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Abstract: Nasal delivery is the logical choice for topical treatment of local diseases in the nose and paranasal sinuses such as allergic 

and non-allergic rhinitis and sinusitis. The nose is also considered an attractive route for needle-free vaccination and for systemic drug 

delivery, especially when rapid absorption and effect are desired. In addition, nasal delivery may help address issues related to poor 

bioavailability, slow absorption, drug degradation, and adverse events in the gastrointestinal tract and avoids the first-pass metabolism 

in the liver. However, when considering nasal delivery devices and mechanisms, it is important to keep in mind that the prime purpose 

of the nasal airway is to protect the delicate lungs from hazardous exposures, not to serve as a delivery route for drugs and vaccines. 

The narrow nasal valve and the complex convoluted nasal geometry with its dynamic cyclic physiological changes provide efficient 

filtration and conditioning of the inspired air, enhance olfaction, and optimize gas exchange and fluid retention during exhalation. 

However, the potential hurdles these functional features impose on efficient nasal drug delivery are often ignored. With this 

background, the advantages and limitations of existing and emerging nasal delivery devices and dispersion technologies are reviewed 

with focus on their clinical performance. The role and limitations of the in vitro testing in the FDA guidance for nasal spray pumps 

and pressurized aerosols (pressurized metered-dose inhalers) with local action are discussed. Moreover, the predictive value and 

clinical utility of nasal cast studies and computer simulations of nasal airflow and deposition with computer fluid dynamics software 

are briefly discussed. New and emerging delivery technologies and devices with emphasis on BiDirectional™ delivery, a novel concept 

for nasal delivery that can be adapted to a variety of dispersion technologies, are described in more depth. 
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Introduction 

Intuitively, the nose offers easy access to a large mucosal surface well suited for drug- and vaccine delivery. However, factors related 

to the nasal anatomy, physiology and aerodynamics that can severely limit this potential, have historically been challenging to address. 

The most recent FDA guidance for nasal devices provides detailed guidelines for in vitro testing of the physical properties such as in 

vitro reproducibility and accuracy of plume characteristics and dose uniformity of mechanical liquid spray pumps and pressurized 

metered-dose inhalers (pMDIs) for nasal use [1]. The guidance primarily addresses in vitro testing of nasal sprays and pressurized 

aerosols for local action. The reference to in vivo performance is limited to the recommendation of minimizing the fraction of 

respirable particles below 9 μm in order to avoid lung inhalation of drugs intended for nasal delivery. Thus, although important as 

measures of the quality and reliability of the spray pump and pMDI mechanics, these in vitro tests do not necessarily predict the in 

vivo particle deposition, absorption, and clinical response [2]. Furthermore, the guidance offers no or limited guidance on nasal 

products for systemic absorption and for alternative dispensing methods like drops, liquid 

jets, nebulized aerosol, vapors, and powder formulations. Finally, it does not address aspects and challenges related to the 

nasal anatomy and physiology that are highly relevant for the device performance in the clinical setting like body position, 

need for coordination, and impact of airflow and breathing patterns at delivery. 

The mechanical properties of different modes of aerosol generation are already well described in depth in a previous 

publication [3]. The anatomy and physiology of the nasal airway has also recently been summarized in an excellent recent 

review [4]. The aim of this paper is to take a step further by reviewing the characteristics of existing and emerging nasal 

delivery devices and concepts of aerosol generation from the perspective of achieving the clinical promise of nasal drug and 

vaccine delivery. Focus is put on describing how the nasal anatomy and physiology present substantial obstacles to efficient 

delivery, but also on how it may be possible to overcome these hurdles by innovative approaches that permit realization of 

the therapeutic potential of nasal drug delivery. Specific attention is given to the particular challenge of targeted delivery of 
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drugs to the upper narrow parts of the complex nasal passages housing the middle meatus where the sinuses openings are 

located, as well as the regions innervated by the olfactory nerve and branches of the trigeminal nerve considered essential 

for efficient “nose-to-brain” (N2B) transport. 

Nasal anatomy and physiology influencing drug delivery Regulation of nasal airflow 

Nasal breathing is vital for most animals and also for human neonates in the first weeks of life. The nose is the normal and 

preferred airway during sleep, rest, and mild exercise up to an air volume of 20–30 l/min [5]. It is only when exercise becomes 

more intense and air exchange demands increase that oral breathing supplements nasal breathing. The switch from nasal to 

oronasal breathing in young adults appears when ventilation is increased to about 35 l/min, about four times resting 

ventilation [6]. More than 12,000 l of air pass through the nose every day [5]. The functionality of the nose is achieved by 

its complex structure and aerodynamics. Amazingly, the relatively short air-path in the nose accounts for as much as 50–75 

% of the total airway resistance during inhalation [7, 8]. 

The nasal valve and aerodynamics 

The narrow anterior triangular dynamic segment of the nasal anatomy called the nasal valve is the primary flow-limiting 

segment, and extends anterior and posterior to the head of the inferior turbinate approximately 2–3 cm from the nostril 

opening [9]. This narrow triangular-shaped slit acts as a dynamic valve to modify the rate and direction of the airflow during 

respiration [10, 11]. Anatomical studies describe the static valve dimensions as 0.3–0.4 cm2 on each side, whereas acoustic 

rhinometry studies report the functional cross-sectional area perpendicular to the acoustic pathway to be between 0.5 and 0.6 

cm2 on each side, in healthy adults, with no, or minimal gender differences [11–14]. The flow rate during tidal breathing 

creates air velocities at gale force (18 m/s) and can approach the speed of a hurricane (32 m/s) at sniffing [11, 15]. At nasal 

flow rates found during rest (up to 15 l/min), the flow regimen is predominantly laminar throughout the nasal passages. 

When the rate increases to 25 l/min, local turbulence occurs downstream of the nasal valve [10, 11, 15]. The dimensions can 

expand to increase airflow by dilator muscular action known as flaring, or artificially by mechanical expansion by internal 

or external dilators [16, 17]. During inhalation, Bernoulli forces narrow the valve progressively with increasing inspiratory 

flow rate and may even cause complete collapse with vigorous sniffing in some subjects [5]. During exhalation, the valve 

acts as a “brake” to maintain a positive expiratory airway pressure that helps keep the pharyngeal and lower airways open 

and increase the duration of the expiratory phase. This “braking” allows more time for gas exchange in the alveoli and for 

retention of fluid and heat from the warm saturated expiratory air [4, 17, 18]. In fact, external dilation of narrow noses in 

obstructive sleep apnea patients had beneficial effects, whereas dilation of normal noses to “supernormal” dimensions had 

deleterious effects on sleep parameters [17]. However, in the context of nasal drug delivery, the small dimensions of the 

nasal valve, and its triangular shape that narrows further during nasal inhalation, represent important obstacles for efficient 

nasal drug delivery. 

The nasal mucosa—filtration and clearance 

The region anterior to the valve called the vestibule is lined by non-ciliated squamous epithelium that in the valve region 

gradually transitions into ciliated epithelium typical of the ciliated respiratory epithelium posterior to the valve region [4, 

19]. Beyond the nasal valve, the nasal turbinates divide the nasal cavity into slit-like passages with much larger crosssectional 

area and surface area (Figs. 1, 2 and 3). Here, the predominantly laminar airflow is slowed down to speeds of 2–3 m/s and 

disrupted with eddies promoting deposition of particles carried with the air at and just beyond the valve region [11]. The 

ciliated respiratory mucosa posterior to the nasal valve is covered by a protective mucous blanket designed to trap particles 

and microorganisms [4, 19] .The beating action of cilia moves the mucous blanket towards the nasopharynx at an average 

speed of 6 mm/min (3– 25 mm/min) [20, 21]. The large surface area and close contact enables effective filtering and 

conditioning of the inspired air andretention ofwaterduring exhalation (Figs. 1, 2 and3) .Oral breathing increases the net loss 

of water by as much as 42 % compared to nasal breathing [22]. The nasal passages were Fig. 1 The complex anatomy of the nasal 

airways and paranasal sinuses optimized during evolution to protect the lower airways from the constant exposure to airborne 

pathogens and particles. 
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Fig. 2 Illustration of the breath-powered Bi-Directional™ technology. See text for detailed description 

Specifically, particles larger than 3–10 μm are efficiently filtered out and trapped by the mucus blanket [19]. The nose also 

acts as an efficient “gas mask” removing more that 99 % of water-soluble, tissue-damaging gas like sulfur dioxide [23]. 

Infective agents are presented to the abundant nasal immune system both in the mucous blanket, in the mucosa, and in the 

adjacent organized lymphatic structures making the nose attractive for vaccine delivery with potential for a longstanding 

combination of systemic and mucosal immune responses [24]. The highly vascularized respiratory mucosa found beyond the 

valve allows exchange of heat and moisture with the inspired air within fractions of a second, to transform cold winter air 

into conditions more reminiscent of a tropical summer [19]. 

The nasal cycle 

The physiological alternating congestion and decongestion observed in at least 80 % of healthy humans is called the nasal 

cycle [5, 25]. The nasal cycle was first described in the rhinological literature by a German physician in 1895, but was 

recognizedinYoga literaturecenturies before[5] .Healthy individuals are normally unaware of the spontaneous and irregular 

reciprocal 1–4-h cycling of the nasal caliber of the two individual passages, as the total nasal resistance remains fairly 

constant [26]. The autonomic cyclic change in airflow resistance is mainly dependent on the blood content of the submucosal 

capacitance vessels that constitute the erectile component at critical sites, notably the nasal valve region. Furthermore, the 

erectile tissues of the septal and lateral walls and the turbinates respond to a variety of stimuli including physical and sexual 

activity and emotional states that can modify and override the basic cyclic rhythm [4]. The cycle is present during sleep, but 

overridden by pressures applied to the lateral body surface during recumbency to decongest the uppermost/contralateral nasal 

passage. It has been suggested that this phenomenon causes a person to turn from one side to the other while sleeping [5, 

27]. The cycle is suppressed in intubated subjects, but restored by resumption of normal nasal breathing [28]. The cycle may 

also cause accumulation of nitric oxide (NO) in the congested passage and adjacent sinuses and contribute to defense against 

microbes through direct antimicrobial action and enhanced mucociliary clearance [29]. Measurements have shown that the 

concentration of NO in the inspired air is relatively constant due to the increase in NO concentration within the more 

congested cavity, which nearly exactly counterbalances the decrease in nasal airflow [30]. In some patients, as a result of 

structural deviations and inflammatory mucosal swelling, the nasal cycle may become clinically evident and cause 

symptomatic obstruction [19]. Due to the cycle, one of the nostrils is considerably more congested than the other most of the 

time, and the vast majority of the airflow passes through one nostril while the other remains quite narrow especially at the 

valve region [5]. 

Consequently, the nasal cycle contributes significantly to the dynamics and resistance in the nasal valve region and must be 

taken into consideration when the efficiency of nasal drug delivery devices is considered. Nasal and sinus vasculature and 

lymphatic system 

For nasally delivered substances, the site of deposition may influence the extent and route of absorption along with the target 

organ distribution. Branches of the ophthalmic and maxillary arteries supply the mucous membranes covering the sinuses, 

turbinates, meatuses, and septum, whereas the superior labial branch of the facial artery supplies the part of the septum in 

the region of the vestibule. The turbinates located at the lateral nasal wall are highly vascularized with a very high blood 

flow and act as a radiator to the airway. They contain erectile tissues and arteriovenous anastomoses that allow shunting and 

pooling related to temperature and water control and are largely responsible for the mucosal congestion and decongestion in 

health and disease [19, 31]. 
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Substances absorbed from the anterior regions are more likely to drain via the jugular veins, whereas drugs absorbed from 

the mucosa beyond the nasal valve are more likely to drain via veins that travel to the sinus cavernous, where the venous 

blood comes in direct contact with the walls of the carotid artery. A substance absorbed from the nasal cavity to these 

veins/venous sinuses will be outside the blood–brain barrier (BBB), but for substances such as midazolam, which easily 

bypass the BBB, this route of local “counter-current transfer” from venous blood may provide a faster and more direct route 

to the brain. Studies in rats support that a preferential, first-pass distribution to the brain through this mechanism after nasal 

administration may exist for some, but not all small molecules [32, 33]. The authors suggested that this countercurrent 

transport takes place in the area of the cavernous sinus– carotid artery complex, which has a similar structure in rat and man, 

but the significance of this mechanism for nasally delivered drugs has not been demonstrated in man [32, 33]. 

The lymphatic drainage follows a similar pattern as the venous drainage where lymphatic vessels from the vestibule drain 

to the external nose to submandibular lymph nodes, whereas the more posterior parts of the nose and paranasal sinuses drain 

towards the nasopharynx and internal deep lymph nodes [4]. In the context of nasal drug delivery, perivascular spaces along 

the olfactory and trigeminal nerves acting as lymphatic pathways between the CNS and the nose have been implicated in the 

transport of molecules from the nasal cavity to the CNS [34]. 

Innervation of the nasal mucosa 

The nose is also a delicate and advanced sensory organ designed to provide us with the greatest pleasures, but also to warn 

and protect us against dangers. An intact sense of smell plays an important role in both social and sexual interactions and is 

essential for quality of life. The sense of smell also greatly contributes to taste sensations [35]. Taste qualities are greatly 

refined by odor sensations, and without the rich spectrum of scents, dining and wining and life in general would become dull 

[36]. The olfactory nerves enter the nose through the cribriform plate and extend downwards on the lateral and medial side 

of the olfactory cleft. Recent biopsy studies in healthy adults suggest that the olfactory nerves extend at least 1–2 cm further 

anterior and downwards than the 8–10 mm described in most textbooks (see Figs. 1 and 2) [37, 38]. The density decreases, 

but olfactory filaments and islets with olfactory epithelium are found in both the anterior and posterior parts at the middle 

turbinate. In addition, sensory fibers of both the ophthalmic and maxillary branches of the trigeminal nerve contribute to 

olfaction by mediating a “common chemical sense” [39]. Branches of the ophthalmic branch of the trigeminal nerve provide 

sensory innervation to the anterior part of the nose including the vestibule, whereas maxillary branches innervate the posterior 

part of the nose as well as the regions with olfactory epithelium. 

The olfactory and trigeminal nerves mutually interact in a complex manner. The trigeminal system can modulate the 

olfactory receptor activity through local peptide release or via reflex mechanisms designed to minimize the exposure to and 

effects of potentially noxious substances [39]. This can occur by alteration of the nasal patency and airflow and through 

changes in the properties of the mucous blanket covering the epithelium. Trigeminal input may amplify odorous sensation 

through perception of nasal airflow and at the chemosensory level. Interestingly, an area of increased trigeminal 

chemosensitivity is found in the anterior part of the nose, mediating touch, pressure, temperature, and pain [39]. Pain 

receptors in the nose are not covered by squamous epithelium, which gives chemical stimuli almost direct access to the free 

nerve endings. In fact, loss of trigeminal sensitivity and function, and not just olfactory nerve function, may severely reduce 

the sense of smell [40]. This should not be forgotten when addressing potential causes of reduced or altered olfaction. 

The sensitivity of the nasal mucosa as a limiting factor 

In addition to the limited access, obstacles imposed by its small dimensions and dynamics, the high sensitivity of the mucosa 

in the vestibule and in the valve area is very relevant to nasal drug delivery. Direct contact of the tip of the spray nozzle 

during actuation, in combination with localized concentrated anterior drug deposition on the septum, may create 

mechanicalirritation and injury to the mucosa resulting in nosebleeds and crusting, and potentially erosions or perforation 

[41]. Furthermore, the high-speed impaction and low temperature of some pressurized devices may cause unpleasant 

sensations reducing patient acceptance and compliance. 

The role of the high sensitivity of the nasal mucosa as a natural nasal defense is too often neglected when the potential of 

nasal drug delivery is discussed, in particular when results from animal studies, cast studies, and computer fluid dynamics 

(CFD) are evaluated. Exposure to chemicals, gases, particles, temperature and pressure changes, as well as direct tactile 

stimuli, may cause irritation, secretion, tearing, itching, sneezing, and severe pain [39]. Sensory, motor, and parasympathetic 

nerves are involved in a number of nasal reflexes with relevance to nasal drug delivery [4]. Such sensory inputs and related 

reflexes are suppressed by the anesthesia and/or sedation often applied to laboratory animals, potentially limiting the clinical 

predictive value of such studies. Further, the lack of sensory feedback and absence of interaction between the device and 

human subjects/patients are important limitations of in vitro testing of airflow and deposition patterns in nasal casts and in 

CFD simulation of deposition. Consequently, deposition studies in nasal casts and CFD simulation of airflow and deposition 

are of value, but their predictive value for the clinical setting are all too often overestimated. 
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Targeted nasal delivery 

For most purposes, a broad distribution of the drug on the mucosal surfaces appears desirable for drugs intended for local 

action or systemic absorption and for vaccines [3]. However, in chronic sinusitis and nasal polyposis, targeted delivery to 

the middle and superior meatuses where the sinus openings are, and where the polyps originate, appears desirable [42, 43]. 

Another exception may be drugs intended for “nose-to-brain” delivery, where more targeted delivery to the upper parts of 

the nose housing the olfactory nerves has been believed to be essential. However, recent animal data suggest that some 

degree of transport can also occur along the branches of the first and second divisions of the trigeminal nerve innervating 

most of the mucosa at and beyond the nasal valve [44]. This suggests that, in contrast to the prevailing opinion, a combination 

of targeted delivery to the olfactory region and a broad distribution to the mucosa innervated by the trigeminal nerve may be 

optimal for N2B delivery. Targeted delivery will be discussed in more detail below. 

Nasal drug delivery devices 

The details and principles of the mechanics of particle generation for the different types of nasal aerosols have been described 

in detail by Vidgren and Kublik [3] in their comprehensive review from 1998 and will only be briefly described here, with 

focus instead on technological features directly impacting particle deposition and on new and emerging technologies and 

devices. Liquid formulations currently completely dominate the nasal drug market, but nasal powder formulations and 

devices do exist, and more are in development. Table 1 provides an overview of the main types of liquid and powder delivery 

devices, their key characteristics, and examples of some key marketed nasal products and emerging devices and drug–device 

combination products in clinical development (Table 1). 

Devices for liquid formulations 

The liquid nasal formulations are mainly aqueous solutions, but suspensions and emulsions can also be delivered. Liquid 

formulations are considered convenient particularly for topical indications where humidification counteracts the dryness and 

crusting often accompanying chronic nasal diseases [3]. In traditional spray pump systems, preservatives are typically 

required to maintain microbiological stability in liquid formulations. Studies in tissue cultures and animals have suggested 

that preservatives, like benzalkonium chloride in particular, could cause irritation and reduced ciliary movement. However, 

more recent human studies based on long-term and extensive clinical use have concluded that the use of benzalkonium 

chloride is safe and well tolerated for chronic use [45]. For some liquid formulations, in particular peptides and proteins, 

limited stability of dissolved drug may represent a challenge [46]. 

Drops delivered with pipette 

Drops and vapor delivery are probably the oldest forms of nasal delivery. Dripping breast milk has been used to treat nasal 

congestion in infants, vapors of menthol or similar substances were used to wake people that have fainted, and both drops 

and vapors still exist on the market ( e.g., www.vicks.com). Drops were originally administered by sucking liquid into a 

glass dropper, inserting the dropper into the nostril with an extended neck before squeezing the rubber top to emit the drops. 

For multi-use purposes, drops have to a large extent been replaced by metered-dose spray pumps, but inexpensive single-

dose pipettes produced by “blow-fill-seal” technique are still common for OTC products like decongestants and saline. An 

advantage is that preservatives are not required. In addition, due to inadequate clinical efficacy of spray pumps in patients 

with nasal polyps, a nasal drop formulation of fluticasone in single-dose pipettes was introduced in the EU for the treatment 

of nasal polyps. The rationale for this form of delivery is to improve drug deposition to the middle meatus where the polyps 

emerge [47, 48]. However, although drops work well for 
Table 1 Overview of the main types of liquid and powder delivery devices, their key characteristics, and examples of some key marketed nasal 

products and emerging devices and drug–device combination products in clinical development 

some, their popularity is limited by the need for head-down body positions and/or extreme neck extension required for the 

desired gravity-driven deposition of drops [43, 49]. Compliance is often poor as patients with rhinosinusitis often experience 

increased headache and discomfort in head-down positions. 

Delivery of liquid with rhinyle catheter and squirt tube 

A simple way for a physician or trained assistant to deposit drug in the nose is to insert the tip of a fine catheter or micropipette 

to the desired area under visual control and squirt the liquid into the desired location. This is often used in animal studies 

where the animals are anesthetized or sedated, but can also be done in humans even without local anesthetics if care is taken 

to minimize contact with the sensitive mucosal membranes [50]. This method is, however, not suitable for self-
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administration. Harris et al. [51] described a variant of catheter delivery where 0.2 ml of a liquid desmopressin formulation 

is filled into a thin plastic tube with a dropper. One end of the tube is positioned in the nostril, and the drug is administered 

into the nose as drops or as a “liquid jet” by blowing through the other end of the thin tube by the mouth [51]. Despite a 

rather cumbersome procedure with considerable risk of variability in the dosing, desmopressin is still marketed in some 

countries with this rhinyle catheter alongside a nasal spray and a tablet for treatment of primary nocturnal enuresis, Von 

Willebrand disease, and diabetes insipidus. 

Squeeze bottles 

Squeeze bottles are mainly used to deliver some over-thecounter (OTC) products like topical decongestants. By squeezing a 

partly air-filled plastic bottle, the drug is atomized when delivered from a jet outlet. The dose and particle size vary with the 

force applied, and when the pressure is released, nasal secretion and microorganisms may be sucked into the bottle. Squeeze 

bottles are not recommended for children [3]. 

Metered-dose spray pumps 

Metered spray pumps have, since they were introduced some four decades ago, dominated the nasal drug delivery market 

(Table 1). The pumps typically deliver 100 μl (25– 200 μl) per spray, and they offer high reproducibility of the emitted dose 

and plume geometry in in vitro tests. The particle size and plume geometry can vary within certain limits and depend on the 

properties of the pump, the formulation, the orifice of the actuator, and the force applied [3]. Traditional spray pumps replace 

the emitted liquid with air, and preservatives are therefore required to prevent contamination. However, driven by the studies 

suggesting possible negative effects of preservatives, pump manufacturers have developed different spray systems that avoid 

the need for preservatives. These systems use a collapsible bag, a movable piston, or a compressed gas to compensate for 

the emitted liquid volume [3] (www.aptar.com and www.rexam.com). The solutions with a collapsible bag and a movable 

piston compensating for the emitted liquid volume offer the additional advantage that they can be emitted upside down, 

without the risk of sucking air into the dip tube and compromising the subsequent spray. This may be useful for some 

products where the patients are bedridden and where a headdown application is recommended. Another method used for 

avoiding preservatives is that the air that replaces the emitted liquid is filtered through an aseptic air filter. In addition, some 

systems havea ball valve at the tip toprevent contamination of the liquid inside the applicator tip (www.aptar.com). These 

preservative-free pump systems become more complex and expensive, and since human studies suggest that preservatives 

are safe and well tolerated, the need for preservative-free systems seems lower than previously anticipated [45]. More 

recently, pumps have been designed with side-actuation and introduced for deliveryoffluticasone furoate for the indication 

of seasonal and perennial allergic rhinitis [52]. The pump was designed with a shorter tip to avoid contact with the sensitive 

mucosal surfaces. New designs to reduce the need for priming and re-priming, and pumps incorporating pressure point 

features to improve the dose reproducibility and dose counters and lock-out mechanisms for enhanced dose control and 

safety are available (www.rexam.com and www.aptar.com). Importantly, the in vivo deposition and clinical performance of 

metered-dose spray pumps can be enhanced for some applications by adapting the pumps to a novel breathpowered “Bi-

Directional™” delivery technology described in more detail below [13]. 

Single- and duo-dose spray devices 

Metered-dose spray pumps require priming and some degree of overfill to maintain dose conformity for the labeled number 

of doses. They are well suited for drugs to be administered daily over a prolonged duration, but due to the priming procedure 

and limited control of dosing, they are less suited for drugs with a narrow therapeutic window. For expensive drugs and 

vaccines intended for single administration or sporadic use and where tight control of the dose and formulation is of particular 

importance, single-dose or duo-dose spray devices are preferred (www.aptar.com). 

A simple variant of a single-dose spray device (MAD) is offered by LMA (LMA, Salt Lake City, UT, USA; 

www.lmana.com). A nosepiece with a spray tip is fitted to a standard syringe. The liquid drug to be delivered is first drawn 

into the syringe and then the spray tip is fitted onto the syringe. This device has been used in academic studies to deliver, for 

example, a topical steroid in patients with chronic rhinosinusitis and in a vaccine study [53, 54]. A pre-filled device based 

on the same principle for one or two doses (Accuspray™, Becton Dickinson Technologies, Research Triangle Park, NC, 

USA; www.bdpharma.com) is used to deliver the influenza vaccine FluMist (www.flumist.com), approved for both adults 

and children in the US market [55, 56]. A similar device for two doses was marketed by a Swiss company for delivery of 

another influenza vaccine a decade ago. This vaccine was withdrawn due to occurrence of adverse events (Bell’s palsy) 

potentially related to the cholera toxin adjuvant used [57]. The device technology is now owned by a Dutch vaccine company 

(CrucellN.V.Leiden,the Netherlands;www.crucell.com),buttoour knowledge is not currently used in any marketed products. 

The single- and duo-dose devices mentioned above consist of a vial, a piston, and a swirl chamber. The spray is formed 

when the liquid is forced out through the swirl chamber. These devices are held between the second and the third fingers 
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with the thumb on the actuator. A pressure point mechanism incorporated in some devices secures reproducibility of the 

actuation force and emitted plume characteristics [58]. Currently, marketed nasal migraine drugs like Imitrex (www.gsk.com) 

and Zomig (www.az.com; Pfeiffer/Aptar single-dose device) and the marketed influenza vaccine FluMist 

(www.flumist.com; Becton Dickinson single-dose spray device) are delivered with this type of device [59] (Table 1). With 

sterile filling, the use of preservatives is not required, but overfill is required resulting in a waste fraction similar to the 

metered-dose, multi-dose sprays. To emit 100 μl, a volume of 125 μl is filledin the device (Pfeiffer/Aptar single-dosedevice) 

used for the intranasal migraine medications Imitrex (sumatriptan) and Zomig (zolmitriptan) and about half of that for a duo-

dose design [58]. 

Nasal pressurized metered-dose inhalers (pMDIs) 

Most drugs intended for local nasal action are delivered by spray pumps, but some have also been delivered as nasal aerosols 

produced by pMDIs. Following the ban on ozonedepleting chlorofluorocarbon (CFC) propellants, the number of pMDI 

products for both pulmonary and nasal delivery diminished rapidly, and they were removed from the US market in 2003 

[60]. The use of the old CFC pMDIs for nasal products was limited due to complaints of nasal irritation and dryness. The 

particles from a pMDI are released at a high speed and the expansion of a compressed gas, which causes an uncomfortable 

“cold Freon effect” [61]. The particles emitted from the traditional pMDIs had a particle velocity much higher than a spray 

pump (5,200 vs. 1,500 cm/s at a distance 1–2 cm from the actuator tip) [3]. The issues related to the high particle speed and 

“cold Freon effect” have been reduced with the recently introduced hydrofluoroalkane (HFA)-based pMDI for nasal use 

offering lower particle speeds [60]. Recently, the first nasal pMDI using HFA as propellant to deliver the first generation 

topical steroid beclomethasone dipropionate (BDP) was approved for allergic rhinitis in the USA [62]. Like spray pumps, 

nasal pMDIs produce a localized deposition on the anterior non-ciliated epithelium of the nasal vestibule and in the anterior 

parts of the narrow nasal valve, but due to quick evaporation of the spray delivered with a pMDI, noticeable “drip-out” may 

be less of an issue [63]. 

Mismatch between geometry of anterior nose and the spray plume 

The pressure created by the force actuating a spray pump drives the liquid through the swirl chamber at the tip of the 

applicator and out through the circular nozzle orifice [64]. The combination of radial and axial forces creates a swirling thin 

sheet of liquid that, after some millimeters, becomes unstable and breaks up into “ligaments” before forming the particles 

(break-up length). Importantly, a hollow spray cone is formed with particles mainly at the periphery. The key parameters 

influencing the properties of the plume and subsequently the deposition pattern of the particles are the swirl effect, nozzle 

orifice dimensions, the spray cone angle, and the break-up length. Inthavong et al. [64] reported for a spray with a nozzle 

diameter of 0.5 mm, a spray cone angle of 30°, and a break-up length of about 3.5 mm, and the diameter at the break-up 

point is already 4 mm. One study reported the smallest spray cone diameters (Dmax/Dmin) for a spray angle with 54.6° to be 

2.34/1.92 and 3.30/3.08 cm at distances of 1.0 and 2.5 cm from the nozzle [2]. Another study reported a spray cone diameter 

of 2.52/1.58 at 3 cm from the nozzle for a spray angle of 39° [65]. Even if the spray pump is inserted as deep as 10–15 mm 

into the nostril, there is an obvious mismatch between the dimensions and shape of the circular plume (diameter≈2 cm) and 

the narrow triangular valve opening. With most of the particles in the periphery of the plume, it becomes quite evident that 

the majority of the particles will impinge in the non-ciliated mucosal walls of the vestibule anterior to the valve. Particles 

actually penetrating the valve will do so primarily through the lower and wider part of the triangle, a delivery pattern that is 

accentuated if delivery is performed during sniffing. Although the aerosol-generating mechanisms are different, a similar 

mismatch would exist between constricting geometry of the nasal vestibule and the conical-shaped plumes produced by other 

powered devices like pMDIs, nebulizers/atomizers, and many powder devices (see below). 

Powered nebulizers and atomizers Nebulizers use compressed gasses (air, oxygen, and nitrogen) or ultrasonic or mechanical 

power to break up medical solutions and suspensions into small aerosol droplets that can be directly inhaled into the mouth 

or nose. The smaller particles and slow speed of the nebulized aerosol are advocated to increase penetration to the target sites 

in the middle and superior meatuses and the paranasal sinuses [42]. Indeed, nasal inhalation from a nebulizer has been shown 

to improve deposition to the upper narrow part of the nose when compared to a metered-dose spray pump, but with 33 % 

and 56 % of the delivered dose deposited in the lungs in the subjects assessed [66]. In light of this problem of lung delivery, 

it is unsurprising that nasal inhalation of nebulized antibiotics intended for topical action in patients with chronic 

rhinosinusitis resulted in coughing and increased need for inhaled medications following nasal inhalation [67]. 

VibrENT pulsation membrane nebulizer A new nebulizer intended for delivery to the nose and sinuses in patients with 

chronic rhinosinusitis utilizing a pulsating aerosol generated via a perforated vibrating membrane has recently been 

introduced (VibrENT PARI Pharma GmbH). The pulsation in combination with small particles is assumed to offer better 

penetration to the sinuses, and instruction on specific breathing technique during delivery is advocated to minimize inhalation 
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[68]. Delivery of an aerosol with small particles with a mass median aerodynamic diameter (MMAD) of 3.0 μm was 

performed with two different techniques and compared to a spray pump. Aerosol administration into one nostril for 20 s at 

a rate of mass output of 0.3 ml/min, with an exit filter attached to the other nostril during nasal breathing, resulted in 4.5 % 

of the fraction deposited in the nose (63 %) reaching the sinuses (i.e., 2.8 % of the delivered dose), 27 % in the exit filter, 

and significant lung deposition (10 %). Nasal aerosol delivery was also performed when the subjects were instructed to 

maintain the soft palate closed while a flow resistor was connected to the left nostril. Following this procedure, 70 % of the 

radioactivity was deposited in the nose, 30 % in the exit filter, a negligible fraction in the lungs, and 7 % of the fraction in 

the nose (i.e., 4.9 % of the delivered dose) was found in the sinuses [68]. Following delivery of 100 μl with a traditional 

spray pump, 100 % of the dose was found in the nose with no deposition in the lungs and non-significant deposition in the 

sinuses [68]. Correction for background radiation and decay was performed, but correction for tissue attenuation was not 

performed, which is likely to change the relative distribution and potentially increase the fraction actually deposited in the 

lungs [68–71]. Nevertheless, the results suggest that the use of a pulsating aerosol in combination with the breathing 

technique and an exit resistor may enhance deposition in the sinuses in healthy volunteers. However, the clinical relevance 

of these results from healthy volunteers for rhinosinusitis patients with blocked sinus openings remains to be determined. 

The proposed breathing technique used to prevent lung deposition may also prove challenging as compared to the automatic 

integration of velum closure and the drug delivery process, as achieved when using the exhalation breath in operation of the 

delivery device, such as provided by OptiNose’s Bi-Directional™ delivery technology, which can also utilize an exit resistor 

to create positive pressure in the nose and sinuses[69]. Furthermore, a very distinct “hot spot” was observed for both the 

nebulizer and spray pump delivery, but no assessmentof regional deposition inthe nose was performed in the study with the 

pulsating aerosol nebulizer [68]. 

Aeroneb Solo vibrating mesh nebulizer Distinct anterior deposition in the valve area with nebulizers is confirmed in another 

very recent publication comparing nasal inhalation from a nasal sonic/pulsating jet nebulizer ( Atomisor NL11S® sonic, DTF-

Medical, France) and a new nasal mesh nebulizer system designed to minimize lung inhalation (Aeroneb Solo®, Aerogen, 

Galway, Ireland; DTFAerodrug, Tours, France) with the same mean particle size (5.6±0.5 μm) [72]. The new system consists 

of two integrated components: the nebulizer compressor administering a constant airflow rate transporting the aerosol into 

one nostril via a nozzle and a pump simultaneously aspirating from a second nozzle in the other nostril at the same airflow 

rate while the subject is instructed to avoid nasal breathing [72]. The new nasal mesh nebulizer produced more deposition in 

terms of volume of liquid (27 % vs. 9 %, i.e., 0.81 vs. 0.27 ml) in the nasal cavity. The much higher fraction found in the 

nasal cavity in this study is probably a result of the shorter nebulizing time and smaller delivered volume in the study testing 

the PARI pulsating nebulizer (20 s at a rate of 0.3 ml/min to each nostril versus delivery of 3 ml for up to 10 min) before 

assessment of deposition was performed [68, 72]. With much longer delivery time, a substantial fraction of the dose delivered 

beyond the nasal valve will be cleared to the gastrointestinal (GI) tract. 

Aerosol distribution deposition showed a distinct maximum value at 2 cm from the nostril for both nebulizers 

corresponding to deposition in the nasal valve region [72]. Furthermore, aerosol distribution deposition in the vertical plane 

showed a similar profile for both nebulizers with a distinct maximum close to the floor of the nose (0.75 cm for the mesh 

nebulizer and 1.2 cm for the sonic jet nebulizer) [72]. Importantly, the delivery efficiencies for both nebulizers and delivery 

techniques appear very low with only 27 % vs. 9 %, i.e., 0.81 vs. 0.27 ml, possibly due to the long delivery time and resulting 

differences in mucociliary and other mechanisms of clearance [72]. In other words, a study assessing deposition after several 

minutes of delivery is likely to underestimate the actual exposure to the posterior ciliated part of the nose compared to the 

study assessing deposition after a short period of delivery of less than 1 min (20 s×2) [68, 72]. 

Clinical relevance of deposition results with nebulizers Lung deposition and relatively low nasal delivery fractions are issues 

with nasal nebulizers. Although lung deposition appears to be reduced with simultaneous aspiration from the contralateral 

nostril and with specific breathing instructions, this complex mechanism for use, coupled with the need for careful patient 

compliance with breathing, may be challenging, especially in children or other special populations [66, 68, 72]. The study 

design, comparing not only two different nebulization techniques but also very different breathing techniques, makes 

interpretation of the results comparing the nasal nebulizers in terms of deposition efficacy and clinical significance very 

difficult. 

The rationale for using small particles and sonic/pulsation techniques is to increase the delivery into the sinuses, but at the 

expense of low delivery efficacy and significant potential for lung deposition. Moreover, despite the intended advantages of 

the vibrating mesh nebulizer that employs aspiration from the contralateral nostril, the quantification of deposition in the 

different planes (cartography) demonstrates the typical highly preferential deposition in the anterior (anterior 2–3 cm) and 

lower (lower 1–2 cm) parts of the nasal cavity. This pattern of deposition suggests the nebulizer is not effectively delivering 

to the prime target sites for chronic rhinosinusitis and nasal polyposis (i.e., the middle and superior meatuses or sinuses) [42, 

72]. To date, no clinical data has been published with the new nebulizer systems [68, 72]. 

One approach to avoiding lung deposition is the BiDirectionalTM technology employed in OptiNose devices; this 

technology ensuring operation of the nebulizer only on generation of a pressure sufficient to close the palate, avoiding the 

problems associated with suction pumps and special breathing instructions. However, clinical data using this approach with 

a nebulizer has also not been published. 
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ViaNase atomizer A handheld battery-driven atomizer intended for nasal drug delivery has been introduced (ViaNase by 

Kurve Technology Inc., Lynnwood, WA, USA). This device atomizes liquids by producing a vortical flow on the droplets 

as they exit the device (www.kurvetech.com). The induced vortical flow characteristics can be altered in circular velocity 

and direction to achieve different droplet trajectories [42, 73]. As discussed above, it is not clear that vortex flow is desirable 

for penetration past the nasal valve; however, it has been suggested that this technology is capable of targeting the sinuses, 

and some gamma-deposition images suggesting delivery to the sinuses have been published. However, no information related 

to impact of prior surgery or numerical quantification of nasal or sinus deposition verifying the claimed improved deposition 

to the upper parts of the nose has been published [42, 73]. The ViaNase device has been used to deliver nasal insulin in 

patients with early Alzheimer’s disease (AD), and clinical benefit has been demonstrated [74, 75]. In these studies, delivery 

of insulin was performed over a 2-min period by nasal inhalation. However, when insulin is delivered with this device, lung 

deposition is likely to occur, and some concerns related to airway irritation and reduction in pulmonary function have been 

raised in relation to long-term exposure to inhaled insulin when Exubera was marketed for a short period as a treatment for 

diabetes [71, 76]. This example highlights the issue of unintended lung delivery, one important potential clinical problem 

associated with using nebulizers and atomizers producing respirable particles for nasal drug delivery. 

Impel nitrogen-driven atomizer A nasal atomizer driven by highly pressurized nitrogen gas is under development by Impel 

Inc. (www.impel.com). The device is intended to enable drug delivery to the upper parts of the nose in order to achieve N2B 

delivery [77]. To date, only animal data has been presented, making it difficult to evaluate its potential in human use, as 

nasal deposition and the assessment of nasal deposition in animal models vary significantly from humans. As previously 

noted, however, pMDIs are associated with a number of limitations. It therefore remains to be seen if a pressurized “open-

palate” nebulizer will be capable of creating the desired delivery pattern. 

Powder devices 

Powder medication formulations can offer advantages, including greater stability than liquid formulations and potential that 

preservatives may not be required. Powders tend to stick to the moist surface of the nasal mucosa before being dissolved and 

cleared. The use of bioadhesive excipients or agents that slow ciliary action may decrease clearance rates and improve 

absorption [46, 78]. A number of factors like moisture sensitivity, solubility, particle size, particle shape, and flow 

characteristics will impact deposition and absorption [3]. 

The function of nasal powder devices is usually based on one of three principles (Table 1): 

1. Powder sprayers with a compressible compartment to provide a pressure that when released creates a plume of powder 

particles fairly similar to that of a liquid spray; 

2. Breath-actuated inhalers where the subject uses his own breath to inhale the powder into the nostril from a blister or 

capsule; and 

3. Nasal insufflators describe devices consisting of a mouthpiece and a nosepiece that are fluidly connected. Delivery 

occurs when the subject exhales into the mouthpiece to close the velum, and the airflow carries the powder particles into 

the nose through the device nosepiece similar to the rhinyle catheter described above. The principle can be applied to 

different dispersion technologies and has been further developed and extended into the breath-powered Bi-Directional™ 

delivery technology (see below). 

Nasal powder inhalers 

& Astra Zenaca markets budesonide powder delivered with the Turbuhaler multi-dose inhaler device modified for nasal 

inhalation (Rhinocort Turbuhaler®; www.az.com) [79]. It is marketed for allergic rhinitis and nasal polyps in some 

markets as an alternative to the liquid spray, but it does not seem to offer any particular advantage [80]. In a study 

comparing twicedaily treatment withaqueous budesonide spray (128 μg×2) and the Rhinocort Turbuhaler® (140 μg×2) in 

nasal polyp patients, both treatments significantly reduced polyp size compared to placebo, but with no difference 

between the active treatments. However, nasal symptom scores were significantly more reduced in the liquid spray 

compared to the powder [80]. A gamma-deposition study with Rhinocort Turbuhaler) has shown predominantly anterior 

deposition with a “hot spot” at the nasal valve area and about 5 % lung deposition [79]. If corrected for tissue attenuation 

in the lungs, it is likely that the fraction would be substantially higher [69, 79]. 

& Aptar group (www.aptar.com) offers a simple blisterbased powder inhaler. The blister is pierced before use and the device 

nosepiece placed into one nostril. The subject closes the other nostril with the finger and inhales the powder into the nose. 

A powder formulation of apomorphine for Parkinson’s using this blister-based powder inhaler (BiDose™/Prohaler™) 

from Pfeiffer/ Aptar was in clinical development by Britannia, a UK company recently acquired by Stada Pharmaceutical 

(www.stada.de). Apparently, further development has been discontinued. 
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& Nippon Shinyaku Co., Ltd. (www.nippon-shinyaku.co.jp) markets in Japan a topical steroid ( dexamethasone cipecilate) 

delivered with a powder-based inhalation device for allergic rhinitis. The device (Twin-lizer™) has two chambers with 

capsules inside. The capsule is pierced, and when the subject inhales from the nosepiece, the powder is deagglomerated 

and delivered into the nose with the airflow. 

Nasal powder sprayers 

& SBNL Pharma (www.snbl.com) recently reported data on a Phase 1 study described in a press release (www.snbl.com) 

with a zolmitriptan powder cyclodextrin formulation (μco™ System) for enhanced absorption, described previously in an 

in vitro study [81]. The zolmitriptan absorption was rapid, and the relative bioavailability was higher than the marketed 

tablet and nasal spray (www.snbl.com). The company has their own capsule-based, single-dose powder devices (Fit-

lizer) [82]. When inserted into a chamber, the top and bottom of the capsule is cut off by sharp blades. A plastic chamber 

is compressed by hand, compressed air passes through a one-way valve and the capsule during actuation, and the powder 

is emitted. In vitro testing shows high-dose reproducibly and minimal residuals, but no data on particle size distribution 

or in vivo deposition and clearance patterns appear to be available. The company has also completed a Phase 2 study 

with the drug granisetron for the indication of delayed chemotherapy-induced nausea and vomiting based on the same 

formulation technology and delivered with the Fit-lizer™ device [81]. They have also announced plans to develop a 

powder-based influenza vaccine (www.snbl.com). 

& Bespak (www.bespak.com), the principle for UnidoseDP™, is similar to the Fit-lizer device. An air-filled 

compartment is compressed until a pin ruptures a membrane to release the pressure to emit the plume of powder. 

Delivery of powder formulations of a model antibody (human IgG) has been tested in a nasal cast model based on 

human MRI images. Approximately 95 % of the dose was delivered to the nasal cavity, but the majority of it was 

deposited no further than the nasal vestibule with only about 30 % deposited into deeper compartments of the nasal 

cavity [83]. The company report in their website that they have entered into a collaboration to develop an undisclosed 

nasal powder product with this device (www.bespak.com). 

& Aptar group (Pfeiffer/Valois) (www.aptar.com) offers a powder device (Monopowder) based on the same principle 

as the devices above but with a plunger that when pressed creates a positive pressure that ruptures a membrane to 

expel the powder. The device has been used in studies in rabbits, but no data from human deposition or clinical 

studies have been published [84]. 

& BD (www.bdpharma.com) also has a powder device 

(SoluVent™) where a positive pressure is created with a plunger that pierces a membrane to expel the powder. A device 

based on this technology is being tested with powder vaccines [85]. Nasal powder insufflators 

& Trimel (www.trimel.com) has acquired a device originally developed by a Danish company (Direct Haler). There are two 

versions of this device that looks like a small drinking straw. One version is intended for pulmonary drug delivery where 

subjects inhale through the small tubular device and one for nasal drug delivery where subjects blow into one end of the 

tube while the other end is inserted into the vestibule of the nostril. The device can in principle be viewed as a powder 

version of the rhinyle catheter for liquid delivery. This tubular device includes a middle section with corrugations. The 

corrugations allow flexion of the device and create turbulence that deagglomerates the powder. One end of the small 

tubular device is inserted between the lips and the other into the nasal vestibule. The subject then exhales through the 

device to expel the powder from the tube and into the nostril. As when using the rhinyle catheter, exhalation into the 

device causes the soft palate to automatically elevate to separate the oral cavity and the nasal passages, preventing lung 

inhalation during delivery. No clinical data with the device is available apart from a smallgamma study in a patent stating 

that the device produced clearance and areas of deposition that were not significantly different from a “state-of-the-art” 

powder inhalation device (device details not identified) [86]. 

& OptiNose (has developed a breathpowered Bi-Directional™ nasal delivery technology for liquid and powder medications 

which utilizes the exhaled breath to deliver the drug into the nose, but with additional key distinguishing features that 

importantly impact drug deposition and clearance patterns and clinical device performance. 
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Breath-powered Bi-Directional™ technology—a new nasal drug delivery concept 

This novel concept exploits natural functional aspects of the upper airways to offer a delivery method that may overcome 

many of the inherent limitations of traditional nasal devices. Importantly, the breath-powered Bi-Directional™ technology 

can be adapted to any type of dispersion technology for both liquids and powders. Breath-powered Bi-Directional™ devices 

consist of a mouthpiece and a sealing nosepiece with an optimized frusto-conical shape and comfortable surface that 

mechanically expands the first part of the nasal valve (Figs. 1, 2, and 3). The user slides a sealing nosepiece into one nostril 

until it forms a seal with the flexible soft tissue of the nostril opening, at which point, it mechanically expands the narrow 

slit-shaped part of the nasal triangular valve. The user then exhales through an attached mouthpiece. When exhaling into the 

mouthpiece against the resistance of the device, the soft palate (or velum) is automatically elevated by the positive 

oropharyngeal pressure, isolating the nasal cavity from the rest of the respiratory system. Owing to the sealing nosepiece, 

the dynamic pressure that is transferred from the mouth through the device to the nose further expands the slit-like nasal 

passages. Importantly, the positive pressure in the entry nostril will, due to the sealing nosepiece, balance the oropharyngeal 

pressure across the closed velum to prevent the velum from being “over-elevated,” thus securing an open flow path between 

the two nasal passages behind the nasal septum and in front of the elevated velum. 

This “breath-powered” mechanism enables release of liquid or powder particles into an air stream that enters one nostril, 

passes entirely around the nasal septum, and exits through the opposite nostril, following a “Bi-Directional™” flow path. 

Actuation of drug release in devices employing this approach has been described using manual triggering as well as 

mechanisms automatically triggered by flow and/or pressure [13, 69, 70, 87, 88]. By optimizing design parameters, such as 

the nosepiece shape, the flow rate, the particle size profile, and release angle, it is possible to optimize delivery to target sites 

beyond the nasal valve, avoid lung deposition, and to assure that particles are deeply deposited without exiting the 

contralateral nostril. The Bi-Directional™ devices currently in phase 3 clinical trials are a multi-dose liquid device 

incorporating a standard spray pump and a capsule-based powder multi-use device with disposable drug chamber and 

nosepiece (Fig. 3), but other configurations are possible. Importantly, the Bi-Directional™ delivery concept can be adapted 

to a variety of dispersion technologies for both liquids and powders, 

Human evidence for nasal deposition patterns with BiDirectional™ delivery Device variants using this mechanism of nasal 

drug delivery have been tested in gamma-deposition studies where assessments of the regional deposition and clearance 

patterns in human subjects were studied in detail [13, 14, 69]. Comparison of conventional nasal inhalation and Bi-

Directional™ delivery with the same nebulizer producing small particles showed that lung inhalation can be prevented with 

Bi-Directional™ delivery even when small respirable particle are delivered [69]. In one published study, a breathactuated Bi-

Directional™ device incorporating a standard spray pump was compared directly to the same nasal spray pump actuated by 

hand in the traditional way, and in a second published study, a Bi-Directional™ powder device was directly compared to a 

traditional spray device [13, 14]. Both studies demonstrated less deposition in the non-ciliated nasal vestibule and 

significantly greater deposition to the upper posterior regions beyond the nasal valve with the BiDirectional™ devices as 

compared to conventional delivery with a spray pump [13, 14] (Fig. 4). In the most recent gamma study with Bi-Directional™ 
powder device ( Opt-Powder ) seen in Fig. 2, the initial deposition in the upper and middle posterior regions of the nose was 

significantly larger than a traditional spray (upper posterior region; Opt-Powder 18.3± −11.5 % vs. spray 2.4±1.8 %, p<0.02; 

sum of upper and middle posterior regions; Opt-Powder 53.5±18.5 % vs. spray 
Fig. 3 Cross-sections of a human nose with normal dimensions during soft palate closure with Bi-Directional™ flow assessment using CFD. 

The airflow is entering the right nostril and exiting the left nostril. The 

15.7±13.8 %, p<0.02) [14]. In contrast, the summed initial deposition to the lower anterior and posterior regions for spray 

was three times higher compared to Opt-Powder ( Opt-Powder 17.4±24.5 % vs. spray 59.4±18.2 %, p<0.04; Fig. 4) [14]. 

Published clinical outcomes with breath-powered BiDirectional™ delivery devices In addition to human studies of deposition 

patterns, devices using the breath-powered BiDirectional™ technology have also been evaluated in a number of clinical trials. 

Results generally suggest that superior deep nasal deposition with clinically important potential can be achieved in the clinic, 

and two drug–device combinations are currently in Phase 3 development: sumatriptan powder for 
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figure illustrates the narrow triangular shape of the nasal valve and the narrow slit-like passage of the nasal airway more posterior 

acute migraine and fluticasone propionate for chronic rhinosinusitis with nasal polyposis [87–90] (www.optinose.com). 

& Midazolam—sedation: Midazolam is a drug with high bioavailability (BA), reasonable ability to cross the BBB, and easily 

observed pharmacodynamic effects (sedation). In a three-way crossover study of 12 healthy volunteers, delivery of the 

same dose of midazolam (3.4 mg) with a breathpowered Bi-Directional™ device prototype was assessed relative to a 

standard nasal spray and intravenous ( IV ) administration [91]. Drug pharmacokinetics (PK) with both nasal delivery 

approaches were similar, as is not unexpected forasmallmoleculeeasilyabsorbedtothebloodwithahigh 

BA of ≈70 %. Interestingly, the pharmacodynamic effects (onset and level of sedation) reported with Bi-Directional™ 

delivery were very similar to IV administration despite substantially lower maximum serum levels (Bi-Directional™ with 

median Cmax03 Ng/ml vs. IV with median Cmax0 5 ng/ml). In contrast, the onset was slower, and the degree of sedation 

was lower following traditional spray delivery despite similar PK values as Bi-Directional™ delivery [91]. These findings 

suggest that the sedative effect following Bi-Directional™ nasal delivery may not merely be a 

resultofabsorptiontothebloodandsubsequentpassageinto the brain across the BBB as occurs with a standard nasal spray. 

Alternative transport routes to the brain bypassing the BBB described in animal studies may contribute to the sedative 

effects [32–34, 44]. Absorption from the posterior partofthenosemayofferamoredirectroutetobrainarterial blood through 

the particular venous drainage pathway from the posterior parts of the nose called “counter-current transfer” [32, 33]. 

Moreover, direct transport to the brain for both small and large molecules may occur along ensheathed cells 

formingchannelsaround theolfactoryandtrigeminalnerves [34, 44]. Contribution from such alternative transport routes 

would be consistent with a clinically important improvement in the pattern of deep nasal drug deposition with breath-

powered Bi-Directional™ delivery (Fig. 4) [13, 14]. 

& Sumatriptan—migraine: Unlike midazolam, the serotonin antagonist sumatriptan has poor BA when delivered orally (14 

%) and is only marginally higher when delivered as a nasal spray (Pfeiffer single-dose device). It has been estimated that 

only about 10 % of the drug delivered by standard nasal spray (Imitrex) is absorbed rapidly across the nasal mucosa 

within the first 20 min with much of a dose undergoing delayed absorption from the GI tract with a Tmax of 90 min [92, 

93]. Hypothesizing that breath-actuated Bi-Directional™ powder delivery may produce clinically different results than 

previously reported for nasal spray delivery, investigators conducted a cross-over PK study in 12 migraineurs, comparing 

subcutaneous injection of 6 mg sumatriptan with 10 and 20 mg of intranasal sumatriptan powder. Bidirectionally 

delivered nasal sumatriptan powder was pharmacodynamically similar to injection, inducing a similar EEG profile and 

preventing migraine attacks in patients when delivered 15 min before glyceryl trinitrate challenge. The PK curves showed 

a similar bi-phasic absorption pattern as described for sumatriptan nasal spray delivery, but with a substantially higher 

initial predominantly nasal absorption peak at 20 min estimated to account for approximately 30 % of the total absorption 

which is about three times the estimated 10 % fraction absorbed nasally for the marketed Imitrex nasal spray [89, 92]. 

These PK results lend credence to the conclusion that clinically differentiated nasal deposition 

is produced by the breath-powered Bi-Directional™ device compared to what has been previously reported with standard 

nasal spray delivery. A more definitive study directly comparing sumatriptan delivery with a breath-powered Bi-

Directional™ device to delivery by standard nasal spray, oral delivery, and injection delivery is being conducted and 

should report results soon (www.clinicaltrials.gov). In a randomized, doubleblind, parallel group, placebo-controlled 

study, a single migraine attack was treated in-clinic with two doses of sumatriptan powder (7.5 or 15 mg delivered doses 
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or placebo) administered intranasally by a novel BiDirectional™ powder delivery device; fast onset of pain relief was 

observed for both doses [90]. The pain relief rates were similar to historical data SC injection despite much lower 

systemic exposure [90, 92]. The results suggest that the enhanced deposition associated with the breath-powered Bi-

Directional™ delivery of sumatriptan powder may contribute to greater initial nasal absorption and offer clinical benefits 

[94]. However, based on comparisons with historical data on the PK and pharmacodynamics profiles of sumatriptan 

delivered through different routes, it has been speculated that the rate of systemic absorption of nasal sumatriptan may 

not alone explain differences in headache response suggesting the potential for an additional route to the site of action as 

discussed above [14] . A Phase 3 study is currently in progress (www.clinicaltrials.gov and www.optinose.com). 

& Fluticasone propionate—chronic rhinosinusitis with nasal polyps: Fluticasone is a topical steroid, available as a standard 

nasal spray for treatment of rhinitis but often used with limited benefit in the treatment of chronic rhinosinusitis (CRS) 

with and without nasal polyps. In a 3-month placebo controlled study in 109 patients with chronic rhinosinusitis (CRS) 

with nasal polyps, delivery of fluticasone (400 μg b.i.d.) with an OptiNose breathpowered Bi-Directional™ liquid drug 

delivery device was reported to be well tolerated and to produce a large magnitude of reduction in both symptoms and 

the overall polyp score. Particularly notable relative to expectations with standard nasal spray delivery, complete 

elimination of the polyps in close to 20 % of the subjects was reported after 3 months [87]. The proportion of subjects 

with improvement in summed polyp score was significantly higher with OptiNose fluticasone propionate (Opt-FP) 

compared with placebo at 4, 8, and 12 weeks (22 % vs. 7 %, p00.011, 43 % vs. 7 %, p< 

0.001, 57 % vs. 9 %, p<0.001). Despite relatively lower baseline polyp scores after 12 weeks, the summed polyp score 

was significantly reduced from 2.8 to 1.8 in the active treatment group, whereas a minor increase in polyp score was 

seen in the placebo group (−0.98 vs. +0.23, p<0.001). Peak nasal inspiratory flow (PNIF) increased progressively during 

Opt-FP treatment (p<0.001). Combined symptom score, nasal blockage, discomfort, rhinitis symptoms, and sense of 

smell were all significantly improved [87]. The highly significant progressive treatment effect of Opt-FP was observed 

regardless of baseline polyps score. Previous sinus surgery had no impact on the efficacy. Coupled with the complete 

removal of polyps in many patients with small polyps, this suggests that improved deposition to target sites achieved 

with the Bi-Directional™ delivery device may translateintotrueclinicalbenefitsandpossiblyreducedneed for surgery [95]. 

A Phase 3 study is currently in progress (www.clinicaltrials.gov and www.optinose.com). 

The same drug–device combination product was also evaluated in a small placebo controlled study (N020) in patients 

with post-surgical recalcitrant CRS without polyps, producing clinically significant improvements on both objective 

measures and subjective symptoms [88]. Endoscopy score for edema showed a significant and progressive improvement 

[12 weeks (median scores): Opt-FP −4.0, PBO − 1.0, p00.015]. PNIF increased significantly during Opt-FP 

treatmentcomparedtoplacebo(4weeks:p00.006;8weeks: p00.03). After 12 weeks, MRI scores in the Opt-FP group 

improved against baseline (p00.039), and a non-significant trend was seen vs. placebo. The nasal RSOM-31 subscale 

wassignificantlyimprovedwithOpt-FPtreatment(4weeks: p00.009, 8 weeks: p00.016, 12 weeks: NS). Sense of smell, 

nasal discomfort, and combined score were all significantly improved (p<0.05). Notably, this is a condition marked by 

many recent negative placebo-controlled trials [96, 97]. This context, in addition to comparison with historical data in 

similar patient populations, again suggests that breath-powered bi-directional delivery is capable of producing superior 

deep nasal deposition in clinical practice (improved targeting of the middle meatus in this case) which can translate into 

improved clinical response (Fig. 4) [13, 87, 88]. 

& Influenza vaccine: In a four-armed parallel group study with a whole-virus influenza liquid vaccine without adjuvant, 

delivery with the breath-powered Bi-Directional™ OptiNose device and nasal drops were found to provide better overall 

immune response than a traditional nasal spray and an oral spray [50]. In contrast to the selfadministration with the 

OptiNose device, the nasal drops were delivered by an assistant inserting the pipette tip in a controlled manner beyond 

the nasal valve with the neck extended. These results suggest that Bi-Directional™ devices are a practical delivery method 

capable of producing a clinically relevant broader and deeper distribution of vaccines to the nasal respiratory mucosa, 

areas rich in dendritic cells and aggregates of lymphoid tissue, offering potential for a range of vaccines to produce 

improved immune response in non-parenteral delivery forms [24, 50]. 

Assessment of nasal deposition and clearance—clinical aspects 

CFD simulations 

With development of high-resolution CT and MRI technology, it has become possible to generate accurate 3D 

reconstructions of the complex nasal anatomy (Fig. 3). The field of computational fluid dynamics (CFD) is rapidly 

progressing in medicine and has enabled CFD simulations of nasal aerodynamics and deposition patterns [98–101]. The 

greatly improved density of the grids used and algorithms, along with much faster computers available for simulation, now 

allow implementation of more realistic conditions. For example, recent publications describe algorithms to simulate septal 

abnormalities, post-surgical changes, as well as heat and water exchange, and to more accurately simulate the true properties 

of aerosol generation and plume characteristics [99–101]. Undoubtedly, as the quality and capabilities increase, CFD 

http://www.ijnrd.org/
http://www.clinicaltrials.gov/
http://www.clinicaltrials.gov/
http://www.optinose.com/
http://www.optinose.com/
http://www.clinicaltrials.gov/
http://www.clinicaltrials.gov/
http://www.optinose.com/
http://www.optinose.com/


                             © 2025 IJNRD | Volume 10, Issue 5 May 2025 | ISSN: 2456-4184 | IJNRD.ORG 

IJNRD2505245 International Journal of Novel Research and Development (www.ijnrd.org)  
 

c542 

simulations will play an increasingly important role and allow for realistic simulation of nasal physiology and drug delivery. 

A more detailed review of this exciting field is outside the scope of this review. 

Deposition studies in casts 

The progress in imaging and reconstruction software has also made it possible to make physical models in rigid materials by 

modern 3D printing techniques like stereolithography with correct nasal geometry and dimensions. Casts made in softer 

material like silicone may offer advantages in terms of more realistic device cast interface. However, caution is necessary 

because even the softer silicone casts do not realistically represent the nasal valve dynamics, the cyclic physiological changes 

of the mucosa, or reflect the in vivo surface properties of the nasal mucosa, including the impact on mucocliliary clearance 

[102]. 

An in depth review of in vitro drug delivery simulation performed in nasal casts is also outside the scope of this review, 

but some comments related to recent work are included to highlight issues related to the interpretation and predictive value 

of results obtained with nasal delivery devices in cast studies. Three recent publications report in detail on the effect of 

breathing patterns, formulation, spray pump variables, and the site of deposition in a particular commercially available 

silicone cast (Koken Co., Japan) [65, 103, 104]. An interesting gel coating method that changes color in contact with the 

liquid allowing quantification of deposition by photometric analysis of deposition images is described [103]. In the most 

recent work, different insertion depth, spray angle, and plume characteristics ( cone angle and particle size distribution) were 

studied. Data on the dimensions of the cast are not presented in these reports; however, it is critical to note that the Koken 

cast is, according to the manufacturer, primarily an educational tool and that it therefore has a flat transparent septum to 

enable visualization of complicated nasal structures. Inspection of the nasal valve area and objective measurements of the 

dimensions reveals that the dimensions at the valve area are several-fold larger than the average human valve dimensions 

and outside the normal range [105]. It is suggested in these recent publications that casts studies have potential for 

establishing in vivo bioequivalence and as indicators of critical quality attributes [65]. While an admirable goal, the lack of 

validation of all cast dimensions coupled with the inability of the cast to reproduce important dynamic aspects of nasal 

anatomy and physiology discussed previously, certainly casts doubt on the ability to achieve this objective with the Koken 

cast, and potentially any rigid nasal cast. Nevertheless, the use of ever-improving casts coupled with innovative techniques 

such as photometrics may be very useful in development of new nasal delivery devices. Reliance on standards published by 

FDA for performance of spray pumps may seem appropriate for comparison of nasal delivery devices; however, published 

analysis also suggests that the in vitro measurements in the FDA guidance related to performance of spray pumps are not 

clinically relevant [2]. Thus, in light of current methodological and technological limitations, human in vivo deposition and 

clearance studies, and relevant human clinical trials, allowing regional deposition quantification and direct clinical 

comparisons, respectively, are still ultimately required. A recent review concludes that although both in vitro studies and in 

vivo imaging methods may be of value during the device development stages, ultimately, randomized placebo-controlled 

trials quantifying both symptoms and functional parameters are required to determine drug delivery efficiency of different 

devices [42]. 

In vivo assessment of deposition and clearance 

A number of gamma deposition studies, a study using radiopaque contrast, and studies using colored dyes confirm that 

administration with conventional spray pumps, pMDIs, nebulizers, and powder devices all result in deposition mainly in the 

anterior non-ciliated segments of the nose anterior to and at the narrow nasal valve, which is regarded suboptimal for clinical 

efficacy where deep and broad nasal deposition is required [13, 43, 63, 66, 72, 79, 106]. Colored dyes may offer a quick and 

inexpensive semi-quantitative assessment of deposition and clearance, and a number of studies have assessed deposition 

patterns with dyes with the goal of improving deposition and the clinical outcome of delivery with spray pumps and drops 

[43, 107, 108]. Although results vary, the effect of different body positions and administration techniques appears to have 

limited impact on initial deposition patterns. In fact, a recent single-blind, cross-over study comparing seven different 

administration techniques of colored dyes in healthy individuals using endoscopic video imaging concluded that there may 

not be a single “best” technique for topical nasal drug delivery with conventional nasal sprays [108]. Lack of patient 

compliance further reduces the clinical usefulness of these delivery techniques. 

More detailed assessment of drug deposition using regional gamma-deposition patterns have added to the understanding 

of deposition and clearance patterns and how they may have an impact on the clinical outcomes [13, 14, 66, 70, 72]. Improved 

methods for positioning and re-positioning of the test subjects and the use of radiolabeled gases and MRI overlay allow 

regional quantification of nasal deposition and outcomes [66, 70]. Furthermore, in contrast to earlier studies, proper 

correction for regional differences in tissue attenuation inthe differentnasal segments and between the nose and lungs is now 

being performed [13, 14, 70]. This review only addresses in vivo gamma-deposition studies dealing with some key aspects 

related to the in vivo performance of nasal delivery devices that normally get limited attention. 

http://www.ijnrd.org/
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Impact of delivery instructions, patient compliance, and body position 

One factor too often neglected when comparing deposition studies is whether the delivery procedure was performed by the 

subjects themselves or by an assistant. Clearly, delivery by the subjects is much closer to the real-life situation, but inevitably 

introduces more variability. In most gammadeposition studies, a trained assistant inserts the spray device and performs the 

actuation according to a strict protocol. This was the case in a study assessing deposition of radiolabeled cromoglycate 

substantial delivery beyond the nasal valve along the nasal floor was observed . In contrast, in a study with radiolabeled 

insulin where the spray was actuated by the subjects themselves, it was noted that individual administration technique 

resulted in the majority of doses being deposited in the anterior rather than the posterior nasal cavity in five out of six subjects, 

with the dose then being cleared via the nares rather than the nasopharynx [110]. Contrary to expectations, no sign of systemic 

absorption of insulin was observed, and the authors commented that this effect of individual administration technique raises 

a separate question on the usefulness of nasal spray doses for delivery of insulin intended for systemic absorption [110]. 

Overall versus regional clearance patterns 

Gamma studies must be performed in a controlled setting where subjects are more likely to adhere to instructions for use of 

the devices than in real life. It is very common to observe that subjects during, or immediately after, administration of drug 

using nasal devices intuitively sniff to avoid the concentrated anterior liquid deposition from dripping out and down on the 

upper lips. Sometimes, the anteriorly deposited surplus is wiped off, as has been observed in gamma-deposition studies 

[111]. In fact, considerable early drip-out has been observed in a gamma study following selfadministration with a 100-μl 

standard nasal spray pump, which causes concentrated anterior deposition. This phenomenon has also been observed after 

delivery with nebulizers [14, 72]. Recent studies offering regional clearance curves for four or six nasal segments highlight 

that the initial site of deposition has a major impact on the clearance rates and that determination of overall nasal clearance 

is a very crude and potentially misleading measure that does not predict clinical performance [13, 14]. Interestingly, a recent 

review on pulmonary drug delivery states that total lung deposition appears to be a poor predictor of clinical outcome; rather, 

regional deposition needs to be assessed to predict therapeutic effectiveness [112]. In a study comparing nasal deposition 

and clearance after self-administration of the same conventional spray pump (100 μl) by hand in the traditional way and by 

breath actuation with a BiDirectional™ delivery device (see below for details), the percentage left in the nose 30 min after 

hand actuation is twice that of breath actuation (46 % vs. 23 %). However, the regional deposition patterns (divided in four 

nasal segments) reveal that this difference is primarily a result of anterior retention in the predominantly non-ciliated anterior 

two nasal quadrants following hand-actuated spray delivery. The deposition pattern is reversed with the BiDirectional™ 

device, which was reported to offer three times greater broader and more reproducible deposition to the ciliated respiratory 

mucosa beyond the nasal valve and, in particular, in the upper posterior segments, with removal at a speed corresponding to 

expected mucocliliary clearance rate [13]. Another study comparing self-administration of a spray pump and a Bi-

Directional™ breath-actuated powder device showed a similar significant difference in the regional deposition and clearance 

patterns, further reinforcing the importance of evaluating not only overall or “whole-nose” deposition and clearance but 

instead also evaluating regional patterns when developing or comparing nasal delivery devices [14] (Fig. 4). 

Impact of site of delivery and volume on deposition and clearance 

The results from the study described above comparing deposition and clearance after delivery from the same spray pump 

actuated in different manners show that the initial site of deposition has a profound impact on the clearance rates [3, 13, 14]. 

Interestingly, McLean et al. [113] described three different phases of nasal clearance. 

1. The first phase occurs within the first minute after administration and is particularly evident following delivery of large 

concentrated volumes that rapidly pass along the floor of the nose to the pharynx to be swallowed. This applies in 

particular to delivery of drops and can contribute to explaining the much lower absorption of desmopressin delivered as 

drops, but also applies to spray delivery with higher spray volumes [3, 14, 51, 113]. The initial and very rapid removal 

may not always be recognized, as the initial gamma image often includes averaging of registration of counts over a 2min 

period due to the relatively small dose of radioactivity used (for ethical reasons) [14]. 

2. The second phase lasts for about 15 min and corresponds to mucociliary clearance of the fraction initially deposited on 

the ciliated respiratory mucosa found at and beyond the nasal valve [3, 13, 14, 51, 63, 70, 113, 114]. 

3. The third prolonged late phase represents the slow removal of residual drug deposited in the anterior nonciliated parts 

of the nasal surface and can take hours, unless mechanically removed by nose blowing and/or wiping of the nose [63]. 

Consequently, depending on whether the substance in question has local action, is intended for systemic absorption, for 

N2B transport, or a combination, the primary goal is frequently to maximize exposure to the ciliated mucosa beyond the 

nasal valve. One strategy for enhanced exposure is to slow clearance by thixotropic or bioadhesive agents or agents 

http://www.ijnrd.org/
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which slow ciliary action in order to increase the residence time in this region or by adding absorption enhancer if 

systemic absorption is the objective [78, 115]. 

In principle, an alternative, complementary, and probably better way to enhance the exposure is to modify/improve the 

administration method or technique. The goal should be to reduce the amount of drug quickly passing through the nose to be 

swallowed in the first phase, to reduce the amount deposited outside the nose, and to increase the amount bypassing the nasal 

valve and the nasal respiratory mucosal surface covered. Delivery of smaller particles with a traditional spray offers 

advantages in terms of absorption and biological response compared to delivery of drops, and repeated delivery of a smaller 

volume, as 2×50-μl spray has been reported to be better than 1×100 μl for systemic absorption [51, 114]. In contrast, another 

study found that spraying 1×100 μl resulted in larger deposition than 2×50 μl beyond the nasal valve with more rapid overall 

clearance, but the study did not assess absorption or biological response [63]. A narrow cone angle resulted in more posterior 

deposition and faster clearance than a cone of 60°, and drops deposited more posteriorly are cleared faster [116, 117] . 

For locally acting anti-inflammatory drugs like steroids and antihistamines, as well as for vaccines, the non-ciliated surface 

of the vestibule is not the target [42]. However, recent publications continue to advocate concentrated anterior deposition 

and retention as desirable and a key advantage of the novel HFA-based nasal pMDI with topically acting drug [118]. 

Reference is made to a paper from 1987 with CFC-based pMDI showing that as much as 65 % of the initial radioactivity is 

retained in the anterior parts of the nose after 30 min and incorrectly stating that an almost total clearance was observed 30 

min after delivery with aqueous spray [63]. A recent publication even claims that the anterior retention following pMDI 

delivery provides evidence for enhanced efficacy, which seems to be in conflict with the prevailing opinion [42, 118]. 

Conclusions: 

The nose is attractive for delivery of many drugs and vaccines, but the potential has not been fully realized. Inherent 

challenges related to the nasal anatomy, physiology, and aerodynamics that may severely limit the potential and clinical 

efficiency are not widely understood. The small and dynamic dimensions of the nasal cavity and the anterior anatomy are 

among the most important hurdles for more efficient nasal drug delivery. Despite important improvements in the technical 

device attributes that can offer more reproducible and reliable in vitro performance, this has to a limited extent translated 

into improved clinical performance. While in vitro performance testing is undoubtedly of value for product quality 

assessment, predictive value for in vivo clinical performance is highly questionable [2]. CFD simulations of nasal 

aerodynamics and cast studies may be of value in the developmental stages of device design, and future advances may 

improve their predictive value. Human in vivo deposition and clearance studies can be very important, providing valuable 

information particularly if recent advances allowing regional quantification and tissue attenuation correction are employed 

[14, 70, 112]. Still, delivery by trained assistants in controlled environments may not adequately reflect the device 

performance in the clinical setting. Even the most advanced nebulizer technologies introduced have shown poor delivery 

efficiency, with undesirable localized delivery in the non-ciliated anterior nasal region and along the floor of the nose and 

problems with inhalation exposure of the lungs [72]. As stated in a recent review, wellcontrolled clinical studies are currently 

required to quantify changes in both symptoms and functional parameters, and ultimately to determine the efficacy of novel 

drug/ device combinations [42]. The Bi-Directional™ drug delivery concept introduces a novel approach that can overcome 

inherent limitations of conventional nasal delivery imposed by the dynamics of the nasal valve. Gammascintigraphy studies 

with both powder and liquid BiDirectional™ device variants confirm significant improvements in regional in vivo deposition 

and clearance patterns, and a number of clinical trials suggest that this deep nasal deposition translates into clinical benefits 

for the patients. This delivery technology can be combined with a variety of dispersion technologies for both liquids and 

powders, and promises to expand the possibilities of nasal drug delivery. 
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