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Abstract—Detecting image forgeries under noisy or degraded 
conditions remains a significant challenge in digital forensics. 
While recent deep learning models like RIFD-Net have ad- 
vanced tampering localization using noise-aware mechanisms and 
Siamese architectures, they often struggle to preserve perceptual 
quality—particularly when detecting small or blurred tampered 
regions. To address this limitation, we propose RIFD-Net++, an 
enhanced framework that integrates a Super-Resolution (SR) 
refinement module into the RIFD-Net architecture. This mod- 
ule sharpens tampering boundaries and enhances fine-grained 
spatial details in the predicted masks. Extensive experiments 
on benchmark datasets demonstrate that RIFD-Net++ improves 
both localization accuracy and visual clarity, making it more 
effective for real-world forensic analysis. 

Index Terms—Image forgery detection, Super-resolution, Deep 
learning, RIFD-Net++, Noise robustness, Siamese networks, Dig- 
ital image forensics 

 

I. INTRODUCTION 

The rapid proliferation of digital media and the accessibility 

of sophisticated image editing tools have led to a sharp rise 

in the creation and dissemination of forged images. Tech- 

niques such as splicing, copy-move, and object removal are 

frequently employed to fabricate content that appears visually 

authentic but conveys false or misleading information. These 

manipulations pose critical challenges in domains such as 

journalism, surveillance, legal investigations, and social media 

verification [1], [2]. 

Image Forgery Detection (IFD) aims to identify and localize 

such manipulations. Early methods relied on handcrafted fea- 

tures based on compression artifacts, block-level duplication, 

and sensor pattern noise [3], [4]. However, these techniques 

are highly susceptible to post-processing operations, format 

conversions, and compression artifacts, limiting their applica- 

bility in real-world scenarios. 

In recent years, deep learning-based approaches have 

emerged as powerful alternatives. Convolutional Neural Net- 

works (CNNs) can automatically learn tampering-aware fea- 

tures directly from raw image data [5]. More advanced 

architectures, including constrained convolutions [6], hybrid 

encoder-decoder models with LSTMs [7], and GRU-based 

splicing detectors [8], have further improved robustness and 

generalization. 

Villar-Corrales et al. introduced RIFD-Net [9], a Siamese 

CNN that leverages residual noise estimation to enhance 

forgery localization, particularly under noisy conditions. Al- 

though RIFD-Net achieves strong detection accuracy, its out- 

put masks often lack spatial precision and exhibit coarse 

boundaries, especially when detecting subtle or heavily com- 

pressed manipulations. 

To overcome these limitations, we propose RIFD-Net++, 

a novel extension of RIFD-Net that incorporates a Super- 

Resolution (SR) refinement module. The SR component sharp- 

ens mask boundaries and enhances spatial detail, resulting in 

improved interpretability and perceptual quality of the output. 

We evaluate RIFD-Net++ on two benchmark datasets: 

LIVE1, for training the noise estimation and denoising com- 

ponents; and the Columbia Splicing Dataset, for validating 

forgery localization. Experimental results demonstrate that 

RIFD-Net++ achieves superior localization accuracy and vi- 

sual clarity, even under challenging noisy conditions. 

The main contributions of this paper are: 

• We propose RIFD-Net++, a novel two-stage deep learn- 

ing framework that combines noise-aware detection with 

super-resolution refinement for robust image forgery lo- 

calization. 

• We show that integrating SR significantly improves 

boundary sharpness and perceptual clarity of tampered 

regions. 

• We validate our model on LIVE1 and Columbia Splicing 

datasets, achieving higher detection accuracy and better 

visual quality compared to baseline methods. 

II. RELATED WORK 

Image Forgery Detection (IFD) has progressed significantly 

from traditional statistical methods to modern deep learning- 

based frameworks. Early techniques relied on handcrafted fea- 

tures to detect manipulation traces such as duplicated regions, 

JPEG artifacts, or sensor pattern inconsistencies [3], [4]. While 

effective under constrained scenarios, these approaches were 

brittle and prone to failure under common transformations like 

scaling or compression. 

The rise of deep learning enabled more robust, data-driven 

solutions. Bayar and Stamm [5] introduced a constrained 
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convolutional layer that learned to suppress irrelevant low- 

level textures while emphasizing tampering artifacts. Zhou 

et al. [6] further extended this by employing deeper CNNs 

capable of generalizing across diverse manipulation types. 

To address semantic and temporal inconsistencies, hybrid 

models have also emerged. For example, Bappy et al. [7] 

integrated LSTM modules with convolutional encoders for 

splicing localization, while Islam et al. [8] employed GRU 

units for sequential consistency in tampering detection. 

Robustness under noisy or degraded conditions remains a 

major challenge. To address this, Bi et al. [10] proposed a 

hallucination mechanism that recovers contextual features in 

manipulated regions. More recently, Villar-Corrales et al. [9] 

introduced RIFD-Net, a Siamese architecture that utilizes 

residual noise estimation for improved performance under 

noise. However, the output masks produced by RIFD-Net often 

suffer from coarse localization and lack fine-grained boundary 

accuracy. 

In a parallel line of research, super-resolution (SR) tech- 

niques have demonstrated effectiveness in reconstructing vi- 

sual details from degraded images. Pioneering efforts such as 

SRCNN [11] and SRGAN [12] laid the groundwork, followed 

by more recent approaches like attention-based SR [13] and 

progressive refinement models [14] that improve spatial fi- 

delity. 

Despite their potential, SR techniques have seen limited 

integration into IFD pipelines. Most current detection systems 

prioritize localization accuracy but often neglect the percep- 

tual quality of the predicted masks [1]. Our proposed work 

addresses this gap by integrating SR-based refinement into a 

noise-aware forgery detection framework. 

To validate the proposed architecture, we leverage the 

LIVE1 dataset for training the noise estimation and denoising 

modules, and the Columbia Splicing Dataset for evaluating 

forgery localization under realistic conditions. 

Building upon the aforementioned literature, we propose 

RIFD-Net++, a unified architecture that combines residual 

noise modeling with SR refinement to achieve high detection 

accuracy and perceptually sharper output masks. 

III. PROPOSED METHODOLOGY 

This section presents the architecture of the proposed RIFD- 

Net++ framework, designed to enhance image forgery de- 

tection under noisy and degraded conditions. The system is 

structured into three core components: 

• Noise Estimation Module (NEM) – Extracts residual 

noise patterns from the input image to highlight tamper- 

ing cues; 

• Denoising Siamese Network – Performs initial forgery 

localization by comparing noisy and denoised image 

features; 

• Super-Resolution Refinement Module – Enhances the 

spatial resolution and boundary precision of the predicted 

forgery masks. 

The full pipeline is trained end-to-end using a composite 

loss function that jointly optimizes detection accuracy and 

perceptual quality. An architectural overview of the proposed 

framework is shown in Figure 1. 

A. Noise Estimation Module (NEM) 

The first stage of RIFD-Net++ focuses on estimating the 
residual noise embedded in the input image, which can reveal 

subtle artifacts introduced during tampering operations. Let 

the input image be denoted as I ∈ RH×W ×3. This image is 

passed through a noise estimation network Nθ, a lightweight 
convolutional neural network (CNN) specifically designed to 

extract high-frequency noise components: 

R = Nθ(I) (1) 

Here, R denotes the residual noise map produced by the 

network. This map captures signal inconsistencies and fine- 

grained textures that are often distorted by manipulation. 

By exposing low-level anomalies, it serves as a valuable 

auxiliary input for the subsequent forgery localization module, 

particularly under challenging conditions such as compression 

artifacts, low-resolution content, or sensor noise. 

B. Denoising Siamese Network 

At the core of the RIFD-Net++ architecture lies a Siamese 

encoder-decoder network, which is responsible for localizing 

tampered regions by jointly analyzing the original image and 

its corresponding residual noise map. Let I denote the input 

image and R the residual map produced by the NEM. 

Both I and R are passed through shared-weight encoders 

Eϕ, resulting in feature embeddings that capture complemen- 
tary visual and noise characteristics: 

FI = Eϕ(I), FR = Eϕ(R) (2) 

The extracted feature maps FI and FR are then concatenated 

along the channel dimension and passed to a decoder Dψ, 
which predicts an initial coarse forgery mask Mc: 

Mc = Dψ(FI ⊕ FR) (3) 

Here, ⊕ denotes channel-wise concatenation, and Mc ∈ 
RH×W ×1 represents a pixel-wise segmentation map highlight- 

ing regions suspected of tampering based on both semantic and 

noise cues. 

While this intermediate mask effectively detects broad ma- 

nipulated areas, it may suffer from blurred boundaries or 

incomplete segmentation under conditions such as aggressive 

compression or additive noise. To overcome these limitations, 

a refinement stage using a Super-Resolution (SR) module is 

applied in the subsequent phase. 

C. Super-Resolution Refinement Module 

To enhance the perceptual fidelity and boundary precision 
of the initial coarse mask Mc, RIFD-Net++ incorporates a 

Super-Resolution (SR) refinement module, denoted by Sω. 
This component is designed to recover high-frequency spatial 
details that are often degraded during image manipulation or 

compression. 
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The refined mask Mf is generated by applying the SR 

module to the coarse prediction: 

 

Mf = Sω(Mc) (4) 

Here, Sω represents a deep SR network, potentially com- 
posed of residual blocks or attention-based mechanisms [12], 
[15], which is trained to upsample the coarse mask and 

reconstruct sharper boundaries. 

This refinement stage is particularly effective for localiz- 

ing fine-grained forgeries—such as subtle spliced regions or 

tampered textures—where traditional segmentation networks 

may struggle to delineate precise edges. The SR-enhanced 

output improves both the visual interpretability and pixel-level 

accuracy of the final forgery mask. 

 

D. Training Strategy and Loss Function 

The RIFD-Net++ architecture is trained in an end-to-end 

manner using a composite loss function that balances pixel- 

wise accuracy with perceptual quality. This dual-objective 

formulation enables the network to generate masks that are 

both semantically accurate and visually sharp. 

The total loss Ltotal is defined as: 

 

Ltotal = LBCE(Mf , Mgt) + λ · LSSIM(Mf , Mgt)  (5) 

where: 

• LBCE is the Binary Cross-Entropy loss that penalizes 
pixel-wise classification errors between the predicted 

mask Mf and the ground truth Mgt. 

• LSSIM denotes the Structural Similarity Index loss [16], 
which enforces consistency in structure and texture be- 

tween the predicted and ground-truth masks. 

• λ is a regularization coefficient that balances the contri- 

bution of SSIM loss. 

Training is performed using the Adam optimizer with learn- 

ing rate scheduling. To enhance robustness and generalization, 

various data augmentation techniques—such as random flip- 

ping, rotation, and noise injection—are applied during training. 

 

E. Summary 

The RIFD-Net++ framework integrates noise-aware forgery 

localization with super-resolution-based refinement to detect 

subtle tampered regions, even in the presence of challenging 

distortions such as compression artifacts and additive noise. 

Each module—noise estimation, Siamese-based detection, and 

super-resolution enhancement—is trained in a unified pipeline 

to jointly optimize both detection accuracy and perceptual 

quality. This holistic design ensures that the output masks are 

not only quantitatively robust but also visually interpretable, 

thereby making the framework well-suited for real-world 

forensic applications. 

 

 

Fig. 1: Overview of the RIFD-Net++ pipeline: From dataset 

preprocessing and residual noise modeling to coarse forgery 

detection and final super-resolution-based refinement. 

 

 

IV. EXPERIMENTS AND RESULTS 

 

A. Experimental Setup 

We conducted experiments on two publicly available bench- 

mark datasets: the Columbia Splicing Dataset and LIVE1. 

These datasets were used to train and evaluate the proposed 

RIFD-Net++ framework for robust image forgery detection. 

The LIVE1 dataset was used to train the Noise Estimation 

Module (NEM), leveraging its wide variety of natural images 

augmented with synthetic distortions such as Gaussian noise, 

Salt-and-Pepper noise, and JPEG compression artifacts. This 

enabled the model to learn generalized noise-resilient features. 

The Columbia Splicing Dataset, which provides paired 

authentic and manipulated images along with corresponding 

ground-truth masks, was used for training and evaluating the 

forgery localization capabilities of the Siamese network and 

Super-Resolution refinement modules. 

All input images and corresponding ground truth masks 

are resized to a uniform resolution of 512 × 512 pixels. 
The proposed RIFD-Net++ framework is implemented using 
PyTorch (v1.12 or higher) and trained in an environment 
supporting CUDA-enabled GPUs (CUDA version 11.0 or 

above). A minimum of 8GB GPU memory is recommended 

for efficient training and inference. 

The model is trained end-to-end for 100 epochs using the 

Adam optimizer with an initial learning rate of 1 × 10−4 and a 
batch size of 8. To enhance generalization, data augmentation 
techniques such as random flipping, rotation, and noise injec- 
tion are applied. The best model is selected based on validation 

loss and mean Average Precision (mAP) score. 

The RIFD-Net++ framework is implemented in PyTorch 

(v1.12 or higher) and trained in a CUDA-compatible environ- 

ment (version 11.0 or later) with support for GPU acceleration. 

A minimum of 8GB GPU memory is recommended to enable 

efficient batch training and real-time inference capabilities. 
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B. Training Convergence 

As illustrated in Figure 2, the training and validation loss 

curves show a stable decline over the first 50 epochs, indicating 

proper convergence without overfitting. 

 

Fig. 2: Training and validation loss curves for RIFD-Net++ 

over 50 epochs. 

 

 

C. Evaluation Metrics 

To assess the performance of the proposed RIFD-Net++ 

framework, we utilize a combination of detection accuracy and 

perceptual quality metrics, ensuring a comprehensive evalua- 

tion across both localization precision and visual consistency. 

The primary metrics include: 

• Mean Average Precision (mAP): This metric evalu- 

ates the model’s ability to localize tampered regions 

accurately. It computes the area under the precision- 

recall curve and is averaged across multiple thresholds, 

providing a robust indicator of segmentation performance. 

• Structural Similarity Index Measure (SSIM) [16]: 

SSIM quantifies the perceptual similarity between the 

predicted forgery mask and the ground truth. It focuses on 

structural consistency, luminance, and contrast, making it 

valuable for assessing visual quality. 

• Peak Signal-to-Noise Ratio (PSNR) [17]: PSNR mea- 

sures the pixel-level reconstruction fidelity between the 

refined output mask and the ground truth. A higher 

PSNR score reflects better noise suppression and detail 

preservation. 

• Binary Cross-Entropy (BCE) Loss: BCE is used during 

training to compute the pixel-wise classification error 

between predicted and ground truth masks. It acts as 

a primary loss term that encourages accurate tampering 

localization. 

• Intersection over Union (IoU): IoU, also known as 

the Jaccard Index, calculates the overlap between the 

predicted tampered region and the ground truth. It pro- 

vides a direct measure of spatial agreement in binary 

segmentation tasks. 

• F1-Score: The F1-score is the harmonic mean of preci- 

sion and recall, offering a balance between false positives 

and false negatives. It is especially informative when 

dealing with imbalanced regions of tampered and non- 

tampered pixels. 

These metrics collectively evaluate the model’s ability to 

produce precise, sharp, and semantically meaningful tam- 

pering masks under various noisy and degraded conditions, 

supporting both objective measurement and perceptual quality 

validation. 

TABLE I: Evaluation Metrics of RIFD-Net++ on Columbia 

Dataset 
 

Metric Score 
Mean Average Precision (mAP) 0.9037 
Structural Similarity Index (SSIM) 0.92 
Peak Signal-to-Noise Ratio (PSNR) 29.8 dB 
Binary Cross-Entropy (BCE) Loss 0.02 
Intersection over Union (IoU) 0.87 

F1-Score 0.89 

 

D. Quantitative Results 

We evaluate the performance of the proposed RIFD-Net++ 

on the Columbia Splicing Dataset and benchmark it against 

the baseline RIFD-Net model [9]. The evaluation employs 

four key metrics: Mean Average Precision (mAP), Structural 

Similarity Index Measure (SSIM), Peak Signal-to-Noise Ratio 

(PSNR), and Binary Cross-Entropy (BCE) loss. 

Visualized in Figure 3, RIFD-Net++ consistently outper- 

forms the baseline across all metrics. Specifically, the mAP 

increases from 0.84 to 0.90, SSIM improves from 0.75 to 0.81, 

and PSNR rises from 27.1 dB to 29.8 dB. Additionally, a lower 

BCE loss confirms improved segmentation accuracy. 

These quantitative improvements validate the effectiveness 

of incorporating both the Noise Estimation Module and the 

Super-Resolution refinement step into the tampering localiza- 

tion pipeline. 

These results affirm that the synergy between the noise esti- 

mation and super-resolution modules contributes significantly 

to both detection precision and perceptual clarity. 

 

Fig. 3: Quantitative comparison of baseline RIFD-Net and 

the proposed RIFD-Net++ in terms of mAP, SSIM, and 

PSNR. RIFD-Net++ achieves consistent improvements across 

all metrics. 
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E. Qualitative Results 

To further illustrate the effectiveness of the proposed RIFD- 

Net++ framework, Figure 5 shows a visual comparison across 

different stages of the pipeline. 

The model successfully identifies tampered regions even un- 

der significant noise and compression. The Super-Resolution 

enhancement sharpens boundaries and restores fine structures, 

significantly improving the interpretability of the forgery 

mask. 

As shown in Table II and Figure 4, both the noise estimation 

and super-resolution components contribute significantly to the 

overall mAP. 

TABLE II: Ablation Study on RIFD-Net++ 
 

Model Variant mAP 
Without Super-Resolution 0.84 
Without Noise Estimation 0.79 

Full RIFD-Net++ 0.90 

Structural Similarity Index (SSIM), and Peak Signal-to-Noise 

Ratio (PSNR), evaluated on the Columbia Splicing Dataset. 

As shown, RIFD-Net++ achieves the highest mAP of 0.903 

and SSIM of 0.92, outperforming the baselines in both local- 

ization accuracy and perceptual quality. The improved PSNR 

score of 29.8 dB further indicates superior preservation of fine 

details in the refined masks. These gains can be attributed to 

the synergistic integration of noise-aware feature extraction 

and super-resolution-based refinement, enabling robust detec- 

tion even under challenging conditions. 

The results indicate that RIFD-Net++ not only achieves 

higher quantitative scores but also produces perceptually su- 

perior masks. Its consistent improvements across mAP, SSIM, 

and PSNR demonstrate its robustness to common manipula- 

tions and distortions. 

TABLE III: Comparison with State-of-the-Art Methods on 

Columbia Dataset 

 

Ablation Study on RIFD-Net++ 

1 
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0.8 

 

 
0.7 

Without SR Without NEM RIFD-Net++ 

Fig. 4: Effect of each component on detection performance. 

Removing either super-resolution or noise estimation degrades 

mAP significantly. 

 

 

Fig. 5: Qualitative results of RIFD-Net++: From left to right 

— (a) Noisy Input, (b) Denoised Image, (c) Predicted Forgery 

Mask, and (d) Super-Resolution Enhanced Mask. 

 

F. Comparison with State-of-the-Art Methods 

To assess the competitiveness of our proposed frame- 

work, we compare RIFD-Net++ against several leading im- 

age forgery detection methods, including ManTra-Net [18], 

DMAC [19], and Noiseprint [20]. Table III presents a quanti- 

tative comparison in terms of mean Average Precision (mAP), 

 

 

 

 

Fig. 6: Performance comparison of RIFD-Net++ with state- 

of-the-art methods on the Columbia dataset in terms of mAP, 

SSIM, and PSNR. 

 

 

G. Limitations and Future Work 

Despite its strong performance, RIFD-Net++ has a few 

limitations. First, its performance may degrade on heavily 

compressed social media images or tampering techniques like 

deepfake generation. Second, the computational cost of the 

super-resolution module increases inference time, making real- 

time deployment challenging. 

In the future, we plan to incorporate transformer-based 

backbones for improved global context understanding, and 

explore lightweight real-time models suitable for deployment 

in surveillance and forensic pipelines. Additionally, we aim 

to test on emerging datasets with semantic-level forgeries and 

diverse editing styles. 

0.9 
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Method mAP SSIM PSNR (dB) 
RIFD-Net++ (Ours) 0.903 0.92 29.8 

ManTra-Net [18] 0.861 0.89 27.4 
DMAC [19] 0.832 0.88 26.9 

Noiseprint [20] 0.784 0.84 25.6 
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Despite these challenges, the modular design of RIFD- 

Net++ makes it adaptable for future advancements in 

lightweight modeling and transformer-based forgery detection. 

V. DISCUSSION 

The efficiency of combining noise-aware localization and 

super-resolution refinement for image fraud detection is shown 

by the experimental findings of RIFD-Net++. The model was 

able to learn robust noise patterns from the LIVE1 dataset, 

which greatly enhanced its capacity to identify tampered areas 

in compressed or degraded images. To train the Siamese net- 

work on forgery localization, the Columbia Splicing Dataset 

offered a variety of manipulation patterns. 

A key observation is that the initial coarse masks produced 

by the Siamese decoder often captured the general tampered 

area but lacked boundary precision. This limitation was ad- 

dressed by the Super-Resolution Refinement Module, which 

enhanced edge details and produced sharper output masks. 

Visual results show that this refinement step improved the 

clarity and interpretability of forgery detection, especially for 

subtle manipulations. 

The quantitative metrics, such as the Mean Average Preci- 

sion (MAP) score of 0.90, indicate high pixel-level accuracy. 

Furthermore, the model maintained consistent performance 

even when tested on noisy or compressed inputs, validating 

its robustness. The added Structural Similarity (SSIM) loss 

component contributed to preserving texture information and 

improving the visual quality of predicted masks. 

However, RIFD-Net++ does have some limitations. In cases 

involving extremely small or texture-similar forgeries, the 

model occasionally misclassifies regions or fails to delineate 

precise boundaries. This suggests a potential benefit in in- 

corporating multi-scale attention mechanisms or transformer- 

based refinement modules in future work. 

Overall, the integration of noise modeling and visual en- 

hancement into a unified pipeline proved beneficial, making 

RIFD-Net++ a strong candidate for practical forensic image 

analysis. 

VI. CONCLUSION 

This paper presented RIFD-Net++, a robust and perceptually 

enhanced framework for image forgery detection under noisy 

and compressed conditions. Building upon the foundational 

RIFD-Net architecture, the proposed model integrates three 

key components: a Noise Estimation Module for extracting 

residual noise cues, a Denoising Siamese Network for initial 

tampering localization, and a Super-Resolution Refinement 

Module to sharpen boundaries and improve visual clarity. 

Extensive experiments on benchmark datasets, including 

LIVE1 and the Columbia Splicing Dataset, demonstrate that 

RIFD-Net++ outperforms baseline methods in both detection 

accuracy and perceptual quality. Quantitative improvements 

in mAP, SSIM, PSNR, and BCE validate the effectiveness of 

combining noise modeling with super-resolution-based refine- 

ment in a unified end-to-end pipeline. 

By jointly addressing structural precision and visual in- 

terpretability, RIFD-Net++ offers a practical and scalable 

solution for digital image forensics. As future work, we plan 

to explore transformer-based attention mechanisms, cross- 

domain generalization, and lightweight architectures for real- 

time deployment in forensic and surveillance applications. 
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