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Abstract : Al-enhanced brain-machine interfaces (BMIs) require specialized hardware to process EEG signals
in real time for applications like speech decoding in locked-in syndrome patients. This paper presents a
detailed VLSI design simulation implemented on a Xilinx Artix-7 100T FPGA using Vivado, incorporating
a preprocessing unit, a floatl6-quantized CNN accelerator, and a UART interface. The system achieves a
latency of 10 ms per inference, power consumption of 1.5 W, and a throughput of 100 inferences per second,
optimized for resource-constrained environments. We provide an exhaustive analysis of the architecture,
quantization strategies, simulation environment, and performance metrics, comparing with state-of-the-art
FPGA designs. The results demonstrate scalability for portable BMIs, with future directions focusing on ASIC
implementations and clinical validation [1, 2].
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1. Introduction

Very Large Scale Integration (VLSI) design is critical for deploying Al-driven brain-machine interfaces
(BMls) in portable, energy-efficient systems, particularly for real-time EEG processing [3]. EEG-based BMIs
enable communication for patients with locked-in syndrome by decoding neural signals into speech or
commands, but their practical deployment requires hardware that balances performance, power, and size
constraints [2]. Field-Programmable Gate Arrays (FPGAs) offer a flexible platform for prototyping such
systems, with the Xilinx Artix-7 100T providing a cost-effective solution for low-power applications [1].

This paper details a VLSI design simulation for an Al-enhanced BMI, targeting real-time EEG processing for
speech decoding. The system integrates a dual-input CNN model, optimized with floatl6 quantization, and is
simulated on the Artix-7 100T using Vivado. We address challenges like resource limitations, timing closure,
and power efficiency, drawing on state-of-the-art FPGA implementations [4]. The paper is structured as
follows: Literature Review reviews related work, Methodology describes the methodology, Results presents
results, Discussion discusses implications, and Conclusion outlines future directions. The review draws on
recent advancements in Al and neural engineering [5, 6].

2. Literature Review
VLSI design for neural interfaces has seen rapid advancements, driven by the need for real-time, low-power
processing in BMIs [3]. Early FPGA-based designs focused on signal preprocessing, such as filtering and
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feature extraction, but lacked Al integration [7]. The introduction of deep learning accelerators on FPGAs has
transformed the field, enabling end-to-end neural signal processing [1]. For instance, [1] implemented an
EEGNet-based accelerator on a Zyng-7020 FPGA, achieving 15 ms latency but consuming 2.0 W,
highlighting power efficiency challenges.

Recent studies have explored quantization techniques to reduce model complexity, with floatl6 and int8
formats balancing accuracy and hardware efficiency [2]. [4] proposed a CNN accelerator on a Virtex-7 FPGA,
achieving 12 ms latency and 1.8 W power consumption, but their design required significant resources,
limiting scalability. Pipelining and loop unrolling have been widely adopted to optimize throughput, as
demonstrated in [5]. Additionally, ASIC designs offer superior power efficiency but lack the flexibility of
FPGAs for prototyping [3].

Our work builds on these advancements by integrating a float16-quantized CNN into a compact FPGA design,
targeting the Artix-7 100T. The system prioritizes low latency and power consumption, addressing the needs
of portable BMIs for clinical applications.

3. Methodology
3.1 VLSI Architecture
The VLSI system is designed to process EEG signals in real time, comprising three primary components:

e Preprocessing Unit: Implements digital signal processing for EEG cleaning. A 512-tap FIR
bandpass filter (0.5-40 Hz) removes low-frequency drifts and high-frequency noise, while a 50
Hz notch filter (Q-factor=30) eliminates powerline interference. The unit operates at a 100 MHz
clock, processing 256 Hz EEG data with minimal latency.

e Al Accelerator: Executes a floatl6-quantized dual-input CNN, processing time-domain (10
channels, 256 samples) and frequency-domain (10 channels, 5 bands) features. The accelerator
includes dedicated engines for convolution, pooling, and dense layers, optimized for throughput.

e UART Interface: Facilitates communication with external devices (e.g., speech synthesizers) at
115200 baud, transmitting emotion and phrase predictions as serialized data packets.
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Figure 1: VLSI processing pipeline with subtle green coloring, showing the flow from EEG input, speech
output.

3.2 Al Accelerator Design
The Al accelerator is tailored for the dual-input CNN, with the following sub-components:

e Convolution Engine: Performs separable 2D convolutions with 32 and 64 filters (3x3 kernels). The
engine uses a systolic array architecture to parallelize matrix operations, reducing latency. Each
convolution is followed by batch normalization and ReLU activation, implemented as lookup tables
to minimize resource usage.

e Pooling Unit: Executes 2x2 max-pooling to downsample feature maps, preserving salient features
while reducing data size. The unit is pipelined to maintain throughput.

e Dense Layer Processor: Handles fully connected layers for classification, using a matrix-vector
multiplier optimized for float16 precision. The processor supports dual outputs for emotion (7 classes)
and phrase (99 classes) classification.

Figure 2: Al accelerator architecture, detailing the processing stages for CNN inference.
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3.3 Simulation Environment
The design is simulated using Vivado 2023.1, targeting the Xilinx Artix-7 100T FPGA (XC7A100T). The
simulation process includes:

e Model Quantization: The CNN is converted to TensorFlow Lite format with floatl6 precision,
reducing model size by 50% (from 2.4 MB to 1.2 MB) while maintaining accuracy [6]. Quantization-
aware training is applied to minimize accuracy degradation.

e HDL Synthesis: The CNN and preprocessing units are translated into Verilog using high-level
synthesis (HLS) tools in Vivado. Directives like loop unrolling and array partitioning optimize
resource usage.

e Timing Analysis: A 100 MHz clock ensures real-time processing (256 Hz EEG data, 10 ms inference).
Static timing analysis confirms no setup or hold violations.

e Resource Optimization: Pipelining is applied to the convolution engine and pooling unit, achieving a
throughput of 100 inferences per second. Loop unrolling in the dense layer processor reduces latency
by 20%.

CNN Model [*—-'.Qmmliml ion ——v HDL Synthesis L——v Vivado Simulation J»—») FPGA Deployment |

Figure 3: FPGA design workflow, steps from model development to deployment.

4. Results

The VLSI design achieves a latency of 10 ms per inference, power consumption of 1.5 W, and a throughput
of 100 inferences per second, suitable for real-time EEG processing at 256 Hz. Resource utilization is
optimized for the Artix-7 100T, as shown below. Power consumption is reduced iteratively through
optimization techniques, as illustrated below. The design outperforms state-of-the-art FPGA implementations
in latency and power efficiency, as detailed below.

Table 1: FPGA Resource Utilization

Resource Utilization Percentage
LUTs 45,000 70%
Flip-Flops 30,000 60%
DSP Slices 50 20%
BRAM 2MB 50%
= 9 | | — Power Consumption
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Figure 4: Plot of power consumption across design iterations, showing progressive optimization.

Table 2: Comparison with State-of-the-Art FPGA Designs

Design Platform Latency(ms) Power (W) Ref
Proposed Artix-& 100T 10 1.5 -
EEGNet FPGA Zynp-7020 15 2.0 [3]
CNN Accelerator Virtex-7 12 1.8 [2]
Neural Processor Kintex-7 14 1.9 [5]
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Table 3: Performance Metrics across Optimization Stages

Stage Latency (ms) Power (W) Throughput (inf/s)
Initial Design 20 2.0 50
Post-Quantization 15 1.8 67

Post-Pipelining 12 1.6 83

Final Design 10 1.5 100

5. Discussion

The proposed VLSI design achieves competitive performance, surpassing state-of-the-art FPGA
implementations in latency and power efficiency [1, 2]. Floatl6 quantization reduces model size by 50%,
enabling deployment on the resource-constrained Artix-7 100T, while pipelining and loop unrolling ensure
high throughput. The design’s power consumption (1.5 W) is well-suited for portable BMls, aligning with
trends in low-power neural interfaces [4].

Limitations include reliance on synthetic EEG data, which may not fully capture real-world variability, and
the need for physical hardware validation [3]. The UART interface, while effective for prototyping, may
become a bottleneck in high-throughput applications, suggesting the need for faster communication protocols
(e.g., SPI). ASIC implementations could further reduce power consumption to below 0.5 W, as demonstrated
in [5]. Future work should explore multi-modal signal integration (e.g., combining EEG with ECoG) and
clinical trials to validate performance in LIS patients.

6. Conclusion

This VLSI design simulation demonstrates a scalable, low-power solution for Al-enhanced BMIs, enabling
real-time EEG processing for speech decoding. The system’s optimized latency, power consumption, and
throughput support its potential for clinical applications in locked-in syndrome. Future advancements in ASIC
design, multi-modal processing, and real-world validation will further enhance its practicality and impact.
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