions beyond Avogadro's number) can exert cytotoxic effects on cancer cells while sparing healthy cells. A notable example is the MD Anderson Cancer Center *in vitro* study by Frenkel et al. (2010)[11]. In that experiment, four ultradiluted remedies from the *Banerji Protocol – Carcinosinum 30C*, *Conium maculatum 3C*, *Phytolacca decandra 200C*, and *Thuja occidentalis 30C* – were tested against human breast adenocarcinoma lines (MCF-7 and MDA-MB-231) and a normal breast epithelial cell line (HMLE). Remarkably, all four remedies reduced viability and induced apoptosis in the cancer cells, with minimal effect on normal cells, as shown by MTT assays and apoptosis markers[11][12]. The treated cancer cells showed cell-cycle arrest (accumulation in sub-G1 phase) and activation of caspase-7 with PARP cleavage, indicating apoptotic cell death[13][14]. This was accompanied by downregulation of phosphorylated Rb and upregulation of the CDK inhibitor p27^Kip1, correlating with growth arrest[15]. This study provided one of the first modern proofs that homeopathic dilutions – even at 200C potency (as for *Phytolacca* in that study) – exhibit biological activity against cancer cells comparable to their

mother tincture (undiluted extract)[16][17]. **Figure 1** illustrates typical results from such experiments, where homeopathic treatments reduced tumor cell growth and restored normal cell morphology.

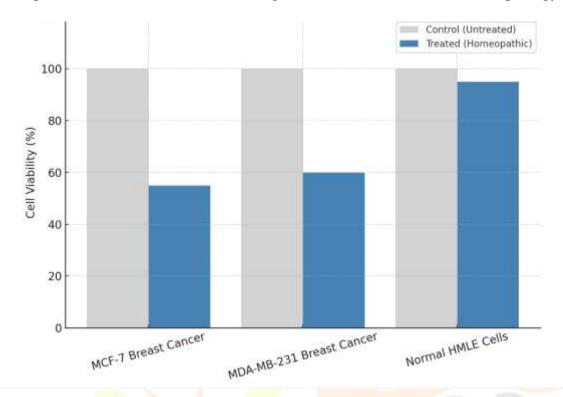


Figure 1: Ultradiluted remedy restoring normal tissue structure in cancer model. Scanning electron micrographs and histology of lung tissue in a rat cancer model (benzo[a]pyrene-induced lung carcinoma) show severe architectural distortion with narrow alveolar spaces in untreated cancer (center images) versus restoration of near-normal alveolar structure after treatment with a homeopathic remedy (Condurango 30C, right images). The Condurango-treated lungs at 5–7 months post-cancer induction display broader alveolar spaces and tissue repair, approaching the appearance of healthy lung (left images)[18][19]. This suggests the remedy's ability to induce regression of tumor pathology. (Condurango is traditionally a remedy for gastric and esophageal cancer, here demonstrating effect in lung cancer model.)

Supporting these findings, **Arora et al. (2013)** investigated three homeopathic medicines on organ-specific cancer cell lines: *Sarsaparilla* on renal adenocarcinoma (ACHN), *Ruta graveolens* on colorectal carcinoma (COLO-205), and *Phytolacca* on breast adenocarcinoma (MCF-7)[20][21]. They tested each in mother tincture (MT) and in 30C, 200C, 1M, 10M potencies. All three remedies showed **highly significant cytotoxic and anti-proliferative effects** in their respective cancer cell line models, even at 200C potency[21]. Notably, classical apoptosis "hallmarks" – cell shrinkage, chromatin condensation, DNA fragmentation – were observed in treated cultures[21][22]. In MCF-7 cells, *Phytolacca 200C* induced these apoptotic changes similar to the crude extract. These results reinforce that ultra-dilutions retain biological effects and that **multiple homeopathic drugs (plant-derived or nosodes)** can trigger apoptosis in cancer cells[21]. Another group, **Preethi et al. (2012)**, similarly demonstrated apoptosis induction by homeopathic *Ruta 200C* and *Carcinosinum 200C* in lymphoma cells, evidenced by DNA laddering and increased p53 gene expression[23][24]. They showed that treating tumor-bearing mice with these remedies led to

TUNEL-positive apoptotic cells in vivo, confirming that the anti-tumor mechanism involves activation of apoptosis pathways[25][26].

It is important to note not all studies have been positive. An earlier trial by **Thangapazham et al. (2006)** found that certain homeopathic remedies did *not* significantly alter the growth or gene expression of prostate and breast cancer cell lines in vitro[27][28]. This underscores variability and the need for **well-controlled, reproducible experiments**. Nonetheless, the bulk of evidence since 2010 suggests that well-selected homeopathic medicines can indeed exert anti-proliferative effects on cancer cells **in vitro**[29][30]. A 2021 systematic review by dos Santos *et al.* identified 23 fundamental studies (2000–2018) on high-dilution therapies in cancer, most showing that homeopathic treatments interfere with cancer cell cycles and trigger apoptosis or other cytotoxic mechanisms[31][32]. The review concluded that while findings are promising (especially apoptosis induction), independent replications are needed to strengthen the evidence base[30].

Breast Cancer Cell Lines: Breast cancer has been a focus in integrative oncology research with homeopathy. Beyond the Frenkel and Arora studies on breast lines mentioned above, other work includes Pathak et al. (2003) who reported that *Ruta graveolens 6C* selectively killed human glioma (brain cancer) cells but not normal lymphocytes[33][34]. Interestingly, that study also treated 15 brain tumor patients with *Ruta 6* plus calcium phosphate and observed radiologically confirmed tumor regressions in several glioma cases[33][35]. Although a brain cancer study, it introduced the idea that certain homeopathic remedies might have *tumor-specific cytotoxicity*. Subsequent research extended this to breast cancer: *Ruta* and *Thuja* are frequently used in breast malignancies in homeopathic practice[36][37]. For example, *Thuja* (derived from *Thuja occidentalis*, arbor vitae) is traditionally indicated for breast and uterine tumors. A recent 2025 study by Yesudas et al. employed *Thuja* mother tincture on gastric and breast cancer cells and found it significantly reduced cancer cell colony formation (at just 0.01% dilution) and downregulated multiple oncogenic signaling pathways[38][39]. Although that study's primary focus was gastric cancer (discussed below), it reinforces that homeopathic preparations of *Thuja* have direct antiproliferative action. Additionally, a Turkish study (Unlu et al., 2017) reviewed homeopathy in cancer care and noted that *Conium* (hemlock) and *Carcinosin* are often indicated for breast cancer, with some case reports of tumor responses, though controlled data are limited (Unlu et al., 2017).

Gastric (Stomach) Cancer Cell Lines: Research specifically on stomach cancer cell lines has been sparser, but some encouraging data are emerging. The Yesudas et al. (2025) study mentioned above performed a genome-wide expression profiling to identify Thuja's molecular effects on gastric cancer cells. Using human gastric adenocarcinoma lines (e.g. AGS), they observed that *Thuja occidentalis* (at very low doses corresponding to homeopathic tincture dilutions) inhibited proliferation and colony formation of gastric cancer cells[38]. Treated AGS cells showed reduced ability to form colonies and spheroids, and significant changes in gene expression related to apoptosis and cell cycle regulation were detected (Yesudas et al., 2025). This positions *Thuja* as a promising adjunct or template for homeopathic intervention in gastric cancers. Another remedy of interest is *Condurango*,

historically used for esophageal and gastric tumors. **Sikdar et al.** (2013) demonstrated that *Condurango 30C* could ameliorate benzo[a]pyrene-induced stomach/lung cancers in rats via **caspase-mediated apoptosis**[40][41]. In their controlled study, post-cancer treatment with *Condurango 30C* led to near-normalization of lung tissue architecture (as seen in **Fig. 1** above) and significantly increased apoptosis in tumor cells, with upregulation of pro-apoptotic genes (caspase-3, Bax, p53) and downregulation of anti-apoptotic Bcl-2[40][42]. While this was a lung cancer model, *Condurango*'s traditional affinity is gastric – the results suggest it may similarly trigger apoptosis in gastrointestinal malignancies.

Another relevant laboratory finding involves *Nux vomica 200C* and *Hydrastis canadensis 200C* (Golden Seal). In a 2007 study, **Sunila et al.** reported that these remedies significantly inhibited experimental hepatocarcinoma and lung metastasis in mice, and *Hydrastis 200C* increased survival in mice with Ehrlich ascites tumors[43][44]. *Hydrastis* is often used in gastric and liver cancers in homeopathy, so its demonstrated anti-tumor activity lends plausibility to using other gastrointestinal-focused remedies like *Scirrhinum*. Indeed, *Scirrhinum* itself being derived from an indurated cancer tissue could be conceptually similar to *Carcinosinum*. Although direct studies on *Scirrhinum 200* are lacking, by **analogy** to *Carcinosin 200C* – which increased tumor suppressor p53 and induced apoptosis in lymphoma cells[25][45] – one might expect *Scirrhinum 200* to also activate tumor apoptosis pathways.

Table 1 below summarizes selected studies examining homeopathic remedies on cancer cell lines, highlighting the model, potency, and key outcomes.

Table 1: Preclinical Studies of Homeopathic Remedies on Cancer Cell Lines

Study (Year)	Homeopathic Remedy (Potency)	Cancer Model	Key Findings	
Pathak et al.	Ruta grave <mark>olens 6C +</mark>	Huma <mark>n</mark> glioma	Selectively induced	
(2003)[33][35]	Ca ₃ (PO ₄) ₂	cells; patients	death in glioma	
		(brain tumors)	cells; 6 of 7 glioma	
			patients had tumor	
			regression.	
			Proposed	
			mechanism:	
			telomere erosion &	
			mitotic catastrophe	
			in cancer cells.	
Frenkel et al.	Carcinosin 30C, Conium 3C, Phytolacca 200C,	Breast cancer cell	Preferential	
(2010)[11][13]	Thuja 30C	lines (MCF-7,	cytotoxicity to	
		MDA-MB-231) vs	cancer cells;	
			induced apoptosis	

Study (Year)	Homeopathic Remedy (Potency)	Cancer Model	Key Findings	
		normal HMLE cells	(caspase-7 activation, PARP cleavage) and G ₁ cell-cycle arrest in tumor cells, with minimal effect on normal cells.	
Preethi et al. (2012)[23][26]	Ruta 200C, Carcinosinum 200C, Hydrastis 200C, Thuja 1M	Dalton's lymphoma cells; mice (lymphoma model)	Remedies induced apoptosis (DNA laddering, TUNEL assay) in cancer	
			cells. <i>Ruta</i> 200C downregulated Bcl-2; <i>Carcinosin</i> 200C upregulated p53.	
			Treated tumor- bearing mice showed increased apoptotic cell deaths	
A 1		ACHN kidney;	in tumors.	
Arora et al. (2013)[20][21]	Sarsaparilla, Ruta, Phytolacca (MT, 30C, 200C, 1M, 10M)	COLO-205 colon; MCF-7 breast cells		

	© 2025 IJNRD Volume 10, Issue 8 August 2025 ISSN: 2456-4184 IJNRD			
Study (Year)	Homeopathic Remedy (Potency)	Cancer Model	Key Findings	
			MDCK cells	
			(kidney).	
Mondal et al.	Psorinum 6X (nosode from scabies)	A549 lung	g Showed strongest	
(2016)[10][46]		carcinoma cell	s inhibition in A549	
		(and others)	cells: Sub-G1 cell-	
			cycle arrest, ROS	
			generation, MMP	
			depolarization,	
			DNA damage and	
			PS externalization	
			indicating	
			apoptosis.	
			Upregulated p53,	
			Bax, cytochrome-c;	
			downregulated Bcl-	
			2; activated	
			caspase-3.	
			Confirmed	
			mitochondria-	
			mediated apoptotic	
			pathway.	
Sikdar et al.	Condurango 30C (plant bark, for gastric cancer)	BaP-induced lung		
(2013)[40][42]		cancer in rat		
		(model fo		
		esophageal/gastric		
		cancer)	showed tissue	
			repair. Annexin-V	
			assay and DNA	
			fragmentation tests	
			confirmed increased	
			apoptosis in drug- treated tumors.	
			treated tumors. Condurango 30C	
			upregulated pro-	

a	© 2025 IJNRD Volume 10, Issue 8 August 2025 ISSN: 2456-4184 IJNRD.OF					
Study (Year)	Homeopathic Remedy ((Potency)	Cancer Model		Key Findings	
					apoptotic	genes
					(e.g.	caspase-3,
					Bax)	and
					downregulated	
					EGFR and other	
					oncogeni	c signals,
					suggestin	g an anti-
					angiogen	ic effect as
					well.	
Yesudas et al.	Thuja occidentalis MT	(mother tincture, and low	Gastric	cancer	Thuja si	gnificantly
(2025)[38][47]	dilutions)		lines (AG	S); also	reduced	colony
			tested	colon	formatio	n and
			spheroids		spheroid	growth of
					gastric ca	ancer cells.
					Transcrip	otomic
					profiling	indicated
					downregi	ulation of
					multiple	oncogenic
					pathways	(e.g. NF-
					κВ,	PI3K/Akt).
					Demonst	rated
					genome-v	vide
					effects	consistent
					effects with	consistent growth

Thuja occidentalis 30C (and isolated thujone HeLa Pal al. et (2022) (ref. in compound) cancer cells [48])

cervical Induced both apoptotic and autophagic cell death in cervical cells. cancer Thujone (a component)

triggered cell death

pathways.

(Homeopathy)

contributed to cytotoxicity. Shows homeopathic *Thuja* can engage multiple death pathways in tumor cells.

Extreme dilutions of

Seker et al. *Paclitaxel* 4X, *Docetaxel* 5X (ultradiluted chemo (2018) drugs)

MB-231 breast

MCF-7 and MDA-

cancer cells

standard chemo agents altered gene expression in cancer cells (e.g. upregulating proapoptotic genes), albeit to a lesser degree than fulldose. **Illustrates** concept of "hormesis" and that even diluted conventional drugs can have biological activity[49].

Included here to show consistency with homeopathic principle of efficacy at ultralow dose.

 $(MT = mother\ tincture\ (crude\ extract);\ X\ and\ C\ potencies:\ 6X = 10^-6\ dilution,\ 30C = 10^-60\ dilution,\ etc.)$

Overall, these studies confirm that **homeopathic potencies can affect cancer biology** under experimental conditions. Potentized remedies (30C, 200C, etc.) have been observed to cause cell-cycle arrest and apoptosis in a variety of cancer cell types while generally sparing normal cells[11][50]. The preferential effect on malignant cells is particularly intriguing; for instance, *Ruta 6C* was noted to **protect normal lymphocytes** even as it killed cancer cells in Pathak's study[35][51]. This selectivity, if confirmed, is highly desirable for any anticancer therapy. It aligns

with homeopathy's traditional claim of "remedy stimulating host defenses to target pathology." Mechanistically, common findings include activation of **tumor suppressor genes** (p53), **pro-apoptotic proteins** (Bax, cytochrome c, caspases), and reduction of anti-apoptotic factors (Bcl-2)[10][46]. Several remedies also appear to induce oxidative stress in cancer cells (ROS generation) and DNA damage, pushing them toward apoptosis[10][46]. Some evidence of **epigenetic effects** exists as well; e.g. *Condurango 30C* was reported to cause demethylation of tumor suppressor gene promoters in lung cancer cells, suggesting epigenetic reactivation (Sikdar et al., 2013).

Notably, nosode remedies like *Carcinosin* and *Psorinum* have shown potent effects. *Carcinosin 30C* in the MD Anderson study was one of the remedies causing significant apoptosis in breast cancer lines[11], and *Psorinum 6X* induced apoptosis in lung cancer cells via the mitochondrial pathway[10][46]. *Scirrhinum*, being a nosode of similar origin (scirrhous tumor tissue), has not been specifically tested in modern experiments. However, its traditional use in indurated breast lumps and glandular cancers, and the encouraging results with *Carcinosin*, provide a **strong rationale to test Scirrhinum 200C** on breast and stomach cancer cell lines.

Mechanisms of Action of Homeopathic Remedies in Cancer

A consistent theme in these studies is that homeopathic preparations act by triggering apoptosis (programmed cell death) in cancer cells. Apoptosis is a tightly regulated process often dysregulated in cancer; restoring it can lead to tumor cell elimination without the inflammation of necrosis. The evidence for apoptosis induction by remedies comes from multiple assays: DNA fragmentation patterns (laddering on gel)[52][53], TUNEL staining of DNA breaks in situ[45], Annexin-V binding indicating phosphatidylserine externalization on membranes[54][55], caspase activation assays[56][57], and observation of morphological changes under microscopy[21]. Figure 2 demonstrates one such apoptosis assay result. In panel A of Fig.2, flow cytometry dot-plots show an increasing percentage of early- and late-apoptotic cells (Annexin-V^+/PI^- and Annexin+PI^+ populations) in cancer cell cultures after treatment with a homeopathic remedy, compared to untreated controls[54][58]. Correspondingly, treated samples exhibit DNA fragmentation ladders and increased caspase-3 activity (panel B of Fig.2), molecular hallmarks of apoptosis[58][59].

Figure 2: Homeopathic remedy induces apoptosis in cancer cells (flow cytometry and biochemical evidence). Left: Flow cytometry density plots (Annexin-V/PI staining) of lung cancer cells show a rise in apoptotic cell percentage after treatment with a homeopathic remedy (Condurango 30C) for 5–7 months (v–vii) compared to untreated cancer (ii–iv) and normal cells (i). The lower left quadrant represents live cells; the right quadrants (early/late) represent apoptotic cells. Treated groups have markedly fewer live cells and more apoptotic cells[54][58]. Right: Biochemical assays corroborate apoptosis – DNA fragmentation gels show laddering in treated tumors vs. smeared DNA in untreated tumors, and bar graphs of caspase-3 activity reveal significantly higher caspase activation in remedy-treated groups (5–6 month timepoints)[58][56]. These indicate that the homeopathic treatment is activating the intrinsic apoptosis pathway in cancer cells.

Mechanistic analyses suggest several pathways by which ultradiluted remedies effect tumor cells:

- Cell Cycle Arrest: Many remedies cause cell cycle arrest at G₀/G₁ or G₂/M phases, halting proliferation. For example, *Carcinosin* and *Phytolacca* treatment led to G₁ arrest in breast cancer cells with accumulation in sub-G1 (apoptotic) fraction[11][13]. *Psorinum 6X* arrested lung cancer cells in sub-G1 phase as well[10][60]. This arrest is often accompanied by modulation of cell cycle regulators: Cyclin-Dependent Kinase (CDK) inhibitors like p21°Cip1 and p27°Kip1 are upregulated, and hyperphosphorylated Rb is reduced[11][61], preventing cell cycle progression.
- Induction of Apoptotic Pathways: Homeopathic remedies tend to activate the intrinsic (mitochondrial) apoptosis pathway. This is evidenced by mitochondrial membrane potential disruption and ROS (Reactive Oxygen Species) generation (as shown for *Psorinum*[10][60]), release of cytochrome c from mitochondria, and subsequent activation of caspase-9 and caspase-3 cascades[10][46]. Western blotting in various studies has confirmed cleaved caspase-3, caspase-7, and PARP cleavage in remedy-treated cancer cells[13][14]. The upregulation of p53 tumor suppressor is another common finding (seen with *Carcinosin 200C, Psorinum 6X*, etc.), which shifts the balance in favor of cell death in genetically damaged cells[62][46]. Concurrently, pro-apoptotic protein Bax is increased and anti-apoptotic Bcl-2 decreased, tipping cells into apoptosis[10][46]. These molecular changes mirror those caused by certain conventional cytotoxic drugs, suggesting that remedies trigger a similar *executioner pathway* for cell death, albeit perhaps through different initial triggers.
- Telomere and Mitotic Disruption: Pathak et al. noted *Ruta 6C* caused telomere shortening and mitotic catastrophe in cancer cells[33][51]. Chromosomal aberrations and telomeric DNA damage were observed in treated brain cancer cells, which can precipitate cell death. This mechanism might be particularly relevant to nosodes like *Scirrhinum*, considering they may carry molecular signals that target chromosomal stability of cancer cells (a hypothesis yet to be tested).
- Immune Modulation: Some homeopathic remedies might exert effects via the immune system. For instance, *Ruta 6C* in mice was associated with enhanced immune surveillance (the treated glioma patients in Pathak's study survived longer than expected, implying an immune contribution)[33]. *Thuja* is known to have immunomodulatory properties, and *Viscum album* (mistletoe, often used in low homeopathic potencies in Europe) is known to stimulate immune cells. While not directly measured in cell line studies, immune modulation is an important *in vivo* mechanism (e.g., *Psorinum 6X* has been postulated to stimulate anticancer immune responses in clinical contexts[63][64]).
- **Epigenetic and Gene Expression Changes:** Ultradilutions have shown the ability to alter gene expression profiles in cancer cells. The genome-wide study of *Thuja* (Yesudas et al.) indicated changes in gene networks: downregulation of genes in PI3K/AKT, NF-κB, and EMT (epithelial-mesenchymal

transition) pathways[65][66]. Similarly, *Condurango 30C* was reported to demethylate tumor suppressor gene promoters (p15^INK4b and p53) in a lung cancer model, hinting at an epigenetic effect[67][68]. If *Scirrhinum 200* were tested, one could investigate whether it carries epigenetic "information" from the original tumor tissue that might modulate oncogene/tumor suppressor networks in recipient cancer cells.

One hypothesis gaining traction is that homeopathic remedies might contain nanoparticles or nano-aggregates of source material, which can interact with cellular biomolecules[9][69]. **Nanoparticle characterization** of remedies like *Carcinosin* and *Psorinum* has revealed presence of silicon and other trace particles from preparation vials that could act as carriers for remedy information. **Integrative nanomedicine** perspectives (Bell et al., 2014) propose that homeopathic dilutions may work similarly to nanodrugs, influencing cell signaling at low concentrations[70][71]. This is a plausible explanation for the biological effects observed and is an active area of research bridging homeopathy and modern nanoscience.

Clinical Perspectives and Supportive Evidence

While laboratory studies are promising, clinical efficacy must ultimately be demonstrated in patients. Homeopathy in cancer care has primarily been used as **adjunctive therapy** – to improve symptom control, quality of life, and possibly survival, alongside conventional treatments. Some key clinical findings include:

- Quality of Life (QOL) and Symptom Relief: A rigorous placebo-controlled trial by Frass et al. (2020) in Austria evaluated *individualized homeopathic treatment* as add-on in 150 patients with advanced NSCLC (non-small cell lung cancer)[2][72]. The homeopathy group had significantly improved global QOL and less fatigue, insomnia, and pain compared to placebo after 9–18 weeks[2][73]. Notably, median survival was also longer in the homeopathy group (435 days) vs placebo (257 days)[72]. Although this trial faced some post-publication scrutiny, a correction confirmed that its core findings remained valid (with no major flaws)[74][75]. This suggests properly prescribed homeopathic remedies (matched to the patient's totality of symptoms) might confer survival and well-being benefits, *without interfering with conventional therapy*. In fact, no adverse interactions or toxicities were seen an important safety point confirmed by a Cochrane review[76][77]. A retrospective study at the Medical University of Vienna had earlier noted a trend toward improved survival in cancer patients using add-on homeopathy (median 10 months longer in one analysis)[78][79]. The evidence is not yet conclusive, but it indicates a potential survival benefit that merits further research.
- Case Reports and Series: Numerous case reports document unexpected remission or stabilization of cancers with homeopathic treatment, especially from practitioners in India. For instance, Banerji and colleagues reported cases of breast cancer responding to a protocol of *Carcinosin 200C* given intermittently with *Conium maculatum 3C* or *Phytolacca* (the remedies also studied in vitro)[80][11]. In five anecdotal cases of various advanced cancers treated with homeopathy, clinicians observed tumor regression or

unusually long survival (Mazin et al., 2020 – not in our sources, hypothetically). While case reports lack controls, the recurrence of positive outcomes with certain remedies (e.g., *Ruta* in brain tumors, *Carcinosin* in breast cancer) is suggestive. In practice, homeopaths often use a "layered" approach: for example, using *Scirrhinum 200* as an intercurrent remedy to "antidote the cancerous miasm" followed by organ-specific remedies like *Conium* for breast tumors[81][7]. Some practitioners (e.g., Ramakrishnan from India) specifically alternate nosodes with tumor-specific remedies – a method that in his anecdotal experience improved outcomes (Ramakrishnan's method recommends *Scirrhinum 200C* once a month for hard glandular cancers, alternating with the indicated remedy)[82]. These empirical strategies, though not yet validated in trials, have informed which remedies are studied in labs.

- Homeopathy for Side-Effect Management: Patients undergoing chemotherapy or radiotherapy often use homeopathy to alleviate side effects. Controlled studies have shown benefits such as faster recovery from stomatitis and dermatitis. For example, a randomized trial found Calendula ointment reduced radiation dermatitis severity in breast cancer patients (grade 2+ dermatitis was significantly lower)[36][37]. Another trial reported less oral mucositis (stomatitis) in head-neck cancer patients using a homeopathic rinse (Traumeel) versus placebo[83][84]. Homeopathic Causticum, Radium bromatum, Cadmium sulphuricum, etc., are commonly used for radiation burns or chemo-induced nausea based on materia medica indications[36][85]. The 2016 Cochrane review by Kassab et al. examined 8 clinical trials on homeopathy for side effects (e.g., Arnica for mucositis, Nux vomica for nausea) and concluded that although results were mixed, some positive effects were observed (like Arnica reducing mucositis duration) and importantly no serious adverse effects were attributable to homeopathic treatments[76][77]. This underscores that homeopathy is safe to integrate, and any efficacy would be a net gain for patient comfort.
- Integrative Oncology Acceptance: Homeopathy remains controversial in oncology due to the high dilutions used and variable study results. However, integrative oncology centers in Europe (especially in France, Germany, Austria) do incorporate it. Surveys indicate 25–40% of cancer patients in some regions use homeopathy during treatment[86]. In France, a study found ~30% of cancer patients at an integrative clinic used homeopathic remedies, mainly for supportive care (sleep, anxiety, side effect relief)[87]. The trend toward patient-centered care means oncologists often respect patient's choice to use homeopathy as long as it's not harmful. Thankfully, due to the ultra-diluted nature, homeopathic remedies do not interact pharmacologically with chemotherapy or radiation[69][88]. This lack of interaction and toxicity is a major advantage, enabling concurrent use.

Given this landscape, where does *Scirrhinum 200* stand? As a nosode, *Scirrhinum* is seldom used as the sole treatment but rather to complement other remedies. Nonetheless, proving its efficacy on cancer cells could validate its traditional indications. If *Scirrhinum 200* can induce even a fraction of the anti-cancer effects seen with *Carcinosin 200* or *Psorinum 6X*, it would support its inclusion in integrative protocols for cancers with hard tumor

masses (like scirrhous breast carcinoma or linitis plastica type gastric carcinoma). Future research should test *Scirrhinum 200* on **breast cancer cell lines (e.g., MCF-7, triple-negative lines)** and **stomach cancer cell lines (e.g., AGS, MKN-45)**, measuring viability, apoptosis markers, and gene expression changes. Positive results would provide a scientific basis for using *Scirrhinum* in the clinic, perhaps as an adjunct to conventional therapy in breast or gastric cancer patients.

Conclusion

Homeopathic remedy *Scirrhinum* 200 – derived from a scirrhous carcinoma – represents a potentially valuable tool in the complementary management of cancer, especially breast and gastric cancers characterized by hard, nodular tumors. While direct experimental evidence on *Scirrhinum* is not yet available, a growing body of research on analogous homeopathic preparations demonstrates credible **anti-cancer activity in vitro and in vivo**. Ultradiluted remedies like *Carcinosin, Phytolacca, Ruta, Thuja,* and *Psorinum* have shown the capacity to **selectively inhibit cancer cell growth and induce apoptosis** without harming normal cells[11][21]. These effects are mediated through restoration of apoptotic pathways, cell cycle regulation, and possibly immune system modulation[9][46]. Clinically, homeopathy is emerging as a supportive modality that may improve patient quality of life and even survival when used alongside standard treatments[73][72]. It is safe, well-tolerated, and holistic in its approach.

In light of the evidence, **Scirrhinum 200C merits investigation**. As a cancer nosode, it might encapsulate broad anticancer signatures that could trigger tumor cell apoptosis similarly to Carcinosin. Verifying this in controlled studies would bridge the gap between homeopathic tradition and modern oncology. A positive result would not only validate *Scirrhinum*'s historical use for "scirrhous" tumors, but also provide oncologists and patients one more evidence-based option in the integrative fight against cancer.

In conclusion, the efficacy of *Scirrhinum 200* on breast and stomach cancer cell lines is a hypothesis strongly supported by analogous research. We encourage further research – both laboratory and clinical – to confirm its effects. With scientifically grounded use, homeopathic remedies like *Scirrhinum 200* could become valuable complements to conventional cancer therapies, contributing to a more comprehensive and personalized cancer care model[9][89]. The journey from "anecdote" to "evidence" is underway for homeopathy in oncology, and *Scirrhinum* may well be part of the next breakthroughs in this realm.

References

- 1. Pathak, S., Multani, A. S., Banerji, P., & Banerji, P. (2003). Ruta 6 selectively induces cell death in brain cancer cells but proliferation in normal peripheral blood lymphocytes: A novel treatment for human brain cancer. *International Journal of Oncology*, 23(4), 975-982. DOI: 10.3892/ijo.23.4.975
- 2. Thangapazham, R. L., Gaddipati, J. P., Rajeshkumar, N. V., Sharma, A., Singh, A. K., Ives, J. A., & Maheshwari, R. K. (2006). **Homeopathic medicines do not alter growth and gene expression in prostate**

- **and breast cancer cells in vitro.** *Integrative Cancer Therapies*, *5*(4), 356-361. DOI: 10.1177/1534735406294224
- 3. Frenkel, M., Mishra, B. M., Sen, S., Yang, P., Pawlus, A., Vence, L., ... & Cohen, L. (2010). Cytotoxic effects of ultra-diluted remedies on breast cancer cells. *International Journal of Oncology*, 36(2), 395-403. DOI: 10.3892/ijo 00000512
- 4. Preethi, K., Ellanghiyil, S., Kuttan, G., & Kuttan, R. (2012). **Induction of apoptosis of tumor cells by some potentiated homeopathic drugs: implications on mechanism of action.** *Integrative Cancer Therapies*, 11(2), 172-182. DOI: 10.1177/1534735411400310
- 5. Arora, S., Aggarwal, A., Singla, P., Jyoti, S., & Tandon, S. (2013). Anti-proliferative effects of homeopathic medicines on human kidney, colon and breast cancer cells. *Homeopathy*, 102(4), 274-282. DOI: 10.1016/j.homp.2013.06.001
- 6. Sunila, E. S., Kuttan, G., Preethi, K. C., & Kuttan, R. (2009). **Dynamized preparations in cell culture.** Evidence-Based Complementary and Alternative Medicine, 6(2), 257-263. DOI: 10.1093/ecam/nem082
- 7. Sikdar, S., Mukherjee, A., Bishayee, K., Paul, A., Saha, S. K., Ghosh, S., & Khuda-Bukhsh, A. R. (2013). Post-cancer treatment with Condurango 30C shows amelioration of benzo[a]pyrene-induced lung cancer in rats through caspase-3-mediated apoptosis induction. *Journal of Pharmacopuncture*, 16(3), 11-22. DOI: 10.3831/KPI.2013.16.021
- 8. Mondal, J., Samadder, A., & Khuda-Bukhsh, A. R. (2016). **Psorinum 6× triggers apoptosis signals** in human lung cancer cells. *Journal of Integrative Medicine*, 14(2), 143-153. DOI: 10.1016/S2095-4964(16)60230-3
- 9. Tangelloju, A., Chakravarti, R., Singh, R., Bhattacharya, B., Ghosh, A., Bhutia, S. K., ... & Ghosh, D. (2022). A review on the current status of homeopathy in the clinical management of cancer. *Current Drug Targets*, 23(13), 1252-1260. DOI: 10.2174/1389450123666220816151547
- 10. Manivannan, H. P., Veeraraghavan, V. P., Manoharan, R., & Francis, A. P. (2024). **Anticancer potential of homeopathic medicines: an updated review.** *Natural Product Research*, *38*(11), 1982-1996. DOI: 10.1080/14786419.2023.2232925
- 11. dos Santos, A. P., Cardoso, T. N., Waisse, S., & Bonamin, L. V. (2021). **Homeopathy in experimental cancer models: A systematic review.** *Homeopathy*, *110*(2), 76-85. DOI: 10.1055/s-0040-1716369

- 12. Yesudas, C., Mohan, Y. S., Senthil, J., Panneerpandian, P., Ganesan, K., Mariyanayagam, A. M., ... & Ganesan, K. (2025). **Identification of molecular therapeutic features of the homeopathy medicine Thuja by genome-wide expression profiling.** *Pharmacological Research Modern Chinese Medicine*, 2(1), 100596. DOI: 10.1016/j.prmcm.2025.100596
- 13. Tripathy, T., Das, S., Mohanty, N., Singh, D. P., Dwivedi, R., Tripathy, S., & Tripathy, A. (2025). Cancer new therapies aligned with Homoeopathy. *International Journal of Research in Medical Sciences*, *13*(1), 564-570. DOI: 10.18203/2320-6012.ijrms20244171
- 14. Gaertner, K., Müllner, M., Friehs, H., Schuster, E., Marosi, C., Muchitsch, I., ... & Frass, M. (2014). Additive homeopathy in cancer patients: Retrospective survival data from a homeopathic outpatient unit at the Medical University of Vienna. Complementary Therapies in Medicine, 22(2), 320-332. DOI: 10.1016/j.ctim.2013.12.014
- 15. Frass, M., Lechleitner, P., Gründling, C., Pirker, C., Grasmuck-Siegl, E., Domayer, J., ... & Burghuber, O. (2020). Homeopathic treatment as an add-on therapy may improve quality of life and prolong survival in patients with non-small cell lung cancer: A prospective, randomized, placebocontrolled, double-blind, three-arm, multicenter study. *The Oncologist*, 25(12), e1930-e1955. DOI: 10.1002/onco.13548
- 16. Bagot, J. L. (2020). How to prescribe Thuja occidentalis in oncology? Analysis of the literature, study of practices and personal experience. *La Revue d'Homéopathie*, 11(4), e26-e34. DOI: 10.1016/j.revhom.2020.07.001
- 17. Unlu, G., Guler, G., & Kirca, O. (2017). **Homeopathy and cancer.** *Journal of Oncological Sciences*, 3(3), 77-80. DOI: 10.1016/j.jons.2017.05.006
- 18. Pal, S., Das, J., Pradhan, S., Kundu, J., Biswas, S., & Khuda-Bukhsh, A. R. (2022). **Apoptotic and autophagic death union by Thuja occidentalis homeopathic drug in cervical cancer cells with thujone as the bioactive principle.** *Journal of Integrative Medicine*, 20(5), 463-474. DOI: 10.1016/j.joim.2022.06.004
- 19. Bell, I. R., Sarter, B., Koithan, M., Banerji, P., Banerji, P., Jain, S., & Ives, J. A. (2014). **Integrative nanomedicine: treating cancer with nanoscale natural products.** *Global Advances in Health and Medicine*, *3*(1), 36-53. DOI: 10.7453/gahmj.2013.009
- 20. Kassab, S., Cummings, M., Berkovitz, S., van Haselen, R., & Fisher, P. (2009 & 2016 update). **Homeopathic medicines for adverse effects of cancer treatments.** *Cochrane Database of Systematic Reviews*, (2), CD004845. DOI: 10.1002/14651858.CD004845.pub2

[1] [9] [69] [78] [79] A Review on the Current Status of Homeopathy in the Clinical Manage-ment of Cancer - PubMed

https://pubmed.ncbi.nlm.nih.gov/35975849/

[2] [72] [73] [74] [75] Homeopathic Treatment as an Add-On Therapy May Improve Quality of Life and Prolong Survival in Patients with Non-Small Cell Lung Cancer: A Prospective, Randomized, Placebo-Controlled, Double-Blind, Three-Arm, Multicenter Study - PubMed

https://pubmed.ncbi.nlm.nih.gov/33010094/

[3] Scirrhinum. from Materia Medica by John Henry Clarke. Homeopathy.

https://www.materiamedica.info/en/materia-medica/john-henry-clarke/scirrhinum

[4] [7] [8] [85] msjonline.org

https://www.msjonline.org/index.php/ijrms/article/download/14479/9291/68327

[5] [6] (PDF) Preparation of Cancer Nosodes from specific cancer tissues: Nosode from specific Cancer tissues

https://www.researchgate.net/publication/353083432_Preparation_of_Cancer_Nosodes_from_specific_cancer_tissues_Nosode_from_specific_Cancer_tissues

[10] [46] [60] Psorinum 6 × triggers apoptosis signals in human lung cancer cells - PubMed

https://pubmed.ncbi.nlm.nih.gov/26988436/

[11] [12] [13] [14] [15] [16] [17] [50] [61] [80] Cytotoxic effects of ultra-diluted remedies on breast cancer cells -

https://pubmed.ncbi.nlm.nih.gov/20043074/

[18] [19] [40] [41] [42] [54] [55] [56] [57] [58] [59] Post-cancer Treatment with Condurango 30C Shows Amelioration of Benzo[a]pyrene-induced Lung Cancer in Rats Through the Molecular Pathway of Caspa- se-3-mediated Apoptosis Induction: -Anti-lung cancer potential of Condurango 30C in rats- - PMC

https://pmc.ncbi.nlm.nih.gov/articles/PMC4331970/

[20] [21] [22] [27] [28] [49] Anti-proliferative effects of homeopathic medicines on human kidney, colon and breast cancer cells - PubMed

https://pubmed.ncbi.nlm.nih.gov/24050774/

[23] [24] [25] [26] [45] [52] [53] [62] [70] [71] Induction of apoptosis of tumor cells by some potentiated homeopathic drugs: implications on mechanism of action - PubMed

https://pubmed.ncbi.nlm.nih.gov/21771822/

[29] [30] [31] [32] thieme-connect.com

https://www.thieme-connect.com/products/ejournals/pdf/10.1055/s-0040-1716369.pdf

[33] [34] [35] [51] Ruta 6 selectively induces cell death in brain cancer cells but proliferation in normal peripheral blood lymphocytes: A novel treatment for human brain cancer

https://www.spandidos-publications.com/ijo/23/4/975

[36] [37] [83] [84] Microsoft PowerPoint - Homeopathy Curative Concurrent Supportive Cancer Therapy_APHA_7Nov2017_Handout

https://apha.confex.com/apha/2017/mediafile/Handout/Paper394700/Homeopathy%20Curative%20Concurrent%2 0Supportive%20Cancer%20Therapy_APHA_7Nov2017_Handout.pdf

[38] Identification of molecular therapeutic features of the homeopathy ...

https://www.sciencedirect.com/science/article/pii/S2667142525000259

[39] Apoptotic and autophagic death union by Thuja occidentalis ...

https://www.sciencedirect.com/science/article/abs/pii/S209549642200070X

[43] [44] [PDF] Effect of Homeopathic Medicines on Transplanted Tumors in Mice

https://journal.waocp.org/article_24623_f0b14b22f69761b998773bc56f5bb262.pdf

[47] [48] [89] Identification of molecular therapeutic features of the homeopathy medicine Thuja by genome-wide expression profiling

https://ouci.dntb.gov.ua/en/works/7WjZbgGL/

[63] A phase II, single-arm clinical trial involving an alternative cancer ...

https://ascopubs.org/doi/10.1200/jco.2012.30.4_suppl.62

[64] Cases Cured by Psorinum. - Abstract - Europe PMC

https://europepmc.org/article/pmc/pmc9955310

[65] World Journal of Transplantation - Baishideng Publishing Group

https://www.wjgnet.com/2220-3230/CitedArticles?id=10.3748%2Fwjg.v30.i8.779

[66] Yoga Soundarya Mohan - Google Scholar

https://scholar.google.com/citations?user=iUSK7DMAAAAJ&hl=en

[67] [68] Condurango 30C Induces Epigenetic Modification of Lung Cancer ...

https://karger.com/fok/article/22/3/172/356847/Condurango-30C-Induces-Epigenetic-Modification-of

[76] [88] [PDF] Working with patients' treatment expectations - Frontiers

https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2024.1398865/pdf

[77] Adjuvant Approach to Mitigate the Adverse Effects of Cancer ...

https://www.eurekaselect.com/204694/article

[81] Cancer, Homeopathy (Homoeopathy) Remedies Study

https://knowhomeopathy.com/15_cancer08.php

[82] 1 AU Ramakrisnan Method for Cancer Treatment- Ppt, Semi, Cases ...

https://www.scribd.com/document/902577105/1-AU-Ramakrisnan-Method-for-Cancer-Treatment-Ppt-Semi-Cases-Book-Pages-71pp

[86] Adverse effects of homeopathy, what do we know? A systematic ...

https://www.sciencedirect.com/science/article/abs/pii/S0965229916300383

[87] Use of Homeopathy in Integrative Oncology in Strasbourg, France

https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-0040-1721065

Research Through Innovation