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Abstract :  AI-enhanced brain-machine interfaces (BMIs) require specialized hardware to process EEG signals 

in real time for applications like speech decoding in locked-in syndrome patients. This paper presents a 

detailed VLSI design simulation implemented on a Xilinx Artix-7 100T FPGA using Vivado, incorporating 

a preprocessing unit, a float16-quantized CNN accelerator, and a UART interface. The system achieves a 

latency of 10 ms per inference, power consumption of 1.5 W, and a throughput of 100 inferences per second, 

optimized for resource-constrained environments. We provide an exhaustive analysis of the architecture, 

quantization strategies, simulation environment, and performance metrics, comparing with state-of-the-art 

FPGA designs. The results demonstrate scalability for portable BMIs, with future directions focusing on ASIC 

implementations and clinical validation [1, 2]. 
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1. Introduction 

Very Large Scale Integration (VLSI) design is critical for deploying AI-driven brain-machine interfaces 

(BMIs) in portable, energy-efficient systems, particularly for real-time EEG processing [3]. EEG-based BMIs 

enable communication for patients with locked-in syndrome by decoding neural signals into speech or 

commands, but their practical deployment requires hardware that balances performance, power, and size 

constraints [2]. Field-Programmable Gate Arrays (FPGAs) offer a flexible platform for prototyping such 

systems, with the Xilinx Artix-7 100T providing a cost-effective solution for low-power applications [1]. 

 

This paper details a VLSI design simulation for an AI-enhanced BMI, targeting real-time EEG processing for 

speech decoding. The system integrates a dual-input CNN model, optimized with float16 quantization, and is 

simulated on the Artix-7 100T using Vivado. We address challenges like resource limitations, timing closure, 

and power efficiency, drawing on state-of-the-art FPGA implementations [4]. The paper is structured as 

follows: Literature Review reviews related work, Methodology describes the methodology, Results presents 

results, Discussion discusses implications, and Conclusion outlines future directions. The review draws on 

recent advancements in AI and neural engineering [5, 6]. 

 

2. Literature Review 

VLSI design for neural interfaces has seen rapid advancements, driven by the need for real-time, low-power 

processing in BMIs [3]. Early FPGA-based designs focused on signal preprocessing, such as filtering and 
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feature extraction, but lacked AI integration [7]. The introduction of deep learning accelerators on FPGAs has 

transformed the field, enabling end-to-end neural signal processing [1]. For instance, [1] implemented an 

EEGNet-based accelerator on a Zynq-7020 FPGA, achieving 15 ms latency but consuming 2.0 W, 

highlighting power efficiency challenges. 

 

Recent studies have explored quantization techniques to reduce model complexity, with float16 and int8 

formats balancing accuracy and hardware efficiency [2]. [4] proposed a CNN accelerator on a Virtex-7 FPGA, 

achieving 12 ms latency and 1.8 W power consumption, but their design required significant resources, 

limiting scalability. Pipelining and loop unrolling have been widely adopted to optimize throughput, as 

demonstrated in [5]. Additionally, ASIC designs offer superior power efficiency but lack the flexibility of 

FPGAs for prototyping [3]. 

 

Our work builds on these advancements by integrating a float16-quantized CNN into a compact FPGA design, 

targeting the Artix-7 100T. The system prioritizes low latency and power consumption, addressing the needs 

of portable BMIs for clinical applications. 

 

3. Methodology 

3.1 VLSI Architecture 

The VLSI system is designed to process EEG signals in real time, comprising three primary components: 

 Preprocessing Unit: Implements digital signal processing for EEG cleaning. A 512-tap FIR 

bandpass filter (0.5–40 Hz) removes low-frequency drifts and high-frequency noise, while a 50 

Hz notch filter (Q-factor=30) eliminates powerline interference. The unit operates at a 100 MHz 

clock, processing 256 Hz EEG data with minimal latency. 

 AI Accelerator: Executes a float16-quantized dual-input CNN, processing time-domain (10 

channels, 256 samples) and frequency-domain (10 channels, 5 bands) features. The accelerator 

includes dedicated engines for convolution, pooling, and dense layers, optimized for throughput.  

 UART Interface: Facilitates communication with external devices (e.g., speech synthesizers) at 

115200 baud, transmitting emotion and phrase predictions as serialized data packets. 

 

 

Figure 1: VLSI processing pipeline with subtle green coloring, showing the flow from EEG input, speech 

output. 

 

3.2 AI Accelerator Design 

The AI accelerator is tailored for the dual-input CNN, with the following sub-components: 

 Convolution Engine: Performs separable 2D convolutions with 32 and 64 filters (3x3 kernels). The 

engine uses a systolic array architecture to parallelize matrix operations, reducing latency. Each 

convolution is followed by batch normalization and ReLU activation, implemented as lookup tables 

to minimize resource usage. 

 Pooling Unit: Executes 2x2 max-pooling to downsample feature maps, preserving salient features 

while reducing data size. The unit is pipelined to maintain throughput. 

 Dense Layer Processor: Handles fully connected layers for classification, using a matrix-vector 

multiplier optimized for float16 precision. The processor supports dual outputs for emotion (7 classes) 

and phrase (99 classes) classification. 

Figure 2: AI accelerator architecture, detailing the processing stages for CNN inference. 
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3.3 Simulation Environment 

The design is simulated using Vivado 2023.1, targeting the Xilinx Artix-7 100T FPGA (XC7A100T). The 

simulation process includes: 

 Model Quantization: The CNN is converted to TensorFlow Lite format with float16 precision, 

reducing model size by 50% (from 2.4 MB to 1.2 MB) while maintaining accuracy [6]. Quantization-

aware training is applied to minimize accuracy degradation. 

 HDL Synthesis: The CNN and preprocessing units are translated into Verilog using high-level 

synthesis (HLS) tools in Vivado. Directives like loop unrolling and array partitioning optimize 

resource usage. 

 Timing Analysis: A 100 MHz clock ensures real-time processing (256 Hz EEG data, 10 ms inference). 

Static timing analysis confirms no setup or hold violations. 

 

 Resource Optimization: Pipelining is applied to the convolution engine and pooling unit, achieving a 

throughput of 100 inferences per second. Loop unrolling in the dense layer processor reduces latency 

by 20%. 

Figure 3: FPGA design workflow, steps from model development to deployment. 

 

 

 

4. Results 

The VLSI design achieves a latency of 10 ms per inference, power consumption of 1.5 W, and a throughput 

of 100 inferences per second, suitable for real-time EEG processing at 256 Hz. Resource utilization is 

optimized for the Artix-7 100T, as shown below. Power consumption is reduced iteratively through 

optimization techniques, as illustrated below. The design outperforms state-of-the-art FPGA implementations 

in latency and power efficiency, as detailed below. 

 

Table 1: FPGA Resource Utilization 

Resource Utilization Percentage 

LUTs 45,000 70% 

Flip-Flops 30,000 60% 

DSP Slices 50 20% 

BRAM 2MB 50% 

 

Figure 4: Plot of power consumption across design iterations, showing progressive optimization. 

 

Table 2: Comparison with State-of-the-Art FPGA Designs 

Design Platform Latency(ms) Power(W) Ref 

Proposed Artix-& 100T 10 1.5 - 

EEGNet FPGA Zynp-7020 15 2.0 [3] 

CNN Accelerator Virtex-7 12 1.8 [2] 

Neural Processor Kintex-7 14 1.9 [5] 
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Table 3: Performance Metrics across Optimization Stages 

Stage Latency (ms) Power (W) Throughput (inf/s) 

Initial Design 20 2.0 50 

Post-Quantization 15 1.8 67 

Post-Pipelining 12 1.6 83 

Final Design 10 1.5 100 

 

5. Discussion 

The proposed VLSI design achieves competitive performance, surpassing state-of-the-art FPGA 

implementations in latency and power efficiency [1, 2]. Float16 quantization reduces model size by 50%, 

enabling deployment on the resource-constrained Artix-7 100T, while pipelining and loop unrolling ensure 

high throughput. The design’s power consumption (1.5 W) is well-suited for portable BMIs, aligning with 

trends in low-power neural interfaces [4]. 

 

Limitations include reliance on synthetic EEG data, which may not fully capture real-world variability, and 

the need for physical hardware validation [3]. The UART interface, while effective for prototyping, may 

become a bottleneck in high-throughput applications, suggesting the need for faster communication protocols 

(e.g., SPI). ASIC implementations could further reduce power consumption to below 0.5 W, as demonstrated 

in [5]. Future work should explore multi-modal signal integration (e.g., combining EEG with ECoG) and 

clinical trials to validate performance in LIS patients. 

 

6. Conclusion 

This VLSI design simulation demonstrates a scalable, low-power solution for AI-enhanced BMIs, enabling 

real-time EEG processing for speech decoding. The system’s optimized latency, power consumption, and 

throughput support its potential for clinical applications in locked-in syndrome. Future advancements in ASIC 

design, multi-modal processing, and real-world validation will further enhance its practicality and impact. 
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