

ALLELOPATHY A REVIEW ON PLANT INTERACTION

Dr.Sharad Kumar Singhariya

Associate Professor

Department of Botany

Govt. M S College for Women

Bikaner, Rajasthan, India

Abstract- Allelopathy is a well known area of active research in ecology. However, its importance in agro-ecology is still underappreciated. This review sets out to address this situation and introduce this new and developing field to a wider research audience and to stimulate new research in it. The review starts with an introduction, followed by discussions of allelochemicals, the role of allelopathy in crop production, Allelopathy related problems in crop production, and Suggestions for future research. It also describes broader research into allelopathy in agriculture and the biosciences, and literature resources on the subject. We hope that it will encourage more scientists to initiate research into this exciting new field.

Keywords- Allelopathy, Agro-ecology, Bio-sciences, Crop production, Ecology

Introduction-All living things need certain resources to live and grow, and plants require sunlight, nutrients, water, and air. The roots bring nutrients and water from the ground to the plant. The leaves absorb the energy of the sun's rays. Plants require sufficient space to meet their needs and many use allelopathic defenses to protect the space around them. There are four major reasons why trees require their own space: fire, water, roots, and sun. Plants need to protect themselves from harm and fire is always a threat in the wild. If trees grow too close to each another, fire can spread from one to another very easily. Trees therefore create space for themselves in order to remain safe. Water is in short supply in some areas, and reducing the number of surrounding plants increases the water available for the roots. Likewise, the amount of soil available for a plant's roots to grow in can be increased by using allelopathic defenses to kill the roots of surrounding plants. Plants also need sunlight to grow. If too many other plants are growing nearby, a plant will be shaded and less able to grow. Allelopathic defenses can be used to prevent other plants growing nearby and so help them to compete for sunlight.

There are many different types of chemical allelopathy. In one, the plant space releases growth-inhibitors from its roots into the ground to protect its immediate surroundings. New plants trying to grow near the allelopathic plant absorb those chemicals from the soil and die. In another, an allelopathic plant releases chemicals that slow or stop photosynthesis in its neighboring plants, or alter the amount of chlorophyll in their leaves, preventing them from synthesizing sufficient food so that their growth is inhibited or they die. While the term was initially coined to describe the detrimental influence of one plant upon another, it is now also used to encompass both detrimental and beneficial chemical interactions. Also, while it was initially restricted to interactions among higher plants, it is also now also applied to interactions among plants at all levels, including algae. In addition, interactions between plants and herbivorous insects or nematodes, in which plant substances attract, repel, deter, or retard the growth of attacking insects or nematodes are considered to be allelopathic. Interactions between soil microorganisms and plants can also be allelopathic in nature. Fungi and bacteria may produce and release growth inhibitors or promoters. Some soil bacteria enhance plant growth through fixing nitrogen, while others make phosphorus available to plants.

Allelopathic compounds and interactions are much more common in terrestrial plants. In aquatic situations, the chemicals released are too diluted to have significant interspecies competitive effects. In aquatic plants, allelopathic chemicals are used primarily to prevent the plant from being eaten by herbivores, rather than to compete with surrounding plants. Some scientists think that some aquatic plants can inhibit the growth of unicellular algae, but this is not generally agreed, and it is suggested that these are in fact, competitive phenomena rather than allelopathic. In allelopathy, a chemical is released by a plant into the environment, whereas in competition, one plant is merely more successful in sequestering resources such as minerals, water, space, carbon dioxide, and light than its neighbors. In the field, both allelopathy and competition usually act simultaneously. Prime examples of plants that use allelopathy to reserve their

own space are black walnut trees, sunflowers, wormwoods, sagebrushes, and trees of heaven. Some pine trees are allelopathic. When their needles fall to the ground, they begin to decompose, releasing acids into the soil which keeps unwanted plants from growing near the pine tree.

Allelochemicals

Organisms interact in many interesting ways. Chemicals produced by one organism that affect another organism are called allelochemicals (Barbour et al., 1980; Krebs, 1978; Ricklefs, 1979; Whittaker, 1975). Sometimes a single chemical produced by one organism is harmful to another organism but beneficial to a third. Plants of the mustard family secrete mustard oils that irritate many animals and thus prevent them from feeding on the mustard plants. Yet these same oils attract other animals that feed on mustard plants. One of the oils even stimulates germination of the spores of a fungus that is parasitic on mustard roots. We are beginning to appreciate that communities include many complex webs of chemical interactions. For example, fungi and mycelial bacteria secrete allelochemicals that are lethal to other bacteria. We have learned to use these substances in modern medicine and call them antibiotics and they are now part of the ecological interactions of humans. Allelochemicals were suspected in 19th century agriculture because of many observations of "soil sickness" of farmlands. If a piece of ground is continually cropped with one plant, the yields often decrease and cannot be improved by additional fertilizer. Fruit trees, for example, often do poorly in ground where the same species has grown before. Furthermore, it is common for one plant to harm another plant grown in its vicinity (by allelopathy). Many experiments of the type illustrated in Fig. 1 have been performed. In this experiment, one set of apple seedlings was watered with tap water, another set with water that had percolated through soil with grass growing in it, and a third set with water that had percolated through soil with nothing growing in it. Growth of the apple seedlings was apparently inhibited by something produced by the grass plants, since seedlings in the other two treatments grew much better. In a few cases, the allelochemicals have been isolated and identified. It is often difficult to be sure, however, that a particular compound isolated from the roots or leaves of one plant actually plays a toxic role in nature. It appears that juglone (5-hydroxy- naphthoquinone) from the roots and hulls of black walnut (Juglans *nigra*) is an allelopathic. It will kill tomato and alfalfa plants (up to 25 m from a walnut tree in the field) but bluegrass growth seems to be stimulated close to walnut trees. The closely related English' walnut (J. regia) and the California walnuts (J. hindsii and J. californica) do not produce juglone. It is worth noting that many plants produce allelochemicals that are used as drugs in medical and veterinary practice. In fact, many early physicians (including Linnaeus) were botanists. These substances often cause changes in the physiology or behavior of the organisms that consume them. Narcotics, for example, produce drowsiness or sleep, or lessen pain. Harmful drugs are called poisons While beneficial ones are called medicines. Most exert both effects, depending on their concentration and other factors. Humans cultivate tobacco, tea, coffee, and other drug producing plants. Properly used, some of these drugs are beneficial, but we are also aware of their harmful effects. Alcohol is a waste product of yeast metabolism (fermentation) that does not help the yeast, while urine, another waste product, is often used by animals to help establish territories. Alcohol typically builds to levels that harm the very organisms that produce it. Yet it is an allelochemical and a drug. Allelochemicals are generally secondary metabolites produced by plants, and are byproducts of primary metabolic processes (Levin, 1976). They have an allelopathic effect on the growth and development of neighboring plants. Allelochemicals include: a) plant biochemicals that exert their physiological/toxicological action on plants (allelopathy, autotoxicity or phytotoxicity); b) plant biochemicals that exert their physiological/toxicological action on microorganisms (allelopathy or phytotoxicity); and c) microbial biochemicals that exert their physiological/toxicological action on plants (allelopathy and phytotoxicity. Secondary compounds are metabolically active in plants and microorganisms, and their biosynthesis and biodegradation play an important role in the ecology and physiology of the organism in which they occur (Waller and Nowacki, 1978; Waller and Dermer, 1981). Some of them accumulate at specific stages of growth, while the accumulation of others depends upon time of day or season.

Classes of Allelochemicals

Allelochemicals are biosynthesized from the metabolism of carbohydrates, fats and amino acids and arise from acetate or the shikimic acid pathway (Robinson, 1983). In his review of the potential use of allelochemicals as herbicides, Putnam (1988) listed 6 classes of allelochemicals, isolated from over 30 families of terrestrial and aquatic plants.

These classes are: Alkaloids, Benzoxazinones, Cinnamic acid derivatives, Cyanogenic compounds, Ethylene and other seed germination stimulants, and Flavonoids.

Modes of release of allelochemicals

A major pre-requisite for successful allelopathy is that the allelochemical can be effectively transferred from the donor plant to the recipient, and the mode of transfer plays an important role in the effectiveness and persistence of allelochemicals. The donor plant generally stores these chemicals in its cells in a bound form, such as water-soluble glycosides, polymers including tannins, lignins, and salts, so that they are not toxic to it. Once the donor plant releases the allelochemicals into the environment, they may be either degraded or transformed before affecting the receiver plants, and may also become toxic to the donor (autotoxicity). The allelochemicals are cleaved by plant enzymes or environmental stress and released into the environment from special glands on the stems or leaves. First, the terpenoids, such as a-pinene, cineole and camphor, are released to the environment through volatilization. Then the water-borne phenolics and alkaloids are deployed by rainfall through leaching. Phytotoxic aglycones, such as phenolics, are released during the decomposition of plant residues in soil. Metabolites, such as scopoletin and hydroquinones, may be released into the surrounding soil through root exudates. Allelochemicals released through leachates and root exudates must be water soluble and a broad range of chemicals are involved. These processes are described in more detail below.

Volatilization

Allelochemicals may volatilize from a plant into the atmosphere. The volatile vapors may be absorbed directly from the atmosphere by plants, and the adsorbed vapors may condense in dew and fall to the ground, where they are absorbed onto soil particles and subsequently taken up by plants from the soil solution. The genera which release volatiles are: Artemisia, Salvia, Parthenium and Eucalyptus. The volatile inhibitors camphene, camphor, cineole, dipentene, a-pinene B-pinene are produced by several shrubs of the Southern California Chaparral (White *et al.*, 1989). Plants rich in such compounds, release them continuously as vapors into the atmosphere. The pulverized leaves of crucifierae species (*brassica juncea, B. nigra, B. napus, B. rapa and B. oleracea*) also release volatile substances. The volatiles of *B. juncea* and *B. nigra* were most harmful to the germinating seeds of lettuce and wheat (Oleszek, 1987).

Leaching

Leaching is the removal of substances from plants by the action of water in the form of rain, dew, mist, fog, and snow. All plants seem capable of leaching, but the degree depends on type of tissue, stage of maturity, and the amount and duration of precipitation. Many allelopathic compounds, both organic and inorganic are leached, including phenolic acids, terpenoids and alkaloids. The leaching of mineral nutrients, carbohydrates and phytohormones may be beneficial for the growth of associated species, although the toxic effects have generally been studied. Most studies have focused on foliage leachates, but seed leachates may also be important. Toxin- bearing leachates are important in weed-crop associations and in plant-plant interactions in grasslands.

Root exudates

Many compounds which may influence the growth of microorganisms and associated higher plants are exuded from the roots. The identification of allelochemicals in root exudates is difficult because they may be altered by microbial activity. Rhizosphere microorganisms in the soil environment may transform and inactivate the original exudation compounds, and in some cases may create new active allelochemicals. Exudates very according to plant species, nutrition and age, and temperature, light, microbial activity around the roots, and the soil type.

Decomposition of plant residues

The decomposition of plant residues is responsible for most of the allelochemicals added to the soil. When plants die the cell contents are released into the environment. Important variables in this process are the nature of the plant residues, the soil type, and the conditions of decomposition. Depending on the conditions, substances may be formed during the decomposition which are either highly toxic, non-toxic, or stimulatory to plants. In general, more severe and persistently toxic chemicals are produced in cold and wet soils. Since the decomposing plant materials are never uniformly distributed throughout the soil, soil adjacent to the decomposing debris may contain more decomposition products than other areas. Therefore, as roots grow through the soil they may come into contact with patches of decomposing plant residues where they are affected by allelochemicals, while at other locations there may be no such influences (Kamal, J., 2015). Some of the toxic effects of decomposition products on plants are: inhibition of seed germination, stunted growth, inhibition of the primary root system, increase in secondary roots, inadequate nutrient absorption, chlorosis, slow maturation, and delay or failure of reproduction.

Factors affecting production of allelochemicals

Rice (1984) listed the factors which affect the amount of allelochemicals produced: a) radiation; b) mineral deficiencies; c) water stress; d) temperature; e) allelopathic agents; f) age of plant organs; g) genetics; h) pathogens; and i) predators. All except radiation and temperature could be exploited under field conditions to improve crop productivity through better plant growth, improved crop resistance to insects/pests, and improved weed control by exploiting the smothering ability of field crops, although further research is needed.

Mode of action of allelochemicals

Allelopathic agents influence plant growth (Rice, 1984) through the following physiological processes: i) cell division and cell elongation; ii) phytohormone induced growth; iii) membrane permeability; iv) mineral uptake; v) availability of soil phosphorus and potash; vi) stomatal opening and photosynthesis; vii) respiration; viii) protein synthesis; ix) changes in lipid and organic acid metabolism; x) inhibition of porphyrin synthesis; xi) inhibition or stimulation of specific enzymes; xii) corking and clogging of xylem elements; xiii) stem conductance of water; xiv) internal water relations; and xv) other miscellaneous mechanisms.

Fate of allelochemicals

With the exception of the volatile allelochemicals, which are absorbed by plants directly from the air or as leachates (after dissolution in rain, dew, mist or snow), all other allelopathic responses occur through the soil. Potential allelochemicals must remain active in the soil to have an allelopathic effect. The biological activity,

persistence, movement and fate of natural products in the soil depend upon their interaction with the soil adsorption complex, soil microbial population and soil chemical environment. Adsorbed allelochemicals may remain biologically active or be rendered inactive, depending on the nature of the adsorbing surface, but adsorbed molecules are less available to soil microbes. Some natural products/allelochemicals may become irreversibly bound in soil humic substances. Allelopathic effects in the soil therefore depend on the relative rates of addition to, and fixation of, allelochemicals in the soil.

Crop-crop interactions

Field crops generally add phytotoxins or allelochemicals to the soil mainly through crop residues, and partly through root exudates, and the allelopathic effects of these pathways have been the most studied.

Effect of Allelochemicals

The phytotoxins from crop residues have generally negative effects on crop plants such as: a) delayed or complete inhibition of germination; b) reduced population numbers; c) stunted and deformed roots and shoots; d) reduced nutrient absorption; e) lack of seedling vigor; f) reduced tillering; g) chlorosis; h) wilting; i) predisposition to root rot; and j) seedling death (Norman, 1959; Patrick et al., 1963; Guenzi et al., 1967; Norstadt and McCalla, 1963; Toussoun et al., 1968; Horricks, 1969; Kimber, 1973a,b; Cochran et al., 1977; Lynch, 1977; Kuo et al., 1981; Walker and Jenkins, 1986; Waller et al., 1987; Oleszek and Jurzysta, 1987; Hicks et al., 1988; Khaliq et al., (2004). However, the major effects of phytotoxins on crop plants are: i) inhibition of nitrification and biological nitrogen fixation; ii) predisposal to disease; and iii) inhibition or stimulation of germination, growth and yield.

Weeds

Weeds have been growing alongside crops since the beginning of agriculture. Because, weeds have evolved alongside crops, or in some instances are the ancestors of cultivated crops, many crops and weeds are actually the same species. For example, the wild races of wheat, rice, barley, maize, oat, sorghum, potato, radish, cabbage, lettuce and asparagus etc., are weeds. In addition, various modem agricultural practices favor invasion by weeds: a) row sown crops leave enough inter-row space for colonization by other species; and (b) many crops are grown as monocultures. Any plant species grown alone generally fails to fully exploit its habitat. For example, it may not fully use the available sunshine because its leaf canopy develops slowly, or it may have too short a growth cycle to consume all the available water or nutrients. Weeds can therefore invade such areas and capitalize on these unused resources. Weeds cause greater losses in crop yields than either insects or plant diseases and reduce crop yields through: a) allelopathy (by the release of inhibitors from seeds, living plants and plant residues); b) competition with crops for resources (light, nutrients, water, and space); and c) providing an alternate host for insects and disease organisms. Putnam and Tang (1986) reported that a large number of weed species are allelopathic.

Weed-crop interactions

Under field conditions, weed infestation is one of the major causes of yield reduction in crops. Historically, most investigators have attributed these losses to various forms of competition between weeds and crops but allelopathic interactions between them were not considered. However, since the 1950's, studies have shown that allelopathic interactions between crops and weeds are also partly responsible for crop yield losses. DeCandolle (1832) was the first to report the injurious effects of root exudates of Canada thistle (*Cirsium arvense* (L.) Scop.) on the growth of neighboring oat plants.

Weed residues

Weed residues may have an allelopathic effect on crop plants similar to that of crop residues, but detailed studies are lacking. Allelochemicals released from weed residues may affect crop plants in following ways: i) inhibition of biological nitrogen fixation; ii) inhibition of nutrient uptake; and iii) inhibition of seed germination, growth and yield.

Root exudates

In crop fields, weeds suppress the growth of adjacent crop plants through the excretion of inhibitory compounds in their root exudates. These compounds reduce seed germination, root and shoot growth, nutrient uptake and nodulation (in legumes). However, root exudates of Bermuda grass (*Cynodon dactylon* (L.) Pers.) and corn cockle (*Agrootemma githago* L.) stimulated the growth and yield of crops. In some weeds, the toxicity of exudates is high in the younger plants and decreases with maturity, while the reverse is true for others. The root exudates of Johnson grass, quack grass, redroot pigweed, wild oat, *Cyperus* spp., *Chenopodium* spp., *Bidens pilosa*, *Celosia argentea* and *Polygonum* spp. All caused severe reduction in the seed germination and growth of several crops.

Seed leachates/ extracts

The seeds or seed coats of certain weed species contain inhibitory compounds, which are released mainly during germination. These compounds inhibit seed germination and root and shoot growth of crops sown in their vicinity.

Importance of allelopathy

The science of allelopathy is a relatively new field of study, and there is convincing evidence that allelopathic interactions between plants play a crucial role in both natural and manipulated ecosystems.

- 1. These interactions undoubtedly an important factor in species distribution and abundance within some plant communities,
- 2. Allelopathic interactions are also thought to be an important factor in the successful spread of many invasive plants, for example spotted knapweed and nutsedge
- 3. The brightest hope for allelochemicals is that they will act as natural weed killers or pesticides, substituting for chemicals, and promote sustainable agriculture.
- 3. Plants that will suppress tree growth may, in future, reduce the cost of pruning or herbicide applications in conflicts between trees and power lines. Ways to use allelopathic potential for weed management
- 4. Use of allelopathic cover crops for weed suppression can decrease reliance upon herbicides.
- 5. An understanding of plant/chemical relationships could reveal practical benefits of ,companion planting, a practical endorsed by

organic gardeners, which is currently valued less than if it were based on science- based research.

References-

- Al-Jehaishy, W.S.H. (2017). Use Plant Residues in Biological Control of Some Weeds and Allelopathic effect in Growth and Some Physiological and Anatomical characteristics. Ph.D. Thesis, Dept. of Bio., Coll. of Scie., Univ. of Mosul.
- Akemo, M.C., E.E. Regnier and M.A. Bennett (2000). Weed suppression in spring-sown rye (Secale cereale)-pea (Pisum sativum) cover crop mixes. Weed Technology, 14(3): 545-549.
- Ali, S.A. (2008). Effect of Dodonaea viscosa Jacq. residues on growth and yield of mungbean (Vigna mungo L. Hepper), maize (Zea mays L.) and their associated grassy weeds Ph.D. thesis, University of Baghdad, Iraq.
- Al-Jobori, K.M. and S.A. Ali (2014). Effect of Dodonaea viscosa Jacq. residues on growth and yield of mungbean (Vigna mungo L. Hepper). African Journal of Biotechnology, 13(24): 2407–2413.
- Baar, J., W.A. Ozinga, I.L. Sweers and T.W. Kuyper (1994). Stimulatory and inhibitory effects of needle litter and grass extracts on the growth of some ectomycorrhizal fungi. Soil Biology and Biochemistry, 26(8): 1073–1079.
- Gatti, A.B., A.G. Ferreira, M. Arduin and S.C.G.D.A. Perez (2010). Allelopathic effects of aqueous extracts of Artistolochia esperanzae O. Kuntze on development of Sesamum indicum L. seedlings. Acta Botanica Brasilica, 24(2): 454–461.
- Gulzar, A., M.B. Siddiqui and S. Bi (2016). Phenolic acid allelochemicals induced morphological, ultrastructural, and cytological modification on Cassia sophera L. and Allium cepa L. Protoplasma, 253(5): 1211-1221.
- Hussein, W.S., J.A. Saeed and A.M. Al-Mathedy (2018). Detection of Active Compounds in Residues some Species of Plant, Isolation and Diagnosis of Allelopathic Compounds Using HPLC Technique. Rafi. J. Scie., 5(27): 41-32.
- Jensen, L.B., B. Courtois, L. Shen, Z. Li, M. Olofsdotter and
- R.P. Mauleon (2001). Locating genes controlling allelopathic effects against barnyard grass in upland rice. Agronomy Journal, 93(1): 21–26.
- Kamal, J. (2020). Alleloppathy: A brief review. JNAS Appl Sci.,
- Li, Z.H., Q. Wang, X. Ruan, C.D. Pan and D.A. Jiang (2010). Phenolics and plant allelopathy. Molecules, 15(12): 8933–8952.
- Prince, E.K. and G. Pohnert (2010). Searching for signals in the noise: Metabolomics in chemical ecology. Analytical and Bioanalytical Chemistry, 396(1): 193–197.
- Qasem, J.R. and C.L. Foy(2001). Weed allelopathy, its ecological impacts and future prospects: A review. Journal of Crop Production, 4(2): 43–119.
- Rice, E.L. (1984). Allelopathy, 2nd Ed. New York: Academic Press.

