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1.Introduction

Graph theory has emerged as a fundamental tool in various branches of science, particularly in chemistry,
physics, biology, and network theory. Graphs provide an intuitive and mathematical way to model
relationships and interactions between objects. In particular, molecular graphs, where atoms are represented
by vertices and chemical bonds by edges, offer a valuable framework for studying molecular structure,
stability, and reactivity. A core aspect of such studies involves topological indices, which are numerical
descriptors derived from graph structures. These indices play a critical role in correlating the physical,
chemical, and biological properties of compounds with their molecular structure.

Over the years, several topological indices have been proposed, such as the Wiener index, Zagreb indices, and
the Randic index, among others. These indices capture various aspects of molecular structure, including bond
connectivity, molecular branching, and distance properties. More recently, Revan topological indices have
gained attention as a novel class of indices aimed at providing a more refined characterization of graph
structures. Similarly, topological polynomials, such as the characteristic and chromatic polynomials, offer
algebraic representations of graph properties, enabling deeper insights into their combinatorial structure. The
Revan topological polynomials, in particular, extend this concept by encoding graph properties in polynomial
form, facilitating the study of complex graphs and networks.

The topological index was evolved by Wiener, in 1945,while researching the alkane’s boiling point [2, 3]. 1
degree-based topological index was represented by Milan Randi’c, Revan 1st and 2™ topological indices
were introduced by Kulli in [1]; for study, see [4]
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This paper focuses on the computation of Revan topological indices and Revan topological polynomials for
three important and well-known families of graphs: Crown graphs, Gear graphs, and Friendship graphs. These
graph families have significant applications in various scientific domains:

1. Crown graphs (or corona graphs) are a subclass of bipartite graphs often used in studying symmetries
and molecular interactions.

2. Gear graphs represent a generalization of cycle graphs and have been widely studied in the context
of modeling mechanical systems, molecular networks, and cyclic compounds.

3. Friendship graphs consist of multiple triangles sharing a common vertex and are frequently used to
model social networks where mutual friendships between individuals form triangular relationships.

While these graphs have been studied extensively in the literature, the computation of Revan topological
indices and Revan topological polynomials for these graph classes remains an open and unexplored area. In
this paper, we aim to bridge this gap by presenting explicit formulas for these indices and polynomials for
Crown, Gear, and Friendship graphs. The Revan indices and polynomials offer a more comprehensive
understanding of the structural properties of these graphs, providing a new perspective on their topological
characteristics.

1. Preliminaries

1.1 REVAN Indices
R(G)= > (r,+r)

u,veE(G)

i' RZ(G)= Z (ru*rv)

u,veE(G)

R(G)= > |r,-r]

u,veE(G)

i, R,(G)= > (r=r)

u,veE(G)
i.  R(G)= D |r,-r].
u,veE(G)
1.2 REVAN Topological polynomial
R(G XY= Y xo

u,veE(G)

i RZ(G,X)= Z x (1)

u,veE(G)

RG )= 3 X

u,veE(G)

i RZ(G,X)Z Z x ()

u,veE(G)

iii. R(Gx)= > x&

u,veE(G)

2. Main Results
2.1 Crown graph

Let C K, be the crown graph with |V (C K,)|=2n and | E(C.K))|=2n

Tablel: Revan edge set partition of crown graph

Edge partition RE,, RE, ,

Frequency n n
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2.2 Line graph of a crown graph

Let (L(C,K,)) be the line graph of crown graph with M (L(C K,))|=2n and | E(L(C K,))|=3n.

Table 2: Revan edge set partition of line graph of crown graph
Edge partition RE,, RE,,

Frequency n 2n

Theorem 3.1 Let G be the crown graph C K, then

1. R (G)=6n
2. R,(G)=4n
3. R(G)=2n

Proof: Let G be the crown graph C K, . The total number of vertices of G are 2n and total numbers of

edges are 2n respectively.
1. Tocompute R (G) using table 1, we see that

R(G) =D (r+r)+> (1, +1,)

R(G) = nt1+ 3)+ n(1+i)
R, (G)=6n

2. Tocompute R,(G) using table 1, we see that

Rz(G):Z(ru >krv)"'Z:(ru *I‘v)

R,(G)= n(l* 3)+ n(l*i)
R, (G)=4n

3. Tocompute R;(G) using table I, we see that

Ry(G)=2 [ — |+ 2.Ir — )

E1,3 El,l
R;(G)=n[1-3+n[1-1
R, (G)=2n

Theorem 3.2 Let G be a crown graph C_ K, then
1. R(G,x)=nx*(x*+1)
2. R,(G,x)=nx(x*+1)
3. R,(G,x)=n(x*+1)

Proof: Let G be the crown graph C K, . The total number of vertices of G is 2n and total numbers of edges

are 2nrespectively.
1. To compute Rl(G, x) using table 1, we see that

Rl(G, X) _ Z X(ru+rv) + z X(ru+rv)

El,3 El,l
R, (G, x) = n(x®¥) + n(x*?)
R (G,x) =nx*(x* +1)
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2. To compute RZ(G, x) using table 1, we see that

R,(G,x) = x¥") 4 3" x(%)

E1,3 El,l
R, (G, ) = n(x*¥) +n(x"?)
R, (G, X) = nx(x* +1)

3. To compute R,(G,x) using table 1, we see that

R,(G,x) = 3 x5 1 3K

R,(G,X) = n(x'“') + n(*'l*”)
R, (G,x)=n(x*+1)

Theorem 3.3 Let G be a line graph of crown graph L(C,K,) then

1. R(G)=16n
2. R,(G)=20n
3. R,(G)=4n

Proof: Let G be the line graph of crown graph L(Cn Kl). The total number of vertices of G is 2n and total

numbers of edges are 3n respectively.

1. Tocompute R (G) using table 2, we see that

R(G) =Y (r,+r)+> (r,+r,)

R (G)= n(2+ 2)+ 2n(4+ 2)
R, (G) =16n

2. To compute R, (G) using table 2, we see that

R,(G) =D (1, *r,)+> (1, *r,)

Eo Espz
R,(G)=n(2*2)+2n(4*2)
R,(G)=20n

3. Tocompute R,(G) using table 2, we see that

RS(G) :Z|ru _rv|+Z|ru _rv|

E2.2 E4‘2
R;(G)=n|2-2|+2n|4-2|
R, (G)=4n

Theorem 3.4 Let G be a line graph of crown graph L (C_ K,) then

R, (G, x) =nx*(2x* +1)
1. R,(G,x)=nx*(2x* +1)

R,(G,X) =n(2x* +1)
2. R,(G,x)=nx*(2x* +1)
3. Ry(G,x)=n(2x* +1)

Proof: Let G be the line graph of crown graph L(C,K, ). The total number of vertices of G is 2n and total

numbers of edges are 3n respectively.

1. To compute Rl(G, x) using table 2, we see that
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Rl(G1 X) = Z X(ru”v) + z X(ru+rv)

E2p Espz
R, (G, x) = n(x®*?)+2n(x"“*?)
R (G,x) =nx*(1+2x?%)
2. Tocompute R, (G, x) using table 2, we see that

R,(G,x) = 3 X+ 1+ 3 ()

B2 Es2
R, (G, x) = n(x?®?)+2n(x“?)
R,(G,x) =nx*(2x* +1)
3. Tocompute R, (G, x) using table 2, we see that

RS (G! X) = Z Xlr“_rv| + z X"’u*fvl

=¥ Esp
R,(G,x) =n(x* %) +2n(x*?)
R,(G,x) =n(2x* +1)

3.2 Gear Graph
Let G, be the gear graph with |V (G,)|=2n and |E(G,)|=3n
Table 3: Revan edge partition of gear graph

Edge partition RE, 1 RE, 1,

Frequency n 2n

3.3 Line graph of a gear graph
8n+n®-2
2
Table 4: Revan edge set partition of line graph of gear graph

Let L(G,)be the gear graph with |VL(G,)|=3n and |EL(G,) |=

Edge partition RE,, RE; (n) RE (10,11
Frequency n(n-1) 2n 2n
2

Theorem 3.5 Let G be a gear graph then (G,)
1. R(G)=n(3n-1)
2. R,(G)=2n(n*-1)
3. Ry(G)=n(-n)

Proof: Let G be the crown graph (G,) . The total number of vertices of G is 2n and total numbers of edges
are 3n respectively.
1. To compute R (G) using table 3, we see that

R(G)= D (r+r)+ > (1, +r)

E2,n71 n-1,n
R(G)=n(2+n-1)+2n(n-1+n)
R,(G)=n(3n-1)

2. Tocompute R,(G) using table 3, we see that
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RZ(G) = z (ru >|<rv)—i_ Z (ru >krv)

Ez,n—l n-1,n
R,(G) =n(2*(n-1))+2n((n—-1)*n)
R,(G) =2n(n*-1)
3. Tocompute R,(G) using table 3, we see that

R3(G) = Z |ru _rv|+ Z |ru _rv|

Eona Enan
R;(G)=n|2+n-1|+(2n(|n—-1-n]))
R;(G)=n(5-n)

Theorem 3.6 Let G be a gear graph (G,) then
R (G, x) =n(x"" +2x>"")
1. R,(G,x) =n(x*"2+2(x" ™)
R,(G,x) =n(x>" +2x)
2. R,(G,X)=n(x*"%+2(x" ™)
3. R,(G,x)=n(x*"+2x)

Proof: Let G be the crown graph (G,) The total number of vertices of G is 2n and total numbers of edges

are 3n respectively.
1. To compute R, (G,x) using table 3, we see that

Ri(G’ X) — Z X(rqurv) + Z X(ru+rv)

EZ.nfl Enfl,n
R (G, x) =n(x*"")+2n(x" ")
R (G,X) =n(x"" +2x*"7)
To compute R, (G, x) using table 3, we see that

Rz(G,X) — Z X(ru*rv) + Z X(ru*rv)
E

B2t n-1,n
R2 (G, X) — n(XZ*(n—l)) + 2n(xn*(1+n))
R2 (G, X) = n(x2“*2 + 2(Xn27n ))
To compute Ry (G, x) using table 3, we see that

Ry(G,x)= D Xl 3"yl
E

Ez,n—l n-1,n

R,(G,x) = n(x'z‘(”‘l)') n Zn(xln—(l+n)|)

R,(G,x) =n(x*" +2x)

Theorem 3.7 Let G be a line graph of gear graph L(G,) then
1 R(G)=3@n"+4n-1)

4n®+29n* +7n
2
3. R(G)=2n(2-n)

2. R,(G)=

Proof: Let G be the crown graph L(G,) the total number of vertices of G is 3n and total numbers of edges

8n+n’-2 :
are — respectively.

1. To compute R (G) using table 4, we see that
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R(G) =D (r,+r)+ > (L+r)+ > (r,+r)

Bss Bsna Eniani
R(G)= @(%3) +2n(3+n+1)+2n(n+1+n+1)

R.(G) =3(3n° +4n—1)
2. Tocompute R, (G) using table 4, we see that

RZ(G):Z(ru >X<r-v)+ Z (ru *rv)+ Z (ru >l<rv)

Ess Esna Enitna

R,(G) = ”(”2_1) (3%3)+ 2n(3* (N +1)) + 2n((n +1) * (N +1))

4n® +29n* +7n

2
3. Tocompute R,(G) using table 4, we see that

R(G)=DIr,—r [+ > It =1+ > |t —r,]|

Eas Esna Eniana

n(n2—1) 13-3|+2n|3—(n+1)[+2n|(n+1) = (n+1) |

R;(G)=2n(2—-n)

Theorem 3.8 Let G be a line graph of gear graph L(G,) then
1. Rl(G’X):2X2(n2—n)+n(xzn+2+xn+4)
2. RZ (Gl X) = Xg (n2 — n) +4n(x3(n+1) + X(n+1)2)

3' R3(G!X):n(n—1)+4n(1_|_ X(n—Z))

Rz (G) =

R,(G) =

Proof: Let G be the crown graph L(G,) The total number of vertices of G is 3n and total numbers of edges

8n+n’ -2 _
are — respectively

Ri(G, X) = zx(rqurv) + z RO 2 (T +R)

E3v3 E3,n+1 En+1,n+1

1. To compute R (G,x) using table 4, we see then R (G, x) = _n(n2—1) (x*%) + 2n(x*™) + 2n(x™H )

R1(G, X) = 2x2(n2 - n) + n()(2n+2 i Xn+4)

2. Tocompute R,(G,x) using table 4, we see then

RZ(G,X):zx(ru*rv)+ z X(ru*rv)+ Z X(ru*rv)
E

Baa Bana n+1,n+1

R2 (G, X) = @ (XS*S) + 2n(X3*(n+l)) + 2n(X(n+l)*(n+l))

Rz (GH X) = )(g(ﬂ2 — n) + 4n(x3(”+1) + X(n+1)2)

3. Tocompute R,(G, x) using table 4, we see then

R3(G, X) — thu—l‘vl + Z X|ru=r<rv| i Z X“’u*"v\
E,

E3,3 E3,n+1 n+1,n+1
R3 (G, X) — n(nz_l) (X|3—3|) + 2n(X|3—(n+1)|) + 2n(x|(n+1)—(n+1)|)

R;(G,x) =n(n-1)+4n(1+x"?)
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3.5 Friendship graph
Let C be the friendship graph with [V(C")=m(n-1)+1| and |E(C") =nm|

Table 5: Revan edge set partition of friendship graph

Edge partition RE RE

2,2m 2m,2m

Frequency 2m (n—2)m

3.6 Line graph of a friendship graph

Let L(C.") bethe line graph of friendship graph for For n>3then, ’V Cch
[E(CT)|=nm+2(2m+k) for2<k <(2m-2)

=nm and

Table 6: Revan edge set partition for line graph of friendship graph
Edge partition RE RE RE

2,2m 2m2m 2,2

Frequency m(n-1) m(n-1) m(2m-1)

Theorem 3.9 Let G be a friendship graph C" then,
1. R(G)=4m-4m*(1-n)
2. R,(G)=4m*(n-2)+8m?
3. Ry(G)=4m(m-1)

Proof: Let G be the friendship graph C." the total number of vertices are m(n—1)+1 and total numbers of

edges are mn respectively.
1. To compute R (G) using table 5, we see then

R(G)= Z (r,+r,)+ z (r,+r,)

E2,2m EZm‘Zm
R,(G) =2m(2+2m)+(n—2)m(2m+2m)
R (G) =4m—4m?(1-n)
2. Tocompute R, (G) using table 5, we see then

R,(G) = Z (r,*r,)+ Z (r,*r,)

EZ,Zm EZm,Zm
R,(G) =2m(2*2m)+(n—2)m(2m*2m)
R,(G) = 4m*(n—2) +8m?
3. Tocompute R,(G) using table 5, we see then

R3(G):Z|ru_rv|+ z |ru_rv|

EZ,Zm E2m,2m
R;(G)=2m|2-2m|+(n—-2)m|2m—2m|
R;(G) =4m(m-1)
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Theorem 3.10 Let G be a friendship graph C " then,

1. R(G,x)=mx*"(2x* +x*"(n—2))
2. R,(G,X)=m(2x*" +(n—2)x*")

2%°
X2m

3. Ry(G,x)=m(—=+n-2)
Proof: Let G be the friendship graph C" then total number of vertices are m(n—1)+1 and total numbers of

edgesare mn respectively.
1. To compute R (G,x) using table 5, we see then

Rl(G, X) _ Z X(ru+rv) n Z X(ru+rv)

E2‘2m E2m,2m
Rl(G, X) — 2m(X2+2m) + (n _ Z)m(X2m+2m)
R (G,x) = mx*"(2x* + x*"(n—2))
2. To compute R, (G, x) using table 5, we see then

R,(G,x)= > xW") 4 x(urw)

E2,2m EZm,Zm

R2 (G, X) = 2m(x2*2m) + (n _ Z)m(XZm*Zm)
R,(G,x)=m(2x*" +(n— 2)X4m2)
3. To compute R, (G, x) using table 5, we see then

R,(G,x) = Z xl—wl Z N

Ez'zm E2m,2m
R3 (G, X) = 2m(xl2—2m|) + (n _ z)m(XZm—Zm)
2
Ry (G,x) = m(z%+n—2)
X

Theorem3.11 Let G be a line graph of friendship graph L(C") for n>3 then,
1. R(G)=2(m(4m?+2m-3)+n(m+1)-1)
2. R,(G)=4m(2m®-m’+m+nm-1)
3. Ry(G)=2(mn-nm?-1+m)

Proof: Let G be the line graph of friendship graph L(C_") then total number of vertices are nm and total
numbers of edges are nm+2(2m+k) respectively.
1. To compute R (G) using table 6, we see then

R(G) =D (r,+15)+ D (r+r)+> (r,+r,)

E2,2m EZm‘Zm EZ‘Z
R, (G) =m(n-1)(2+2m)+m(n-1)(2m+2m)+m(2m-1)(2+ 2)
R, (G) = 2(m(4m* +2m—3) + n(m+1) -1)
2. Tocompute R, (G) using table 6, we see then

R,(G) =Y (r,*r)+ D (r,*r)+ > (r,*r,)

E2,2m EZm,Zm EZ,Z
R,(G) =m(n-1)(2+2m)+m(n—-1)(2m=*2m)+m(2m-1)(2*2)
R,(G) = 4m(2m* -m* + m+nm-1)
3. Tocompute R,(G) using table 6, we see then
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R3(G)= Z|ru_rv|+ Z |ru_rv|+2|ru_rv|

E2,2m E2m,2m E2,2
R;(G)=m(n-1)|2-2m|+m(n-1)|2m-2m|+m(2m-1)|2-2]|
R,(G) = 2(mn—nm? —1+m)

Theorem 3.12 Let G be a line graph of friendship graph L(C") for n> 3 then,
R (G, x) =m(x*x*"(n—1) + x*"(2m —1) + x*(2m 1))
1. R,(G,x) =m((n—-1)x*™ +(2m—-1)x*™ +(2m—-1)x*)
X2
X2
2. R,(G,x)=m((n—-D)x*™ +(2m-1)x*™ +(2m-1)x*)

R;(G,x) =m((n-1)

+2(2m-1))

m

X2

XZm

3. Ry(G,x)=m((n-1) +2(2m-1))

Proof: Let G be the line graph of friendship graph L(C") then total number of vertices are nm and total
numbers of edges are nm+2(2m+k) respectively.

1. To compute R (G, x) using table 6, we see then

Ri(G,X) _ z X(ru+rv) " Z X(ru+rv) +Zx(ru+rv)

E22m Eomaom B
R (G,x) = m(n=1)x#*™ + m(n-1)x®™**™ + m(2m -1)x**?
R (G, %) =m(x*x*"(n-1) +x*"(2m-1) + x*(2m -1))
2. Tocompute R,(G,x) using table 6, we see then

RZ(G,X) = Z X(l'u*l’v) + Z X(ru*rv) +Zx(ru*rv)

E2,2m E2rn,2m E2,2

R, (G, x) =m(n—-1)x®*™ + m(n-1)x*™*™ + m(2m -1)x*?

R,(G,X) =m((n=1)x*" + (2m—1)x*™ + (2m-1)x*

3. Tocompute R,(G, x) using table 6, we see then

R(EA)= T X+ 3 A

E2,2m EZm,Zm EZ‘Z

R,(G,x) =m(n-1)x**™ + m(n -)x"™*" + m(2m -1)x*
2

R,(G,x) =m((n —1))%+ 2(2m-1)
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