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Abstract—Detecting image forgeries under noisy or degraded
conditions remains a significant challenge in digital forensics.
While recent deep learning models like RIFD-Net have ad-
vanced tampering localization using noise-aware mechanisms and
Siamese architectures, they often struggle to preserve perceptual
quality—particularly when detecting small or blurred tampered
regions. To address this limitation, we propose RIFD-Net++, an
enhanced framework that integrates a Super-Resolution (SR)
refinement module into the RIFD-Net architecture. This mod-
ule sharpens tampering boundaries and enhances fine-grained
spatial details in the predicted masks. Extensive experiments
on benchmark datasets demonstrate that RIFD-Net++ improves
both localization accuracy and visual clarity, making it more
effective for real-world forensic analysis.

Index Terms—Image forgery detection, Super-resolution, Deep
learning, RIFD-Net++, Noise robustness, Siamese networks, Dig-
ital image forensics

I. INTRODUCTION

The rapid proliferation of digital media and the accessibility
of sophisticated image editing tools have led to a sharp rise
in the creation and dissemination of forged images. Tech-
niques such as splicing, copy-move, and object removal are
frequently employed to fabricate content that appears visually
authentic but conveys false or misleading information. These
manipulations pose critical challenges in domains such as
journalism, surveillance, legal investigations, and social media
verification [1], [2].

Image Forgery Detection (IFD) aims to identify and localize
such manipulations. Early methods relied on handcrafted fea-
tures based on compression artifacts, block-level duplication,
and sensor pattern noise [3], [4]. However, these techniques
are highly susceptible to post-processing operations, format
conversions, and compression artifacts, limiting their applica-
bility in real-world scenarios.

In recent years, deep learning-based approaches have
emerged as powerful alternatives. Convolutional Neural Net-
works (CNNs) can automatically learn tampering-aware fea-
tures directly from raw image data [5]. More advanced
architectures, including constrained convolutions [6], hybrid
encoder-decoder models with LSTMs [7], and GRU-based
splicing detectors [8], have further improved robustness and
generalization.
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Villar-Corrales et al. introduced RIFD-Net [9], a Siamese
CNN that leverages residual noise estimation to enhance
forgery localization, particularly under noisy conditions. Al-
though RIFD-Net achieves strong detection accuracy, its out-
put masks often lack spatial precision and exhibit coarse
boundaries, especially when detecting subtle or heavily com-
pressed manipulations.

To overcome these limitations, we propose RIFD-Net++,

a novel extension of RIFD-Net that incorporates a Super-
Resolution (SR) refinement module. The SR component sharp-
ens mask boundaries and enhances spatial detail, resulting in
improved interpretability and perceptual quality of the output.
We evaluate RIFD-Net++ on two benchmark datasets:

LIVEL, for training the noise estimation and denoising com-
ponents; and the Columbia Splicing Dataset, for validating

forgery localization. Experimental results demonstrate that
RIFD-Net++ achieves superior localization accuracy and vi-
sual clarity, even under challenging noisy conditions.

The main contributions of this paper are:

- We propose RIFD-Net++, a novel two-stage deep learn-
ing framework that combines noise-aware detection with
super-resolution refinement for robust image forgery lo-
calization.

- We show that integrating SR significantly improves
boundary sharpness and perceptual clarity of tampered
regions.

- We validate our model on LIVE1 and Columbia Splicing
datasets, achieving higher detection accuracy and better
visual quality compared to baseline methods.

Il. RELATED WORK

Image Forgery Detection (IFD) has progressed significantly
from traditional statistical methods to modern deep learning-
based frameworks. Early techniques relied on handcrafted fea-
tures to detect manipulation traces such as duplicated regions,
JPEG artifacts, or sensor pattern inconsistencies [3], [4]. While
effective under constrained scenarios, these approaches were
brittle and prone to failure under common transformations like
scaling or compression.

The rise of deep learning enabled more robust, data-driven
solutions. Bayar and Stamm [5] introduced a constrained
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convolutional layer that learned to suppress irrelevant low-
level textures while emphasizing tampering artifacts. Zhou
et al. [6] further extended this by employing deeper CNNs
capable of generalizing across diverse manipulation types.

To address semantic and temporal inconsistencies, hybrid
models have also emerged. For example, Bappy et al. [7]
integrated LSTM modules with convolutional encoders for
splicing localization, while Islam et al. [8] employed GRU
units for sequential consistency in tampering detection.

Robustness under noisy or degraded conditions remains a
major challenge. To address this, Bi et al. [10] proposed a
hallucination mechanism that recovers contextual features in
manipulated regions. More recently, Villar-Corrales et al. [9]
introduced RIFD-Net, a Siamese architecture that utilizes
residual noise estimation for improved performance under
noise. However, the output masks produced by RIFD-Net often
suffer from coarse localization and lack fine-grained boundary
accuracy.

In a parallel line of research, super-resolution (SR) tech-
niques have demonstrated effectiveness in reconstructing vi-
sual details from degraded images. Pioneering efforts such as
SRCNN [11] and SRGAN [12] laid the groundwork, followed
by more recent approaches like attention-based SR [13] and
progressive refinement models [14] that improve spatial fi-
delity.

Despite their potential, SR techniques have seen limited
integration into IFD pipelines. Most current detection systems
prioritize localization accuracy but often neglect the percep-
tual quality of the predicted masks [1]. Our proposed work
addresses this gap by integrating SR-based refinement into a
noise-aware forgery detection framework.

To validate the proposed architecture, we leverage the
LIVE1 dataset for training the noise estimation and denoising
modules, and the Columbia Splicing Dataset for evaluating
forgery localization under realistic conditions.

Building upon the aforementioned literature, we propose
RIFD-Net++, a unified architecture that combines residual
noise modeling with SR refinement to achieve high detection
accuracy and perceptually sharper output masks.

I1l. PROPOSED METHODOLOGY

This section presents the architecture of the proposed RIFD-
Net++ framework, designed to enhance image forgery de-
tection under noisy and degraded conditions. The system is
structured into three core components:

- Noise Estimation Module (NEM) — Extracts residual
noise patterns from the input image to highlight tamper-
ing cues;

- Denoising Siamese Network — Performs initial forgery
localization by comparing noisy and denoised image
features;

- Super-Resolution Refinement Module — Enhances the
spatial resolution and boundary precision of the predicted
forgery masks.

The full pipeline is trained end-to-end using a composite

loss function that jointly optimizes detection accuracy and

perceptual quality. An architectural overview of the proposed
framework is shown in Figure 1.

A. Noise Estimation Module (NEM)

The first stage of RIFD-Net++ focuses on estimating the
residual noise embedded in the input image, which can reveal
subtle artifacts introduced during tampering operations. Let

the input image be denoted as / € R"™W>3, This image is
passed through a noise estimation network Ny, a lightweight
convolutional neural network (CNN) specifically designed to
extract high-frequency noise components:

R = No(/) 1)

Here, R denotes the residual noise map produced by the
network. This map captures signal inconsistencies and fine-
grained textures that are often distorted by manipulation.
By exposing low-level anomalies, it serves as a valuable
auxiliary input for the subsequent forgery localization module,
particularly under challenging conditions such as compression
artifacts, low-resolution content, or sensor noise.

B. Denoising Siamese Network

At the core of the RIFD-Net++ architecture lies a Siamese
encoder-decoder network, which is responsible for localizing
tampered regions by jointly analyzing the original image and
its corresponding residual noise map. Let / denote the input
image and R the residual map produced by the NEM.

Both / and R are passed through shared-weight encoders

E¢, resulting in feature embeddings that capture complemen-
tary visual and noise characteristics:

Fi =Es(l), Fr=EgR) 2

The extracted feature maps F; and Fr are then concatenated

along the channel dimension and passed to a decoder Dy,
which predicts an initial coarse forgery mask M.:

Mc = Dy(Fi & Fgr) 3

Here, & denotes channel-wise concatenation, and M. €
R*WxL represents a pixel-wise segmentation map highlight-
ing regions suspected of tampering based on both semantic and
noise cues.

While this intermediate mask effectively detects broad ma-
nipulated areas, it may suffer from blurred boundaries or
incomplete segmentation under conditions such as aggressive
compression or additive noise. To overcome these limitations,
a refinement stage using a Super-Resolution (SR) module is
applied in the subsequent phase.

C. Super-Resolution Refinement Module

To enhance the perceptual fidelity and boundary precision
of the initial coarse mask M., RIFD-Net++ incorporates a

Super-Resolution (SR) refinement module, denoted by S..
This component is designed to recover high-frequency spatial
details that are often degraded during image manipulation or
compression.
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The refined mask My is generated by applying the SR
module to the coarse prediction:

Mf = Sw(Mc) (4)

Here, S. represents a deep SR network, potentially com-
posed of residual blocks or attention-based mechanisms [12],
[15], which is trained to upsample the coarse mask and
reconstruct sharper boundaries.

This refinement stage is particularly effective for localiz-
ing fine-grained forgeries—such as subtle spliced regions or
tampered textures—where traditional segmentation networks
may struggle to delineate precise edges. The SR-enhanced
output improves both the visual interpretability and pixel-level
accuracy of the final forgery mask.

D. Training Strategy and Loss Function

The RIFD-Net++ architecture is trained in an end-to-end
manner using a composite loss function that balances pixel-
wise accuracy with perceptual quality. This dual-objective
formulation enables the network to generate masks that are
both semantically accurate and visually sharp.

The total loss Liota is defined as:

Liotas = Lece(My, Mqgt) + A + Lssim(Mr, Mgt)  (5)

where:

- Lasce is the Binary Cross-Entropy loss that penalizes
pixel-wise classification errors between the predicted
mask My and the ground truth M.

- Lssiv denotes the Structural Similarity Index loss [16],
which enforces consistency in structure and texture be-
tween the predicted and ground-truth masks.

- A is a regularization coefficient that balances the contri-
bution of SSIM loss.

Training is performed using the Adam optimizer with learn-
ing rate scheduling. To enhance robustness and generalization,
various data augmentation techniques—such as random flip-
ping, rotation, and noise injection—are applied during training.

E. Summary

The RIFD-Net++ framework integrates noise-aware forgery
localization with super-resolution-based refinement to detect
subtle tampered regions, even in the presence of challenging
distortions such as compression artifacts and additive noise.
Each module—noise estimation, Siamese-based detection, and
super-resolution enhancement—is trained in a unified pipeline
to jointly optimize both detection accuracy and perceptual
quality. This holistic design ensures that the output masks are
not only quantitatively robust but also visually interpretable,
thereby making the framework well-suited for real-world
forensic applications.

Noise & . Shuffiing &

Clean Dataset |~ Normalization . "2ming Data—+  MARSc
RIFD-Net - Score
L
Input Nolse ~ Predict o Localize
Image splice region
Super Resolution

Super Enhance Image

Fig. 1: Overview of the RIFD-Net++ pipeline: From dataset
preprocessing and residual noise modeling to coarse forgery
detection and final super-resolution-based refinement.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

We conducted experiments on two publicly available bench-
mark datasets: the Columbia Splicing Dataset and LIVEL.
These datasets were used to train and evaluate the proposed
RIFD-Net++ framework for robust image forgery detection.

The LIVEL dataset was used to train the Noise Estimation
Module (NEM), leveraging its wide variety of natural images
augmented with synthetic distortions such as Gaussian noise,
Salt-and-Pepper noise, and JPEG compression artifacts. This
enabled the model to learn generalized noise-resilient features.

The Columbia Splicing Dataset, which provides paired
authentic and manipulated images along with corresponding
ground-truth masks, was used for training and evaluating the
forgery localization capabilities of the Siamese network and
Super-Resolution refinement modules.

All input images and corresponding ground truth masks
are resized to a uniform resolution of 512 X 512 pixels.
The proposed RIFD-Net++ framework is implemented using
PyTorch (v1.12 or higher) and trained in an environment
supporting CUDA-enabled GPUs (CUDA version 11.0 or
above). A minimum of 8GB GPU memory is recommended
for efficient training and inference.

The model is trained end-to-end for 100 epochs using the

Adam optimizer with an initial learning rate of 1 x 107 and a
batch size of 8. To enhance generalization, data augmentation
techniques such as random flipping, rotation, and noise injec-
tion are applied. The best model is selected based on validation
loss and mean Average Precision (mAP) score.

The RIFD-Net++ framework is implemented in PyTorch
(v1.12 or higher) and trained in a CUDA-compatible environ-
ment (version 11.0 or later) with support for GPU acceleration.
A minimum of 8GB GPU memory is recommended to enable
efficient batch training and real-time inference capabilities.
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B. Training Convergence

As illustrated in Figure 2, the training and validation loss
curves show a stable decline over the first 50 epochs, indicating
proper convergence without overfitting.

Fig. 2: Training and validation loss curves for RIFD-Net++
over 50 epochs.

C. Evaluation Metrics

To assess the performance of the proposed RIFD-Net++
framework, we utilize a combination of detection accuracy and
perceptual quality metrics, ensuring a comprehensive evalua-
tion across both localization precision and visual consistency.
The primary metrics include:

- Mean Average Precision (mAP): This metric evalu-
ates the model’s ability to localize tampered regions
accurately. It computes the area under the precision-
recall curve and is averaged across multiple thresholds,
providing a robust indicator of segmentation performance.
Structural Similarity Index Measure (SSIM) [16]:
SSIM quantifies the perceptual similarity between the
predicted forgery mask and the ground truth. It focuses on
structural consistency, luminance, and contrast, making it
valuable for assessing visual quality.
Peak Signal-to-Noise Ratio (PSNR) [17]: PSNR mea-
sures the pixel-level reconstruction fidelity between the
refined output mask and the ground truth. A higher
PSNR score reflects better noise suppression and detail
preservation.
- Binary Cross-Entropy (BCE) Loss: BCE is used during
training to compute the pixel-wise classification error
between predicted and ground truth masks. It acts as
a primary loss term that encourages accurate tampering
localization.
Intersection over Union (loU): loU, also known as
the Jaccard Index, calculates the overlap between the
predicted tampered region and the ground truth. It pro-
vides a direct measure of spatial agreement in binary
segmentation tasks.
- F1-Score: The Fl-score is the harmonic mean of preci-
sion and recall, offering a balance between false positives
and false negatives. It is especially informative when

.

dealing with imbalanced regions of tampered and non-
tampered pixels.

These metrics collectively evaluate the model’s ability to
produce precise, sharp, and semantically meaningful tam-
pering masks under various noisy and degraded conditions,
supporting both objective measurement and perceptual quality
validation.

TABLE I: Evaluation Metrics of RIFD-Net++ on Columbia
Dataset

Metric Score
Mean Average Precision (mAP) 0.9037
Structural Similarity Index (SSIM) 0.92
Peak Signal-to-Noise Ratio (PSNR) | 29.8 dB
Binary Cross-Entropy (BCE) Loss 0.02
Intersection over Union (loU) 0.87
F1-Score 0.89

D. Quantitative Results

We evaluate the performance of the proposed RIFD-Net++
on the Columbia Splicing Dataset and benchmark it against
the baseline RIFD-Net model [9]. The evaluation employs
four key metrics: Mean Average Precision (mAP), Structural
Similarity Index Measure (SSIM), Peak Signal-to-Noise Ratio
(PSNR), and Binary Cross-Entropy (BCE) loss.

Visualized in Figure 3, RIFD-Net++ consistently outper-
forms the baseline across all metrics. Specifically, the mAP
increases from 0.84 to 0.90, SSIM improves from 0.75 to 0.81,
and PSNR rises from 27.1 dB to 29.8 dB. Additionally, a lower
BCE loss confirms improved segmentation accuracy.

These quantitative improvements validate the effectiveness
of incorporating both the Noise Estimation Module and the
Super-Resolution refinement step into the tampering localiza-
tion pipeline.

These results affirm that the synergy between the noise esti-
mation and super-resolution modules contributes significantly
to both detection precision and perceptual clarity.

Quantitative Comparison; Baseline vs. RIFD-Net++

)| -
=3

Fig. 3: Quantitative comparison of baseline RIFD-Net and
the proposed RIFD-Net++ in terms of mAP, SSIM, and
PSNR. RIFD-Net++ achieves consistent improvements across
all metrics.
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E. Qualitative Results

To further illustrate the effectiveness of the proposed RIFD-
Net++ framework, Figure 5 shows a visual comparison across
different stages of the pipeline.

The model successfully identifies tampered regions even un-
der significant noise and compression. The Super-Resolution
enhancement sharpens boundaries and restores fine structures,
significantly improving the interpretability of the forgery
mask.

As shown in Table Il and Figure 4, both the noise estimation
and super-resolution components contribute significantly to the
overall mAP.

TABLE II: Ablation Study on RIFD-Net++

Model Variant mAP
Without Super-Resolution 0.84
Without Noise Estimation 0.79

Full RIFD-Net++ 0.90

Ablation Study on RIFD-Net++

1 | |
0.9
o 09 n
3
n 0.84
<
€ 08| 0.79 i
0.7
Without SR Without NEM  RIFD-Net++

Fig. 4: Effect of each component on detection performance.
Removing either super-resolution or noise estimation degrades
MAP significantly.

Fig. 5: Qualitative results of RIFD-Net++: From left to right
— (a) Noisy Input, (b) Denoised Image, (c) Predicted Forgery
Mask, and (d) Super-Resolution Enhanced Mask.

F. Comparison with State-of-the-Art Methods

To assess the competitiveness of our proposed frame-
work, we compare RIFD-Net++ against several leading im-
age forgery detection methods, including ManTra-Net [18],
DMAC [19], and Noiseprint [20]. Table 111 presents a quanti-
tative comparison in terms of mean Average Precision (mAP),

Structural Similarity Index (SSIM), and Peak Signal-to-Noise
Ratio (PSNR), evaluated on the Columbia Splicing Dataset.

As shown, RIFD-Net++ achieves the highest mAP of 0.903
and SSIM of 0.92, outperforming the baselines in both local-
ization accuracy and perceptual quality. The improved PSNR
score of 29.8 dB further indicates superior preservation of fine
details in the refined masks. These gains can be attributed to
the synergistic integration of noise-aware feature extraction
and super-resolution-based refinement, enabling robust detec-
tion even under challenging conditions.

The results indicate that RIFD-Net++ not only achieves
higher quantitative scores but also produces perceptually su-
perior masks. Its consistent improvements across mAP, SSIM,
and PSNR demonstrate its robustness to common manipula-
tions and distortions.

TABLE I1I: Comparison with State-of-the-Art Methods on
Columbia Dataset

Method mAP | SSIM | PSNR (dB)
RIFD-Net++ (Ours) | 0.903 0.92 29.8
ManTra-Net [18] 0.861 0.89 274
DMAC [19] 0.832 0.88 26.9
Noiseprint [20] 0.784 0.84 25.6
Peic T nparison of Forgery De L
| - -
|
| | |
8 el
|
L] |
\ |
s 2 K

Fig. 6: Performance comparison of RIFD-Net++ with state-
of-the-art methods on the Columbia dataset in terms of mAP,
SSIM, and PSNR.

G. Limitations and Future Work

Despite its strong performance, RIFD-Net++ has a few
limitations. First, its performance may degrade on heavily
compressed social media images or tampering techniques like
deepfake generation. Second, the computational cost of the
super-resolution module increases inference time, making real-
time deployment challenging.

In the future, we plan to incorporate transformer-based
backbones for improved global context understanding, and
explore lightweight real-time models suitable for deployment
in surveillance and forensic pipelines. Additionally, we aim
to test on emerging datasets with semantic-level forgeries and
diverse editing styles.
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Despite these challenges, the modular design of RIFD-
Net++ makes it adaptable for future advancements in
lightweight modeling and transformer-based forgery detection.

V. DISCUSSION

The efficiency of combining noise-aware localization and
super-resolution refinement for image fraud detection is shown
by the experimental findings of RIFD-Net++. The model was
able to learn robust noise patterns from the LIVE1 dataset,
which greatly enhanced its capacity to identify tampered areas
in compressed or degraded images. To train the Siamese net-
work on forgery localization, the Columbia Splicing Dataset
offered a variety of manipulation patterns.

A key observation is that the initial coarse masks produced
by the Siamese decoder often captured the general tampered
area but lacked boundary precision. This limitation was ad-
dressed by the Super-Resolution Refinement Module, which
enhanced edge details and produced sharper output masks.
Visual results show that this refinement step improved the
clarity and interpretability of forgery detection, especially for
subtle manipulations.

The quantitative metrics, such as the Mean Average Preci-
sion (MAP) score of 0.90, indicate high pixel-level accuracy.
Furthermore, the model maintained consistent performance
even when tested on noisy or compressed inputs, validating
its robustness. The added Structural Similarity (SSIM) loss
component contributed to preserving texture information and
improving the visual quality of predicted masks.

However, RIFD-Net++ does have some limitations. In cases
involving extremely small or texture-similar forgeries, the
model occasionally misclassifies regions or fails to delineate
precise boundaries. This suggests a potential benefit in in-
corporating multi-scale attention mechanisms or transformer-
based refinement modules in future work.

Overall, the integration of noise modeling and visual en-
hancement into a unified pipeline proved beneficial, making
RIFD-Net++ a strong candidate for practical forensic image
analysis.

VI. CONCLUSION

This paper presented RIFD-Net++, a robust and perceptually
enhanced framework for image forgery detection under noisy
and compressed conditions. Building upon the foundational
RIFD-Net architecture, the proposed model integrates three
key components: a Noise Estimation Module for extracting
residual noise cues, a Denoising Siamese Network for initial
tampering localization, and a Super-Resolution Refinement
Module to sharpen boundaries and improve visual clarity.

Extensive experiments on benchmark datasets, including
LIVEL and the Columbia Splicing Dataset, demonstrate that
RIFD-Net++ outperforms baseline methods in both detection
accuracy and perceptual quality. Quantitative improvements
in mMAP, SSIM, PSNR, and BCE validate the effectiveness of
combining noise modeling with super-resolution-based refine-
ment in a unified end-to-end pipeline.

By jointly addressing structural precision and visual in-
terpretability, RIFD-Net++ offers a practical and scalable
solution for digital image forensics. As future work, we plan
to explore transformer-based attention mechanisms, cross-
domain generalization, and lightweight architectures for real-
time deployment in forensic and surveillance applications.
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