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Abstract: This study presents a mechanical analysis of the Yang chaotic system by transforming it into a 

Kolmogorov-type system, decomposed into four torque components: inertial, internal, dissipative, and external. Five 

scenarios, involving various torque combinations, are explored to identify the key element of chaos and their physical 

implications. The conversion between Hamiltonian, potential, and kinetic energy is investigated in these five 

situations. The interplay between the energy and the parameters is investigated. The study concludes that in order to 

create chaos in a Yang chaotic system, a combination of these four types of torques is required, since any combination 

of the three types of torques cannot. Furthermore, identical Yang chaotic systems are synchronized by function matrix 

projective synchronization (FMPS). 

Keywords: Yang chaotic system, mechanical analysis, chaotic system, matrix projective synchronization and 

dissipative systems. 

1. Introduction: The last several decades have seen a major impact on nonlinear dynamics in the field of science and 

engineering. The dynamical system is employed to investigate how natural occurrences evolve. From an application 

perspective, the dynamical systems that are highly sensitive to initial conditions can be effectively exploited for secure 

communications [1]. Numerous scientific disciplines have identified chaos, which is prevalent in nature. Lorenz [2] 

discovered the first chaotic attractor in 1963. It is a pioneering illustration of deterministic chaos in dissipative 

systems. Another similar chaotic attractor, dual to the Lorenz system but not topologically identical to the Lorenz 

chaotic attractor, was found by Chen and Ueta [3] in 1999. 

Researchers are motivated to study chaotic systems by the applicability aspect. Numerous fields, including physics, 

biology, and secure communication, have found use for it. Chaotic systems were first used in communication by 

Pecora and Carrol [4, 5]. The complex dynamical system becomes a herculean task for the engineers and scientists 

working in the field of mathematical modeling.  

Over the past few decades, experts from all over the world have examined the effect of chaos in nonlinear dynamical 

systems and various physical chaotic systems exhibit this effect most frequently. For application point of view, chaos 

frequently limits the operational range of mechanical and electrical systems, making it an undesirable phenomenon.  
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 Generally, the closed-form analytical solutions are not possible due to the intricacy of the dynamical systems. 

Therefore, the qualitative behavior of an equilibrium point of a dynamical system must be determined using the 

alternative way of analysis. There are a few chaotic systems that are created by numerical simulation. The study of 

the chaotic systems must include system control, synchronization, and sensitivity to initiation, bifurcation theory, and 

numerical computation. The force analysis and mechanics of chaos for dynamical systems have attracted the attention 

of the researchers in the society of engineering.  

However, very few scholars have studied the mechanics and physical underpinnings of chaos [6-10]. Therefore, 

locating the relevant terms in these numerically chaotic systems is an intriguing and difficult challenge. Mechanics 

examines the dynamics of particles, rigid bodies, and continuous media [11-15], explores the transformation of many 

types of energy and forces, and clarifies the meanings of physical concepts.  

A combined analysis of the Kolmogorov and Lorenz systems was examined by Pelion and Pasini [16]. Qi and Liang 

[17] have investigated the mechanical analysis of the Qi four-wing chaotic system. They have identified the angular 

momentum, which is analogous to the state variable of the chaotic system. In order to describe hydrodynamic 

instability or dissipative-forced dynamical systems with a Hamiltonian function, Arnold [18] created a Kolmogorov 

system. They also used the extended Kolmogorov system to study the energy cycle of the Lorenz system. The Chen 

system was mechanically analyzed by Liang and Qi [19]. The Hamiltonian function and Kolmogorov system play a 

crucial role in investigating the mechanics of chaos. The 4D hyper chaotic system has been investigated by 

Benkouider et al. [20] within the framework of the Kolmogorov system. 

In this exploration, we introduce a range of dynamic modes by blending different torques, delving into their energetic 

and dynamic properties to uncover how these forces contribute to the emergence of chaos. Our study sheds light on 

the physical implications of diverse mechanical modes. The primary aim is to examine the forces that spark chaotic 

behavior. Chaotic systems are marked by two key traits: sensitivity to initial conditions and bounded solutions. A 

positive Lyapunov exponent suggests that, in non-chaotic systems, solutions expand without limits. In contrast, for a 

confined chaotic attractor, it reveals a trajectory that continuously stretches and folds within set boundaries.  

Constructing suitable functions that are recognized as controllers to guarantee synchronization is one of the most 

important aspects to analyze dynamical systems. In order to comprehend the unique synchronization behavior of 

these systems, numerous mathematical models have been proposed [21-22]. Synchronization between master and 

slave systems in complex dynamical systems can be achieved with a scaling factor through projective 

synchronization. A variety of synchronization types, including as projective synchronization, anti-synchronization, 

and complete synchronization, be a particular case of function projective synchronization.  Depending on the scale 

function matrix, specific synchronization outcomes are possible: a constant matrix produces matrix projective 

synchronization (MPS). The MPS offers a wider range of applications than traditional projective synchronization, 

especially in enhancing message security.  Due to its increased complexity relative to other synchronization methods 

in chaotic systems, MPS is a critical approach for synchronizing intricate, multidimensional, or highly interactive 

systems. MPS is more complex than other synchronization forms in chaotic systems, making it a crucial approach for 

synchronizing complex systems, particularly in multidimensional or intricately interacting systems. 
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FMPS enables the slave system to be directed by the master system through an arbitrary matrix, thereby strengthening 

communication security via enhanced chaotic masking. Ouannas and Abu-Saris [23] established new controller, 

defining essential conditions and criteria for synchronization. The FMPS has also been explored by multiple scholars 

[24-26]. Additionally, FMPS approach bolsters security by incorporating unpredictability into the scale function 

matrix, attracting significant interest from the research community [27-29]. Motivated by this growing interest, the 

authors examine the FMPS of the Yang chaotic system. 

This article organizes the remaining sections as follows: Section 2 incorporates the mathematical equations of the 

Yang system and its mechanical decomposition in Kolmogorov formalism. Section 3 examines the mechanisms 

underlying various modes of Yang chaotic attractor. Section 4 explores the FMPS of Yang chaotic system. Section 5 

provides a concise conclusion. 

2. System’s Description  

The Yang chaotic system in [30] is described as  

𝜉1̇ = 𝛼 (𝜉
2

− 𝜉
1

)  

𝜉2̇ = −𝜉1 𝜉3 + 𝛾𝜉1                                                                                                                          (1) 

 𝜉3̇ = 𝜉1𝜉2 − 𝛽𝜉3  

where 𝛼, 𝛽 and 𝛾  be the parameters.  

 

Fig 1. Phase portrait of Yang chaotic system when 𝛼 = 10 and 𝛽 =
8

3
, 𝛾 = 16. 

 

Now apply a linear transformation 𝜉1 = 𝜉1, 𝜉2 = 𝜉2, 𝜉3 = 𝜉3 − 𝛾, further the system is given by 

𝜉1̇ = 𝛼 (𝜉2 − 𝜉
1

)  

𝜉2̇ = 2𝛾𝜉1 − 𝜉1 𝜉3                                                                                                                       (2) 

 𝜉3̇ = 𝜉1𝜉2 − 𝛽𝜉3 + 𝛽𝛾  
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We provide the Euler equation and the Kolmogorov system to determine the physical equivalent of the system's state 

variables and mechanics. Arnold's Kolmogorov system, which simulates hydrodynamic instabilities [18] was 

previously characterized in three dimensions as 

𝜉̇ = {𝜉, 𝐻} −∧ 𝜉 + 𝜓                                                                                                                     (3)  

The anti-symmetric brackets {.,.} represent the algebraic structure associated with the Hamiltonian function, 

indicating the presence of centrifugal and internal force components [19]. The system's dissipation is represented by 

the positive definite diagonal matrix ∧ 𝜉.  The magnitude of the external force field is indicated by 𝜓. 

The Lie-Poissions bracket is given by  

{𝐸, 𝛲}(𝜉) = −𝜉. (𝛻𝐸 × 𝛻𝑃) = −𝜀𝑗𝑘
𝑖 𝑥𝑖

𝜕𝑃

𝜕𝑥𝑗

𝜕𝑃

𝜕𝑥𝑘
;      𝑖, 𝑗, 𝑘 = 1, 2, 3.                                               (4) 

where 𝐸, 𝑃 ∈ 𝐶∞(𝑔∗), 𝑔 represents Lie-algebra and 𝜀𝑗𝑘
𝑖  represents Levi-Civita tensor. System (3) is introduced by 

Kolmogorov to identify the instability of hydrodynamic systems as reported by Arnold [18] in 1991.  

By defining the Hamiltonian as H = K + U, where 𝐾 = (𝜉1
2 + 𝜉2

2 + 𝜉3
2)/2, 𝑈 = (𝛼 + 2𝛾)𝜉3 represents kinetic and 

potential energy respectively. The Yang chaotic system (2) is characterized as a Kolmogorov-type system,  

𝜉̇ = (2

𝛼𝜉2 

𝛾𝜉1 − 𝜉1𝜉3

 𝜉1𝜉2 

) − (

𝛼𝜉1 

0
 𝛽𝜉3 

) + (
0
 0

𝛽𝛾 
)  

  = {𝜉, 𝐻} −∧ 𝜉 + 𝜓                                                                                                                      (5)  

where 𝜉 =  [ 𝜉1 , 𝜉2 , 𝜉3 ] T , 𝛬 = 𝑑𝑖𝑎𝑔{𝛼, 0, 𝛽}  and  𝜓 = (0 , 0, 𝛽𝛾)T .  

System (3)'s first term, {𝜉, 𝐻} is conservative by nature and includes internal torque and centrifugal forces that are 

derived from kinetic and potential energy respectively. Here, the time derivative 𝜉̇ represents the system's reaction 

torque, while the variable 𝜉 represents the angular momentum. 

3. Mechanical Analysis 

In order to determine the critical factor that causes chaos, this section looks at the dynamic modes of the chaotic 

system (5), which correlate to various types of torque. On the other hand, energy is easier to understand because it is 

a scalar quantity.  

Case 1: System under inertial torque: 

The equivalent mechanical equation is given as 

𝜉̇ = {𝜉, 𝐾} = (

0 
−𝜉

1
𝜉

3

 𝜉1𝜉2 
)                                                                                                                  (6)  
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(a)                                                                           (b) 

Fig. 2. (a) 3D representation of system (6) (b) Time dependent behavior of state variable 𝜉3 of system (6). 

The time derivative of kinetic energy is 𝐾̇ = 𝜉1𝜉1̇ + 𝜉2𝜉2̇ + 𝜉3𝜉3̇ = 0. Consequently, a conservative approach is taken 

by the system (6) subjected to kinetic energy. The graphical representation of conservative nature of the system (6) 

is demonstrated through Fig. 2 (a) while state variable of 𝜉3 is represented by Fig. 2 (b).  

Case 2: System under internal and inertial torque:  

The corresponding mechanical equation is given as 

𝜉̇ = {𝜉, 𝐻} = {𝜉, 𝐾} + {𝜉, 𝑈} = (

𝛼𝜉2

2 𝛾𝜉1 − 𝜉1𝜉3

 𝜉1𝜉2 

) .                                                                                   (7)  

 

(a)                                                              (b) 

Fig. 3. (a) Three-Dimensional Visualization of Periodic Trajectories; (b) Time dependent representation of state variable 𝜂3. 

The derivative of Hamiltonian function is 𝐻̇ = 𝜉1𝜉1̇ + 𝜉2𝜉2̇ + 𝜉3𝜉3̇ + (2𝛾 + 𝛼)𝜉3̇ = 0. Therefore, Hamiltonian is 

constant i.e. conservation of energy holds. Subsequently, a closed periodic orbit is demonstrated through Fig. 3(a) 

while the state variable  𝜉3  is illustrated through Fig. 3(b). Additionally, all the Lyapunov exponent vanishes and 

Lyapunov dimension (𝐿𝑑) is 3. Therefore, the conservation of system (7) is confirmed.  

Case 3: System subjected to inertial, internal and dissipative torques: 

The corresponding mechanical equation is   

http://www.ijnrd.org/


© 2025 IJNRD | Volume 10, Issue 7 July 2025 | ISSN: 2456-4184 | IJNRD.ORG 

IJNRD2507107 International Journal of Novel Research and Development (www.ijnrd.org) 
 

 

b60 

𝜉̇ = {𝜉, 𝐻} −∧ 𝜉 = (2

𝛼𝜉
2

 

𝛾𝜉
1 

− 𝜉
1

𝜉
3

 𝜉1𝜉
2

 

) − (

𝛼𝜉1

 0
 𝛽𝜉3 

)                                                                               (8)  

when 𝛼 = 10, and 𝛽 =
8

3
, 𝛾 = 16,  It is obtained as 𝐷𝑖𝑣(𝑉) = −(𝛼 + 𝛽) < 0 and  V stands for the system's phase space 

volume. Due to exponential contraction of the volume, (𝑡) = 𝑉(0)𝑒−(𝛽+𝛼)𝑡 , system (8) must be dissipative. For 

Hamiltonian, the time derivative is given as  

𝐻̇ = −𝛼𝜉1
2 − 𝛽𝜉3

2 + 𝛽𝛾𝜉3,  

Unlike the Kolmogorov system [19-20], we have not yet succeeded in determining the energy dissipation via the 

derivative of the Hamiltonian. Therefore, in order to characterize the dissipative behavior of system (8) the Casimir 

energy function [9] has been incorporated.                                                     

 
                                     (a)                                                                           (b) 

Fig. 4. (a) Variation of Hamiltonian energy with time, (b) Time-dependent behavior of energy functions. 

The rate of change of Casimir energy can be expressed as 

𝐶̇ =
𝜕𝐶

𝜕𝜂
𝜂̇  

    = −(𝜉1
2 + 𝛽𝜉3

2) < 0          

The system exhibits clear dissipative behavior. Figures 4(a) and 4(b) depict the Hamiltonian energy and energy functions, 

respectively, and demonstrate how the dissipative term causes the Hamiltonian energy to drop off significantly following the 

energy exchange.  Therefore, Hamiltonian energy increases with time due to increase in kinetic energy as illustrated in 

the Fig.4 (b). The system is not conservative, as indicated by the variance in Hamiltonian energy, yet it is not chaotic 

because the Lyapunov dimension (𝐿𝑑) is 3, which is not fractal.   

Case 4: when system subjected to inertial, internal and external torques: 

The corresponding mechanical equation can be expressed as, 

𝜉̇ = {𝜉, 𝐻} + 𝜓 = 𝜉̇ = (2

𝛼𝜉2

𝛾𝜉1  − 𝜉1𝜉3

 𝜉1𝜉2 

) + (
0
 0

𝛽𝛾 
)                                   (9)  
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                                       (a)                                                                      (b) 

 

  (c) 

Fig. 5. (a) Three-Dimensional Visualization of Trajectories of system (9) (b) Time dependent behaviour of state variable 𝜉3 (c) 

Variation of energy functions with time. 

As seen in Fig. 5(a), the external torque 𝜓 causes the orbit to extend out into spiral-like arcs as a torus in addition to 

doubling its period. Fig. 5(b) depicts how state variables' oscillation frequencies increase fast with time.  

Let  𝑉1(𝑡) =
𝜉1

2

2
− 𝛼𝜉3; 

then 𝑉̇1(𝑡) = −𝛼𝛽𝛾 < 0 and 𝑉1(𝑡) −  𝑉1(0) = ∫ −2𝛼𝛾𝑑𝑠
𝑡

0
= −𝛼𝛽𝛾𝑡; 

 𝑉1(𝑡) → −∞ 𝑤ℎ𝑒𝑛 𝑡 → ∞.  

That is, the state 𝜉1 or 𝜉3 is unbounded, as shown in Fig. 5(a). Therefore, the system is not chaotic. System (9) does 

not contains dissipative term and the energy contained in the system (9) as a result of external torque primarily 

enhances the kinetic energy. Therefore, Hamiltonian energy increases with time due to increase in kinetic energy as 

illustrated in the Fig.5 (c). Energy production and dissipation are prerequisites for a dissipative chaotic system. 

Case 5: when system is under full torque: 

𝜉̇ = (

𝛼𝜉2

 2𝛾𝜉1 − 𝜉1𝜉3

 𝜉1𝜉
2

 

) − (

α𝜉1

 0
 𝛽𝜉3 

) + (
0
 0

 𝛽𝛾 
)   = {𝜉, 𝐻} −∧ 𝜉 + 𝜓                                                  (10)  
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                               (a)                                                                                    (b) 

Fig.6. (a) Three-Dimensional Visualization of Trajectories of system (10) (b) Variation of energy functions with time. 

It is evident that inertial torque and dissipation are required for chaos, but they are not enough on their own to cause 

chaotic behavior, as illustrated in case 3, where both elements are present yet chaos does not develop.  Both internal 

and external torques are important drivers of chaotic dynamics in many systems. The chaotic system's orbit travels 

across a nearly two-dimensional curved surface, forming a chaotic attractor whose volume progressively compresses 

toward zero (Fig. 6(a)). The Fig. 6(b) demonstrates the relationship between kinetic and potential energy over time. 

The center curve shows the Hamiltonian energy, the bottom curve shows potential energy, and the upper curve shows 

kinetic energy. Nonetheless, the variation in Hamiltonian energy reveals the chaotic character of the system's energy 

behavior and points to a violation of conservation. 

 

 

Fig.7. Dynamics of Lyapunov exponents of Yang system 

Evidently, Lyapunov exponents for system (10) are 𝐿1 = 0.85614, 𝐿2 = 0.00155, 𝐿3 = −14.5209, and Lyapunov 

dimension  𝐿𝑑 = 2.05906. The chaotic characteristic of the Yang system is reflected in the fractal Lyapunov 

dimension for system (10). 
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4. Function matrix projective synchronization (FMPS):  

Consider the following two non-identical chaotic systems: 

,))(()( tFt                                                                                                               (11) ,))(()( UtGNt                                                                                               

       (12) where     mT

m

T

m Rtttttttttt  )(...,,)(,)(,)()(,)(...,,)(,)(,)()( 321321  , M and N are 

nn  matrices with nonlinearities F and G. The control parameter isU .  

Definition 4.1: The master system (11) and slave system (12) are said to achieve function matrix projective 

synchronized (FMPS) if there exist a control function mRU ),(  which satisfies 0lim 



t

,  

                                              (13) where the constant matrix   is projective 

matrix. 

Theorem 4.1: Synchronization in the form of a functional matrix projection is attained between the master and slave 

systems (11) and (12), respectively, if there exists a controller mRU ),(  such that  

  )()(])([ NGFMU                                                                                          (14) Provided 

)()(   NN T  is negative definite.  

Proof: The error system associated with matrix projective synchronization has the following time derivative:  

  e .                                                                            

The above equation together with (14) yields 

eB

tFMUtGNe

)(

))](([))((







 
 

In order to analyze the stability of the error system, we define a Lyapunov-type function eeV T  

𝑉, whose time derivative is expressed as, 

  .0)()(

,





eNNe

eeeeV

TT

TT




  

The condition derived above is satisfied when the matrix )()(   NN T is negative definite. 

4.1 Matrix projective Synchronization (MPS): 

The Yang chaotic system [30] is considered as master system 

𝜉1̇ = 𝛼 (𝜉2 − 𝜉
1

)  

𝜉2̇ = −𝜉1 𝜉3 + 𝛾𝜉1                                                                                                                        (15) 

 𝜉3̇ = 𝜉1𝜉2 − 𝛽𝜉3  

Further, the controlled slave system is supposed as 

η1̇ = 𝛼(η2 − η1) + 𝑈1 

η2̇ = −η1 η3 + 𝛾η1 + 𝑈2                                                                                                            (16) 

 η3̇ = η1η2 − 𝛽η3 + 𝑈3 

The function TUUU ),,( 321  serves as a control input intended to direct the behavior of slave system.   
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The projective matrix   has been considered, to synchronize master system (15) and slave system (16), as 















 



210

011

101

  .                                                                                                                              (17) The linear part 

of response system yields  





























00

00

0

B .                                                                                                   (18) There are a 

number choices for the gain matrix. In this case, the gain matrix has been regarded as






















000

01

00





 .                                                                                                                        

(19) Finally, the equation (18) and (19) yields  































00

010

00

B . 

Now, equation (19) yields the control function as 

).2()(2

,)()(

,)()(

32213211313

212131131122

2313213121













U

U

U

 

Substituting the control function and the parameter values from equations (17), (18), and (19) into the control law, 

we obtain the error system as 

.,, 332211 eeeeee                                                                         (20) All of the 

eigenvalues in the error system are negative, ensuring asymptotic stability. Consequently, the FMPS has been 

achieved in accordance with theorem 4.1. 

 

 

Fig.8. State trajectories of the error system over time 
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The IC (0.1, 0.1, 0.1) has been taken for Yong chaotic system, when 𝑎 = 10, 𝑏 =
8

3
 𝑎𝑛𝑑 𝑐 = 16, the phase portrait of 

chaotic system in 3D space is illustrated through Fig.1. The Fig.8 reveals that the state trajectories of drive and 

response systems converges to zero, this authenticates the matrix projective synchronization has been achieved 

successfully at st 3.8 .  

5. Conclusion: As an extended Kolmogorov system, the Yang chaotic system's mechanical and physical foundations 

are examined in this work. In order to find the main causes of chaos, we have combined four different forms of 

torques for the converted Yang chaotic system and examined five different scenarios. In the conservative cases, the 

Hamiltonian is constant, hence the analogous equation has a periodic solution. A conserved system's Hamiltonian 

tends to zero or infinity when an external or dissipative torque is applied, and chaos is avoided as a result. When all 

of the torques and the interchange of kinetic and potential energy are considered, the Yang system produces chaos. 

These four torques are necessary for the Yang system to become chaotic. 

Moreover, FMPS for Yang chaotic system has been accomplished, and Fig.7. shows that the state trajectories of the 

error system approaches to zero after 𝑡 = 8.3𝑠. The efficiency of tactics and underlying theoretical analysis are 

validated by numerical simulations carried out in MATLAB. Despite the intricacy of this method, communication 

security is improved. The authors are sure that researchers in the fields of science and engineering would value this 

effort. 

 

 

 

References: 

1. Alvarez, G., Li, S., Montoya, F., Pastor, G. and Romera, M. (2005), Breaking projective chaos 

synchronization secure communication using filtering and generalized synchronization, Chaos, Solitons and 

Fractals, 24, 775-783. 

2. Lorenz, E. N. (1963), Deterministic non-periods flows, Journal of the Atmospheric Sciences, 20, 130-141. 

3. Chen, G. and Ueta, T. (1999), Yet another chaotic attractor, International Journal of Bifurcation and Chaos, 

9(7), 1465-1466. 

4. Pecora, L. M. and Carroll, T. L. (1990), Synchronization in chaotic systems, Phys. Rev. Lett., 64 (8), 821-

824. 

5. Pecora, L. M. and Carroll, T. L. (1991), Driving systems with chaotic signals, Physics Review Letter, 44(4), 

2374-2383. 

6. Shukla, V. K., Joshi, M. C., Rajchakit, G., Nápoles Valdes, J. E., & Mishra, P. K. (2024). Matrix projective 

synchronization and mechanical analysis of unified chaotic system. Mathematical Methods in the Applied 

Sciences, 47(7), 6666-6682. 

7. Gluhovsky, A. (2006), Energy-conserving and Hamiltonian low-order models in geo-physical fluid 

dynamics, Nonlinear Process Geophys., 13(2), 125-133. 

http://www.ijnrd.org/


© 2025 IJNRD | Volume 10, Issue 7 July 2025 | ISSN: 2456-4184 | IJNRD.ORG 

IJNRD2507107 International Journal of Novel Research and Development (www.ijnrd.org) 
 

 

b66 

8. Pasini, A. and Pelino V. (2000), A unified view of Kolmogorov and Lorenz systems, Phys. Lett. A, 275, 435-

446. 

9. Shukla, V. K., Joshi, M. C., Mishra, P. K., & Xu, C. (2024). Mechanical analysis and function matrix 

projective synchronization of El-Nino chaotic system. Physica Scripta, 100(1), 015255. 

10. Shukla, V. K., Priyadarshi, A., Shukla, S., & Mishra, P. K. (2024). Study of Mechanical Analysis of Vallis 

Chaotic System. Journal of Applied Nonlinear Dynamics, 13(03), 449-459. 

11. Mishra, P. K., and Das, S. (2016), Interaction between interfacial collinear Griffith cracks in composite media 

under thermal loading, Zeitschrift für Naturforschung A, 71(5), 465-473. 

12. Mishra, P. K., Das, S., and Gupta, M. (2016), Interaction between interfacial and sub‐interfacial cracks in a 

composite media-Revisited, Journal of Applied Mathematics and Mechanics, 96(9), 1129-1136. 

13. Anuvedita Singh, P. K. Mishra and S. Das, Dynamic stress intensity factors of an interfacial crack in 

orthotropic elastic strips under impact loading conditions, Z. Angew. Math. Mech., Vol. 99(1), pp. 1-16, 

2019. DOI: 10.1002/zamm.201800143. 

14. Mishra, P. K., Singh, P., & Das, S. (2017). Study of thermo‐elastic cruciform crack with unequal arms in an 

orthotropic elastic plane. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte 

Mathematik und Mechanik, 97(8), 886-894. 

15. Mishra, P. K., Singh, P., & Das, S. (2017). Interaction of three interfacial cracks between an orthotropic half-

plane bonded to a dissimilar orthotropic layer with punch. Zeitschrift für Naturforschung A, 72(11), 1021-

1029. 

16. Pelion, V., Maimone, F. and Pasini, A. (2014), Energy cycle for the Lorenz attractor, Chaos Solit. Fract., 64, 

67-77. 

17. Qi, G. and Liang, X. (2016), Mechanical analysis of qi four-wing chaotic system, Nonlinear Dyn.. 86(2), 

1095-1106. 

18. Arnold V. I. (1991), Kolmogorov’s Hydrodynamic attractors, Proc. R. Soc. London, A 434, 19-22. 

19. Liang, X. and Qi, G. (2017), Mechanical analysis and energy cycle of Chen chaotic system, Brazilian Journal 

of Physics, 47(3), 288-294. 

20. Benkouider, K., Sambas, A., Bonny, T., Al Nassan, W., Moghrabi, I. A., Sulaiman, I. M., ... and Mamat, M. 

(2024), A comprehensive study of the novel 4D hyperchaotic system with self-exited multistability and 

application in the voice encryption, Scientific Reports, 14(1), 12993. 

21. Shukla, V. K., Joshi, M. C., Mishra, P. K., & Xu, C. (2024). Adaptive fixed-time difference synchronization 

for different classes of chaotic dynamical systems. Physica Scripta, 99(9), 095264.  

22. Shukla, V. K., Joshi, M. C., Rajchakit, G., Chakrabarti, P., Jirawattanapanit, A., & Mishra, P. K. (2023). 

Study of generalized synchronization and anti-synchronization between different dimensional fractional-

order chaotic systems with uncertainties. Differential Equations and Dynamical Systems, 1-15.  

http://www.ijnrd.org/


© 2025 IJNRD | Volume 10, Issue 7 July 2025 | ISSN: 2456-4184 | IJNRD.ORG 

IJNRD2507107 International Journal of Novel Research and Development (www.ijnrd.org) 
 

 

b67 

23. Ouannas, A. and Raghib, Abu-Saris (2016), On matrix projective synchronization and inverse matrix 

projective synchronization for different and identical dimensional discrete-time chaotic systems, Journal of 

Chaos, 2016, 1-7. http://dx.doi.org/10.1155/2016/4912520. 

24. Shukla, V. K., Mishra, P. K., Srivastava, M., Singh, P., & Vishal, K. (2023). Matrix and Inverse Matrix 

Projective Synchronization of Chaotic and Hyperchaotic Systems with Uncertainties and External 

Disturbances. Discontinuity, Nonlinearity, and Complexity, 12(04), 775-788.  

25. Shukla, V. K., Mbarki, L., Shukla, S., Vishal, K., & Mishra, P. K. (2023). Matrix projective synchronization 

between time delay chaotic systems with disturbances and nonlinearity. International Journal of Dynamics 

and Control, 11(4), 1926-1933.  

26. Shukla, V. K., Joshi, M. C., Rajchakit, G., Nápoles Valdes, J. E., and Mishra, P. K. (2024). Matrix projective 

synchronization and mechanical analysis of unified chaotic system. Mathematical Methods in the Applied 

Sciences, 47(7), 6666-6682. 

27. Liu, F. (2014), Matrix projective synchronization of chaotic systems and the application in secure 

communication, Applied mechanics and materials, 644, 4216-4220. 

28. Wu, Z., Xu, X., Chen, G. and Fu, X. (2014), Generalized matrix projective synchronization of general colored 

networks with different-dimensional node dynamics, Journal of the Franklin Institute, 351, 4584-4595. 

29. Shi, Y., Wang, X., Zeng, X. and Cao, Y. (2019), Function matrix projective synchronization of non-

dissipatively coupled heterogeneous systems with different-dimensional nodes, Advances in Difference 

Equations, 198, 1-12, https://doi.org/10.1186/s13662-019-1984-9. 

30. Petráš, I. (2022). The fractional-order Lorenz-type systems: A review. Fractional Calculus and Applied 

Analysis, 25(2), 362-377. 

 

http://www.ijnrd.org/
http://dx.doi.org/10.1155/2016/4912520
https://doi.org/10.1186/s13662-019-1984-9

