A Review Of Formulation Of Nitrofurantoin Nanogels

*Ankita, ¹Ms. Jyoti Gupta, ²Mr. Hans Raj, ³Mr. Maneesh Banyal * M. Pharm. Student, IEC School of Pharmacy, IEC University, Baddi. ¹Head of the Department, IEC School of Pharmacy, IEC University, Baddi. ²Associate Professor, IEC School of Pharmacy, IEC University, Baddi, ³ Assistant Professor, IEC School of Pharmacy, IEC University, Baddi.

Abstract:

Hydrogels and nanomaterial properties are combined in nanogels. Numerous nanogels have been developed and manufactured using the emulsion solvent diffusion nano precipitated method, the emulsion evaporation of the solvent method. The purpose of this review was to study the effect of nanogels of Nitrofurantoin. The emergence of antibiotic resistance has sparked a renewed interest in Nitrofurantoin, an oral antibiotics used to treat or prevent acute urinary tract infections. However, because the medication was developed prior to the advent of standardized research for drug approval, their pharmacokinetics is not well understood. This medication existing knowledge seems to be inadequate and mostly derived from outdated research. Numerous factors, including formulations, and analytical techniques, were used in the investigations that yielded the nitrofurantoin PK values. This will help to maximize efficacy and prevent toxicity and resistance development. Both medications can continue to have antibacterial activity against uropathogens only with the help of this current understanding and efficacy data from well-structured trials. Nanogels have a lot of potential for use in chemo, organ targeting, and the delivery of bioactive substances. The article focused on how to make, choose, test, and use nanogels as a targeted delivery system.

Keywords: Nitrofurantoin, Antibiotic, UTI, TDDS.

Introduction:

Polymers and hydrogels are physically and chemically cross-linked at the nanoscale to form nanogels (1). Nanogels typically range in size from 20 to 200 nm. In addition to their bulging and deteriorating properties, nanogels are distinguished by their size, larger surface area, and hygroscopicity. Nanogels make it possible for medications to be released in a controlled and sustained manner. Using nanogels, it is simple to entrap medicines, polymers, and liquid phases in suspension due to their threedimensional architecture (2). Even enormous molecules can fit through the holes. They work as drug carriers because they are designed to quickly form biomolecular interactions with physiologically active compounds, such as hydrophobic or hydrogen bonding and salt bonds (3). Nanogels are a unique composite material that exhibits characteristics of both solids and liquids. The theoretical framework suggests that the length of time that the nanoparticles remain in contact with the skin after being entrapped within a nanogels matrix is positively correlated with the therapy's efficacy (4, 5). An old antibiotic like nitrofurantoin is attracting renewed interest as oral therapeutic or prophylactic agents for acute urinary tract infections (UTIs) (5-8). Nitrofurantoin was approved by the US FDA in 1954 and has been in clinical use ever since (5). It is currently recommended as first-line UTI therapy because of the emergence of resistance to other antibiotics like co-trimoxazole, trimethoprim, and the fluoroquinolones. This is an important limitation since the consumption of nitrofurantoin has increased and because optimizing PK improves patient outcomes and minimizes the risk of emergence of drug resistance (9, 10). Knowledge about the PK properties is also needed as input for in vitro pharmacodynamics (PD) models in order to investigate the effect of the antibiotic concentrations obtained in human subjects on a pathogen and thus to establish clinical breakpoints. PK parameters describing the absorption, distribution, metabolism, and elimination of nitrofurantoin following oral administration to volunteers or patients. Following a description of the chemical and pharmacological properties of nitrofurantoin, the various methods to prepare nanogels techniques utilized in the reviewed papers will be discussed. The major part of this review will be devoted to nanogels of nitrofurantoin.

Types:

- 1. **Thermo sensitive nanogels:** The shrinkage-swelling behavior of temperature-responsive nanogels is a phenomenon in which their size changes in response to changes in their environment's temperature. The reduction in particle size brought about by stimulation increased intracellular absorption and facilitated accumulation in the microenvironment associated with the illness (11). These effects may have positive implications for the outcomes of therapy (12). This unique property enables the controlled release of drugs in a titration manner (13).
- 2. **pH-sensitive nanogels:** The design's ionizing groups are primarily responsible for the nanogels swelling-shrinking behavior, which can change through an alteration in ionic behavior depending on the pH value. The pH of various environments, such as pH between 6.5 and 7.2, lysosome pH between 4.5 and 5.0, and endosome pH between 5.0 and 6.5 associated with cancer tissue, lysosome, endosome changed to physiological pH 7.4, has provided information about the various pH range (14).
- 3. **Ultrasound-sensitive nanogels:** The use of acoustic waves for anticancer therapy has been motivated by their ability to deeply penetrate tissues and the associated benefits (15, 16). The area of transdermal administration in the management of central nervous system-oriented ailments has seen significant growth in US-based drug delivery. Perfluorohexane's transition from a liquid to a gas was observed to facilitate the medication's release when applied (17).
- 4. Magnetic response nanogels: The induction of hyperthermia may be facilitated by using a magnetic field. Furthermore, these nanoparticles can also be employed for magnetic targeting inside a robust magnetic field. In a study, magnetic nanoparticles and temperature-sensitive nanogels were used to make hybrid nanogels that contained the medication. The alternating magnetic field ensures the dynamic process of shrinking and swelling of nanogels, which facilitates the release of stimuli-responsive drugs (18).
- 5. **Response to multiple stimuli:** Due to their improved capacity to consistently sustain regulated drug release, nanogels with dual or multi-stimuli responsiveness have attracted significant interest. The study of combinations that are sensitive to pH and temperature has made significant progress (19).
- 6. **Chain transfer polymerization:** The only reaction that can be changed by giving dithioester molecules to a polymer is reversible addition–fragmentation chain-transfer (RAFT) (20). RAFT technology can change the length, structure, and characteristics of an amphiphilic polymer, such as poly (N-vinyl caprolactam) (21).
- 7. **Photo-induced crosslinking polymerization:** Crosslinking between molecules caused by irradiation can result in the formation of radicals and atoms in a polymer that, when water molecules are broken down, form nanogel (22).
- 8. **Modifications of nanogels for active targeting:** A ligand can reach the specific receptors on the cells or subcellular structures it was designed to affect through active targeting. Pharmaceutical nanoparticles also contain biological substances like proteins, small molecules, peptides, and polysaccharides to make them more effective (23).

Types of nanogels Based on Polymer:

- 1. **Polysaccharide-based nanogels:** Inter-molecular electrostatic interaction that results in ionic complexes is employed to produce nanogels with oppositely charged polymers using polysaccharides such as chitosan, sodium alginate, sodium hyaluronate, chondroitin, and cyclodextrin. Physiological pH changes can be sensed and accounted for by using nanogels with this property (24). Hydrophobic groups are used to modify hydrophilic polysaccharides. Amphiphilic polymers are also used to produce nanogels in an aqueous system (25).
- 2. **Chitosan-based nanogels:** Chitosan is a promising option for developing chitosan-based nanogels using oil-in-water lipid emulsion technology due to its ability to improve emulsion stability and prevent coalescence through steric and electrostatic mechanisms. Notably, using chitosan obviates the need for surfactants or proteins. Chemical crosslinking of chitosan nanogels could result in highly stable matrices. Some chitosan nanogels were made by reacting with bifunctional agents like dialdehyde, glutaraldehyde, di-isocyanate, and di-epoxy compounds (26). Chitosan nanogels were made by using genipin as a crosslinking agent in reverse microemulsion for biomedical applications (27).
- 3. **Pullulan-based nanogels:** A useful tool could be pullulan-based nanogels modified with cholesterol to provide functional groups. In a number of studies, various functional groups have been attached to the pullulan backbone. The amount of cholesterol substituted for the hydrophobic moiety in the pullulan-based hydrogel nanoparticles correlated with their size and density. These include tricarboxylate, acryloyl groups, and urocanic acid. The nanogels were made from hydrophilic self-associating polymers, which are extremely stable and effective at reducing protein side effects by, among other things, preventing aggregation and protecting proteins from enzymatic breakdown (28-30).
- 4. **Hyaluronic acid-based nanogels:** The polysaccharide HA generated from animals has favorable characteristics that make it suitable for developing nanogels. These traits include biocompatibility, mucoadhesion, and non-immunogenicity, which may be attributed to its specific glucuronic acid and N-acetylglucosamine composition. In addition, it is essential to keep in mind that HA possesses a high degree of bioactivity, primarily as a result of its distinctive binding to particular cell receptors. The most well-known of these receptors is CD44, or cell surface adhesion receptor 44 (31).
- 5. **Alginate-based nanogels:** The polysaccharide known as alginate contains alternate blocks containing residues of the acids beta mannuronic and alpha guluronic. Due to highly reactive groups (OH, COOH), alginate is chemically susceptible to oxidation, amidation, esterification, and sulfation. Solubility and lipophilicity can be controlled through chemical changes, expanding the scope of possible uses. Alginate nanogels can protect the proteins during oral administration, despite the fact that they are notoriously unstable in the acidic environment of the stomach (32).
- 6. **Cyclodextrin-based nanogels:** Cyclodextrins are cyclic-structured oligosaccharides with D-glucopyranose units linked by -1, 4- glycosidic bonds that are biologically compatible. The hydrophobic phenolphthalein was very well absorbed by the nanogels (33, 34).
- 7. **Gum acacia-based nanogels:** Arabic gum, also known as acacia gum, comes from the plant Acacia niloticais. It was used to make nanoparticles and microparticles. This polysaccharide's high water solubility, biocompatibility, and low price are its primary benefits for this purpose. To make nanogels, gum acacia was mixed with proteins like gelatine or polysaccharides like alginate and chitosan. Arabic gum is more biocompatible and biodegradable than chemicals because it has many binding sites with negative charges for interacting with polycationic polymers like chitosan (35).

Protein based Nanogel:

- 1. **Gelatin:** Nanogels for a variety of applications have been made using gelatine, a collagen hydrolysate. In addition, there are other advantages to using gelatine in the production of nanogels. It has been demonstrated that this kind of biopolymer is extremely biocompatible. Second, it serves multiple purposes (the COOH and NH2 groups), making it simple to alter. Third, the tumor cells' porous endothelial junctions provide a pathway for the NGs to enter the cells. Gelatine-based nanogels have been produced using a variety of methods, including precipitation polymerization and inverse mini emulsions polymerization. Among the crosslinkers used for this purpose are aldehydes, genipin, carbodiimide/N-hydroxy succinimide, and enzymatic crosslinkers like transglutaminase. It was discovered that uncross-linked gelatine-based nanogels were unstable and accumulated over time. Gelatine-based nanogels can form triple helical structures at lower temperatures when the crosslinking density is reduced, resulting in the acquisition of thermo-responsive features by the nanogels. Nanogels were produced by oxidizing gum Arabic to gum arabic aldehyde and crosslinking with gelatin (36, 37).
- 2. **Soy protein:** At around pH 4.8, soy protein has an isoelectric point. A more thorough purification of the initial product is required due to the pyridine's toxicity and the difficulty of removing its remnants. Several synthetic polymers that are frequently used to manufacture nanoparticles have suboptimal protein encapsulation, inadequate dosage properties, and limited durability. The protein-polymer ratio determines the nanogel's particle size, which ranges from 200 to 900 nm. In rat stifle joints, single intraarticular injections of nanogels containing proteins extend their retention for more than 14 days. The use of an altered catalyst in the polyhydroxyethylmethacrylate- pyridine reaction has facilitated the attainment of meticulous control over the sizes of nanogels, confined inside a narrow range of 145 to 160 nm, allowing for the development of immunostimulatory self-assembly nanogel vaccines. By delivering protein antigens to dendritic cells, these nanogels primed ovalbumin-specific CD8+ T lymphocytes effectively (38, 39).

Advantages of Nanogels:

Because they have more surface area and free energy, nanogels can move more easily. There are invisible internal mechanisms involved in creaming, flocculation, coalescence, and sedimentation. It is available in liquids, creams, and other forms. They are beneficial for use by both humans and animals, are non-toxic, and In cell cultures, hydrophilic compounds are better incorporated. An alternative to the vesicle-oriented drug delivery system might be this substance (40).

Restrictions of Nanogels:

During the process of preparation, the final removal of solvents and surfactants results in a significant financial burden. When the body is exposed to even minute amounts of surfactants or polymers, there is a risk of injury. Additionally, the interaction between the drug and the polymer may increase the hydrophilicity of the nanogels matrix, resulting in the drug molecules being permanently entrapped within the matrix (41).

METHODS OF NANOGEL PREPARATION:

1. **Emulsion Solvent Diffusion Method:** An organic layer is used to solubilize the drug's aqueous solution. The drug phase is made by dissolving the polymer and gelling agent in water. This drug phase is then added drop by drop to the aqueous phase after it has been homogenized for 30 minutes at 6000 rpm. An oil-water emulsion is created when an emulsion is homogenized into nanodroplets by a homogenizer. To make nanogels, triethanolamine is added to the oil-water emulsion and continuously stirred for an hour at 8000 rotations per minute. The final removal of surfactants and solvents during preparation adds a significant amount of cost. When the body is exposed to even minute amounts of surfactants or polymers, there is a risk of injury. Additionally, the interaction between the drug and the

polymer may increase the hydrophilicity of the nanogel matrix, resulting in the drug molecules being permanently entrapped within the matrix (41-43).

- 2. **Nano Precipitated Method:** Polymer precipitated when the organic phase, which contained both medication and polymer, reacted with the aqueous layer of surfactant. After the removal of the excess solvent, polymeric nanoparticles are left out. Gelling agent and necessary amounts of nanoparticle dispersion are added after the particles have been moistened. Triethanolamine is used to stabilize the pH (44, 45).
- 3. **Evaporation of the Solvent Method:** The drug-polymer mixture is injected into the designated area of the aqueous phase for two hours. The obtained Nano sponges are then subjected to further filtration, followed by a drying process in a hot air oven maintained at a temperature of 40°C for 24 hours. Finally, the dried Nano sponges are carefully transferred into vials for storage. This process is accompanied by continuous stirring at 1000 rpm, which is made easier by a magnetic stirrer. The polymer should be agitated at a rotational speed of 6000 rpm after being submerged in water for two hours to ensure a homogeneous dispersion. The pH is modified with the use of a pH-adjusting agent. The optimized Nano sponge suspension and permeation enhancers are then added to the aqueous dispersion (46-51).
- 4. **Reverse Micellar Method:** An organic solvent dissolves a surfactant, medication, and polymer. After adding the cross-linking agent, it must be incorporated over an extended period of time during the night. After the nanoparticles have been purified, the solvent is evaporated, creating a desiccated bulk. It was created by dissolving the gelling component in water. A nanogel is made when nanoparticles and an aqueous phase with a gelling agent combine. The pH is altered when a neutralizer is applied (52-54).
- 5. **Modified Diffusion Emulsification Method:** The medication is combined with a polymer that contains the solvent in a ratio that has been precisely calculated. A syringe equipped with a needle is used to add the organic phase to the aqueous stabilizer solution at a rate of 0.5 mL per minute. The drug-polymer mixture is continuously agitated in the aqueous phase at a rotating speed of 5000 to 10,000 rpm to create the organic phase. The suspension is then sonicated for five to ten minutes after being agitated for six minutes at a rotational speed of 10000 to 25000 rpm (55).

Chemistry, mechanism of action and currently used dosing regimens:

The nitrofuran family includes nitrofurantoin (Figure 1a). A furan ring—a five-membered aromatic ring containing four carbon (C) atoms and one oxygen (O) atom—that is directly connected to a nitro group (-NO2) is the defining structural component. Microcrystalline nitrofurantoin is still available, but it is not a first-line product due to its higher rate of gastrointestinal (GI) side effects. Nitrofurantoin capsules contain 50 or 100 mg of the macrocrystal-line form, which is also available in slow-release formulation and as a suspension. The standard dose of nitrofurantoin depends on the indication and on the geographical location: regimens of either 50–100 mg q6h (regular-release formu- lation) or 100 mg q12h or q8h (slow-release formulation) are pre-scribed for the treatment of acute UTI, while 50–100 mg q24h is prescribed for prophylactic use. The spectrum of activity includes (vancomycin-resistant) enterococci and ESBL-producing Enterobacteriaceae, with the exception of Pseudomonas aeruginosa and several Proteae strains because they carry intrinsic resistance to nitrofurantoin. Resistance among E. coli and most other ESBL-producing Enterobacteriaceae is still low, probably because nitrofurantoin has a different mode of Nitroxoline, 8-hydroxy-5-nitroquinoline, is not a member of the nitrofurans, despite what its name might suggest. Soft capsules containing 250 mg of nitroxoline are available for this hydroxyguinoline derivate, which is considered structurally unrelated to any other drug class (56-60).

Figure 1a: Chemical Structure of Nitrofurantoin

Analytical methods:

When comparing the reported concentrations of this antibiotic, it is essential to take into account both the analytical method and the corresponding sample preparation method because nitrofurantoin is susceptible to photochemical degradation. Bender, Nohle, and Paul presented the first method for detecting nitrofurantoin in urine in 1956. Colorimetric or spectrophotometric detection is described in their papers after chromatographic separation. However, the majority of the papers included in this review utilized the 1965-described spectrophotometric method, which can be used to quantify urinary concentrations but cannot differentiate between different metabolites. Following spectrophotometric detection, the method prepares the samples through a liquid-liquid extraction. Mason et al. developed an improved version of this procedure, in which HPLC was used to separate nitrofurantoin from the urine matrix. The photochemical degradation of nitrofurantoin was taken into consideration in the development of additional UV-detection HPLC methods for nitrofurantoin alone or for the quantification of the amino and cyano metabolites in plasma and urine. The only method for quantifying nitrofurantoin and its toxic metabolite in urine that did not specifically mention photochemical degradation was that of Arancibia et al. The most recently developed method consists of HPLC with MS detection for nitrofurantoin in plasma; amber-coloured vials are used in order to protect the nitrofurantoin content from light. It appears that concentrations can be accurately quantified using UV detection since most PK papers report concentrations using this detection method and concentrations in urine are relatively high. MS detection, therefore, does not seem to be specifically necessary to determine nitrofurantoin concentrations. However, because these concentrations may be outside of the UV detection range, MS detection may be of additional benefit in elucidating the metabolism pattern of nitrofurantoin (61-69).

Clinical use of nitrofurantoin:

Two meta-analyses based on controlled trials have recently described the clinical efficacy and toxicity of nitrofurantoin when used as a prophylaxis or treatment for lower UTIs. Twenty-seven controlled trials with 4807 patients were evaluated to investigate nitrofurantoin as a treatment for UTIs. Nitrofurantoin was found to be clinically and microbiologically effective, with clinical cure rates ranging from 79% to 92% and microbiological. The standard 5-day treatment was found to be more effective than the 7-day treatment, but its clinical efficacy was reduced by 61%–70% when given for only 3 days. Toxicity was found in 5%–16% of cases and was mild, reversible and mainly limited to GI-related side effects. Nitrofurantoin efficacy and safety as a UTI prophylaxis were evaluated in 26 controlled trials involving 3052 patients. The drug was found to be effective in preventing UTIs, and side effects were again noted to be mild. The risk of (severe) toxicity increased with the duration of the prophylactic use (70-72). Not only crystal size, but also (high) plasma levels are associated with toxicity (56). It would therefore be interesting to compare plasma concentrations.

Discussion:

Due to their notable capacity for drug encapsulation, uniformity, adjustable size, simple production, low toxicity, serum stability, and responsiveness to stimuli, nanogels have distinct and encouraging properties in the biomedical field. The approaches to the preparation of nanogels with varying topology and shape were described in this overview. Nanogels was prepared using different techniques such as emulsion solvent diffusion, nano precipitated method, emulsion evaporation of the solvent method, reverse micellar method and modified diffusion emulsification method. Polysaccharide, chitosan, pullulan, hyaluronic acid, alginate, cyclodextrin, gum acacia, protein, and protonation and

thermo controlled polymeric nanogels using copolymerizing N-vinyl caprolactam and acrylic acid monomers with anticancer doxorubicin, a dual temperature and protonation responsive self-assembled micellar nanogels using a combination of methoxy poly Utilizing synthetic polypeptide and cadmium selenium-zinc sulfur quantum dots, paclitaxel was loaded into the nanogels. For melanoma treatment, the quantum dot-polypeptide nanogels with anticancer potential, antioxidant quercetin, and titanium dioxide loaded nanogels simultaneously contained both hydrophobic and hydrophilic drugs. In this case, methotrexate-loaded chitin nanogels demonstrated optimal drug release, and chia seed oil and resveratrol-loaded chia seed oil emulsified nanogel formulation with anti-inflammatory properties were created by homogenizing quercetin nanocrystals with titanium dioxide. The constituent materials of nanogels—natural or synthetic—as well as external factors like protonation states, temperature, ionic behavior, and the presence of hydrophilic residues determine their characteristics. Nanogels' increased use as drug carriers is due to their exceptional stability, biodegradability, biocompatibility, large surface area, and efficient manufacturing process. The numerous aspects of nanogels and their application in biomedicine, such as the intracellular transportation of genetic material, targeted protein delivery, and drug delivery strategy, have been examined in this review. Due to the existing availability of clinical research and in-vivo uses of nanogels as nanogels have distinctive and encouraging characteristics within the biomedical field due to their notable capacity for drug encapsulation, uniformity, adjustable size, straightforward synthesis, limited toxicity, resilience in the presence of serum, and responsiveness to stimuli.

Conclusion:

Nanogels are used in a variety of pharmaceutical applications because they are a flexible and adaptable drug carrier. Due to their advantageous properties, nanogels demonstrated promise as a novel bio-responsive delivery method. In the case of Urinary Tract Infection as well as cancer, skin illnesses, diabetes, etc., nanogels may transform the natural product into the most effective medication. The transdermal delivery of pharmaceuticals using these cross-linked nitrofurantoin nanogels has great potential, as it may shown to increase patient compliance while causing fewer adverse effects. The medication is more bioavailable and penetrates more easily through nanogels. It is possible to draw the conclusion that nanogels are a promising dosage form for targeted drug delivery that promotes efficacy while minimizing toxicity and organ damage.

Reference:

- 1. Jiang Y, Chen J, Deng C, Suuronen EJ, Zhong Z. Click hydrogels, microgels and nanogels: Emerging platforms for drug delivery and tissue engineering. Biomaterials. 2014; 35: 4969-4985. DOI: 10.1016/j.biomaterials.2014.03.001
- Soni KS, Desale SS, Bronich TK. Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation. Journal of Control Release. 2016; 240: 109-126. DOI: 10.1016/j.jconrel.2015.11.009
- 3. Li Y, Maciel D, Rodrigues J, Shi X, Tomás H. Biodegradable polymer nanogels for drug/nucleic acid delivery. Chemical Reviews. 2015; 115: 8564–8608. DOI: 10.1021/cr500131f
- Raemdonck K, Demeester J, De Smedt S. Advanced nanogel engineering for drug delivery. Soft Matter. 2009; 5: 707-715. https://doi.org/10.1039/B811923F, Vinogradov SV, Bronich TK, Kabanov A.V. Nanosized cationic hydrogels for drug delivery: Preparation, properties and interactions with cells. Advanced Drug Delivery Reviews. 2002; 54: 135–147. DOI: 10.1016/s0169-409x(01)00245-9
- 5. Shah RR, Wade G. Reappraisal of the risk/benefit of nitrofurantoin: review of toxicity and efficacy. Advers Drug React Acute Poisoning Rev 1989; 8: 183–201.
- 6. Garau J. Other antimicrobials of interest in the era of extended-spectrum b-lactamases: fosfomycin, nitrofurantoin and tigecycline. Clin Microbiol Infect 2008; 14: 198–202.
- 7. Komp Lindgren P, Klockars O, Malmberg C et al. Pharmacodynamic studies of nitrofurantoin against common uropathogens. J Antimicrob Chemother 2014; 70: 1076–82.
- 8. Fransen F, Melchers MJB, Meletiadis J et al. Pharmacodynamics and differ- ential activity of nitrofurantoin against ESBL-positive pathogens involved in urinary tract infections. J Antimicrob

- Chemother 2016; 71: 2883–9.
- 9. Roberts JA, Norris R, Paterson DL et al. Therapeutic drug monitoring of antimicrobials. Br J Clin Pharmacol 2012; 73: 27–36.
- 10. Mouton JW, Ambrose PG, Canton R et al. Conserving antibiotics for the fu- ture: new ways to use old and new drugs from a pharmacokinetic and phar- macodynamic perspective. Drug Resist Updat 2011; 14: 107–17.
- 11. Liu R, Hu C, Yang Y, Zhang J, Gao H. Theranostic nanoparticles with tumor-specific enzymetriggered size reduction and drug release to perform photothermal therapy for breast cancer treatment. Acta Pharmaceutica Sinica B. 2019; 9: 410–420. DOI: 10.1016/j.apsb.2018.09.001
- 12. Liu R, Xiao W, Hu C, Xie R, Gao H. Theranostic size-reducible and no donor conjugated gold nanocluster fabricated hyaluronic acid nanoparticle with optimal size for combinational treatment of breast cancer and lung metastasis. Journal of Control Release. 2018; 278: 127–139. DOI: 10.1016/j.jconrel.2018.04.005
- 13. Lee H, Fonge H, Hoang B, Reilly RM, Allen C. The effects of particle size and molecular targeting on the intratumoral and subcellular distribution of polymeric nanoparticles. Molecular Pharmaceutics. 2010; 7: 1195–1208. DOI: 10.1021/mp100038h
- 14. Qian J, Wu F. Thermosensitive PNIPAM semi-hollow spheres for controlled drug release. Journal of Materials Chemistry B. 2013; 1: 3464–3469. DOI: 10.1039/c3tb20527d
- 15. Chen Y, Ballard N, Bon S. Moldable high internal phase emulsion hydrogel objects from non-covalently crosslinked poly(N-isopropylacrylamide) nanogel dispersions. Chemical Communications. 2013; 49: 1524–1526. DOI: 10.1039/c2cc38200h
- Chen W, Meng F, Li F, Ji SJ, Zhong Z. pH-Responsive biodegradable micelles based on acid-labile polycarbonate hydrophobe: Synthesis and triggered drug release. Biomacromolecules. 2009; 10: 1727–1735. DOI: 10.1021/bm900074d
- 17. Du J, Tang Y, Lewis AL, Armes SP. pH-sensitive vesicles based on a biocompatible zwitterionic diblock copolymer. Journal of American Chemical Society. 2005; 127: 17982–17983. DOI: 10.1021/ja0565141
- 18. Seah BC, Teo BM. Recent advances in ultrasound-based transdermal drug delivery. International Journal of Nanomedicine. 2018; 13: 7749–7763. DOI: 10.2147/IJN.S174759
- 19. Fan CH, Lin CY, Liu HL, Yeh CK. Ultrasound targeted CNS gene delivery for Parkinson's disease treatment. Journal of Control Release. 2017; 261: 246–262. DOI: 10.1016/j.jconrel.2017.07.004
- 20. Cortez-Lemus NA, Licea-Claverie A, Poly (N-vinylcaprolactam), a comprehensive review on a thermoresponsive polymer becoming popular. Progress in Polymer Science. 2016; 53: 1-51. https://doi.org/10.1016/j.progpolymsci.2015.08.001
- 21. Wang J, Wang X, Yan G, Fu S, Tang R, pH-sensitive nanogels withortho ester linkages prepared via thiol-ene click chemistry for efficient intracellular drug release. Journal of colloid and interface science. 2017; 508: 282-90. DOI: 10.1016/j.jcis.2017.08.051
- 22. He J, Tong X, Zhao Y. Photoresponsive nanogels based on photocontrollable cross-links. Macromolecules. 2009; 42(13): 4845-52. https://doi.org/10.1021/ma900665v
- 23. Myrick JM, Vendra VK, Krishnan S. Self-assembled polysaccharide nanostructures for controlled-release applications. Nanotechnology Reviews. 2014; 3(4):319–346. https://doi.org/10.1515/ntrev-2012-0050
- 24. Ischakov R, Adler-Abramovich L, Buzhansky L, Shekhter T, Gazit E. Peptide-based hydrogel nanoparticles as effective drug delivery agents. Bioorganic Medicinal Chemistry. 2013; 21:3517–3522. DOI: 10.1016/j.bmc.2013.03.012
- 25. Kunjachan S, Jose S, Lammers T. Understanding the mechanism of ionic gelation for synthesis of chitosan nanoparticles using qualitative techniques. Asian Journal of Pharmaceutics. 2010; 4:148–153. DOI:10.4103/0973-8398.68467
- 26. Pujana MA, Perez-Alvarez L, Cesteros Iturbe LC, Katime I. Biodegradable chitosan nanogels crosslinked with genipin. Carbohydrate Polymer. 2013; 94(2): 836–842. DOI: 10.1016/j. carbpol.2013.01.082
- 27. Sasaki Y, Yamane S, Kurosu K, Sawada S-I, Akiyoshi K. Templated formation of hydroxyapatite nanoparticles from self- assembled nanogels containing tricarboxylate groups.

- Polymers. 2012; 4:1056–1064. DOI:10.3390/polym4021056
- 28. Hashimoto Y, Mukai S, Sawada S, Sasaki Y, Akiyoshi K. Advanced artificial extracellular matrices using amphiphilic nanogel-crosslinked thin films to anchor adhesion proteins and cytokines. ACS Biomaterial Science & Engineering. 2016; 2(3): 375–384. DOI: 10.1021/acsbiomaterials.5b00485
- 29. Morimoto N, Hirano S, Takahashi H, Loethen S, Thompson DH, Akiyoshi K. Self-assembled pH-sensitive cholesteryl pullulan nanogel as a protein delivery vehicle. Biomacromolecules. 2013; 14: 56–63. DOI: 10.1021/bm301286h
- 30. Alhaique F, Casadei MA, Cencetti C, Coviello T, Di Meo C, Matricardi P, Montanari E, Pacelli S, Paolicelli P (2016) From macro to nano polysaccharide hydrogels: an opportunity for the delivery of drugs. J Drug Deliv Sci Technol 32:88–99. https://doi.org/10.1016/j.jddst.2015.09.018
- 31. Kettel MJ, Hildebrandt H, Schaefer K, Moeller M, Groll J. Tenside-free preparation of nanogels with high functional b-cyclodextrin content. ACS Nano. 2012; 6:8087–8093. DOI: 10.1021/nn302694q
- 32. Nandgude TD, Parakhe PS, Patole VC. Solid Lipid Nanoparticle- based Gel to Enhance Topical Delivery for Acne Treatment. International Journal of Drug Delivery and Technology. 2023; 13(2): 474-482.
- 33. Sarika PR, Anil Kumar PR, Raj DK, James NR. Nanogels based on alginic aldehyde and gelatin by inverse mini emulsion technique: synthesis and characterization. Carbohydrate Polymer. 2015; 119:118–125. DOI: 10.1016/j.carbpol.2014.11.037
- 34. Purwada A, Tian YF, Huang W, Rohrbach KM, Deol S, August A, Singh A (2016) Self-assembly protein nanogels for safer cancer immunotherapy. Advance Healthcare Material. 2016; 5:1413–1419. DOI: 10.1002/adhm.201501062
- 35. Yin B, Deng W, Xu K, Huang L, Yao P. Stable nano-sized emulsions produced from soy protein and soy polysaccharide complexes. Journal of Colloid Interface Science. 2012; 380:51–59. DOI: 10.1016/j.jcis.2012.04.075
- 36. Hild W, Breunig M, Gopferich A. Quantum dots—nano-sized probes for the exploration of cellular and intracellular targeting. European Journal of Pharmaceutics and Biopharmaceutics. 2008; 68(2): 153–168. DOI: 10.1016/j.ejpb.2007.06.009
- 37. Chacko RT, Ventura J, Zhuang J, Thayumanavan S. Polymer nanogels: A versatile nanoscopic drug delivery platform. Advanced Drug Delivery Reviews. 2012; 64: 836–851. DOI: 10.1016/j.addr.2012.02.002
- 38. Maya S., Bruno S., Amrita N., Rejinold N.S., Shantikumar V.N., Jayakumar R. Smart stimuli sensitive nanogels in cancer drug delivery and imaging: A review. Current Pharmaceutical Design. 2013;19:7203–7218. DOI: 10.2174/138161281941131219124142
- 39. Ayesha SG, Abbaraju K. Preparation & Evaluation of Paracetamol Solid Lipid Nanoparticles by Hot Homogenization Method. J Nanomedicine Research. 2018; 7(2): 152-154. DOI:10.15406/jnmr.2018.07.00184
- 40. Essa D, Kondiah PP, Choonara YE, Pillay V. The design of poly (lactide-co-glycolide) nanocarriers for medical applications. Frontiers in Bioengineering and Biotechnology. 2020; 8:48. DOI: 10.3389/f bioe.2020.00048
- 41. Prathima S, Preeti KS. Formulation & Evaluation of Gemcitabine Hydrochloride Loaded Solid Lipid Nanoparticles. Journal of Global Trends in Pharmaceutical Sciences. 2014; 5(4): 2017-2023. DOI: 10.3109/10717544.2013.860502
- 42. Malhotra M, Lane C, Tomaro-Duchesneau C, Saha S, Prakash S. A novel method for synthesizing PEGylated chitosan nanoparticles: strategy, preparation, and in vitro analysis. International Journal of Nanomedicine. 2011; 3: 485-94. DOI: 10.2147/IJN.S17190
- 43. Farhana S, Manirujjaman, Md. Imran UH, Mohammad A, Sanjida S. An Overview of Nanogel Drug Delivery System. Journal of Applied Pharmaceutical Science. 2013; 3(1): S95-S105. DOI: 10.7324/JAPS.2013.38.S15
- 44. Chopade S, Khabade S, Patil A, Powar S. Formulation Development and Evaluation of Anti-Inflammatory Potential of Topical Tenoxicam Nanogel on Animal Model. International Journal of Recent Scientific Research. 2018; 912(C): 29951-29957. DOI: http://dx.doi.org/10.24327/ijrsr.2018.0912.2967

- 45. Wang Y, Li P, Truong-Dinh Tran T, Zhang J, Kong L. Manufacturing techniques and surface engineering of polymer based nanoparticles for targeted drug delivery to cancer. Nanomaterials. 2016; 6(2): 26. DOI: 10.3390/nano6020026
- 46. Singh S, Sindhu RK, Alsayegh AA, Batiha GE, Alotaibi SS, Albogami SM, Conte-Junior CA. Formulation Development and Investigations on Therapeutic Potential of Nanogel from Beta vulgaris L. Extract in Testosterone-Induced Alopecia. BioMed Research International. 2023; 2023. DOI: 10.1155/2023/1777631
- 47. Mohamed JM, Alqahtani A, Kumar TV, Fatease AA, Alqahtani T, Krishnaraju V, Ahmad F, Menaa F, Alamri A, Muthumani R, Vijaya R. Superfast synthesis of stabilized silver nanoparticles using aqueous Allium sativum (garlic) extract and isoniazid hydrazide conjugates: molecular docking and in-vitro characterizations. Molecules. 2021; 27(1): 110. doi: 10.3390/molecules27010110.
- 48. Reeves A, Vinogradov SV, Morrissey P, Chernin M, Ahmed MM. Curcumin-encapsulating nanogels as an effective anticancer formulation for intracellular uptake. Molecular and cellular pharmacology. 2015; 7(3): 25. DOI: 10.4255/mcpharmacol.15.04
- 49. Sindhu RK, Gupta R, Wadhera G, Kumar P. Modern Herbal Nanogels: Formulation, Delivery Methods, and Applications.Gels. 2022; 8: 97. DOI: 10.3390/gels8020097
- 50. Vinogradov SV, Bronich TK, Kabanov AV. Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Advanced Drug Delivery Reviews. 2002; 54(1): 135-47. DOI: 10.1016/s0169-409x(01)00245-9
- 51. Vashist A, Kaushik A, Vashist A, Bala J, Nikkhah-Moshaie R, Sagar V, Nair M. Nanogels as potential drug nanocarriers for CNS drug delivery. Drug Discovery Today. 2018; 23(7): 1436-43. doi: 10.1016/j.drudis.2018.05.018.
- 52. Nagalakshmi S, Tejas DS, Yamini M, Taaha ZN, Monisha RL, Anumita G, Logeswaran K. Fabrication and Characterization of Tolnaftate Loaded Topical Nanoemulgel for the Treatment of Onychomycosis. International Journal of Drug Delivery and Technology. 2023; 13(2): 461-467.
- 53. Sharma H, Mutharasan R. Review of biosensors for foodborne pathogens and toxins. Sensors and actuators B: Chemical. 2013; 183: 535-49. https://doi.org/10.1016/j.snb.2013.03.137
- 54. Sanson N, Rieger J. Synthesis of nanogels/microgels by convent ional and control led radical crosslinking copolymerization. Polymer Chemistry. 2010;1(7):965-77. https://doi.org/10.1039/C0PY00010H
- 55. Oh JK, Lee DI, Park JM. Biopolymer-based microgels/ nanogels for drug delivery applications. Progress in polymer science. 2009; 34(12): 1261-82. https://doi.org/10.1016/j. progpolymsci.2009.08.001
- 56. FDA. Macrobid^{VR} (Nitrofurantoin Monohydrate/Macrocrystals) Capsules Product Information. Cincinnati, OH, USA: Procter & Gamble Pharmaceuticals, 2009; 1–11.
- 57. FDA. Furadantin^{VR} (Nitrofurantoin) Oral Suspension. North Norwich, NY, USA: Norwich Pharmaceuticals, 2008; 1–8.
- 58. Fransen F, Melchers MJB, Meletiadis J et al. Pharmacodynamics and differential activity of nitrofurantoin against ESBL-positive pathogens involved in urinary tract infections. J Antimicrob Chemother 2016; 71: 2883–9.
- 59. Zhanel GG, Laing NM, Nichol KA et al. Antibiotic activity against urin- ary tract infection (UTI) isolates of vancomycin-resistant enterococci (VRE): results from the 2002 North American vancomycin resistant enterococci susceptibility study (NAVRESS). J Antimicrob Chemother 2003; 52: 382–8.
- 60. McOsker C, Fitzpatrick P. Nitrofurantoin: mechanism of action and implications for resistance development in common uropathogens. J Antimicrob Chemother 1994; 33 Suppl A: 23–30.
- 61. Vree TB, Hekster YA, Baars AM. Determination of nitrofurantoin (Furadantine) and hydroxymethylnitrofurantoin (Urfadyn) in plasma and urine of man by means of high performance liquid chromatography. J Chromatogr 1979; 162: 110–6.
- 62. Bender RC, Nohle EG, Paul MF. Nitrofurantoin estimation in urine with the aid of chromatography. Clin Chem 1956; 2: 420–6.
- 63. Conklin JD, Hollifield RD. A new method for the determination of nitrofur- antoin in urine. Clin

Chem 1965; 11: 925–31.

- 64. Mason WD, Conklin JD, Hailey FJ. Between-lot and within-lot compari- sons of bioavailability of macrocrystalline nitrofurantoin capsules. Pharm Res an off J Am Assoc Pharm Sci 1987; 4: 499–503.
- 65. Aufrere MB, Hoener B, Vore ME. High-performance liquid- chromatographic assay for nitrofurantoin in plasma and urine. Clin Chem 1977; 23: 2207–12.
- 66. Roseboom H, Koster HA. The determination of nitrofurantoin and some structurally related drugs in biological fluids by high-pressure liquid chroma- tography. Anal Chim Acta 1978; 101: 359–65.
- 67. Hoener B, Wolff JL. High-performance liquid chromatographic assay for the metabolites of nitrofurantoin in plasma and urine. J Chromatogr 1980; 182: 246–51.
- 68. Arancibia V, Valderrama M, Madariaga A et al. Extraction of nitrofur- antoin and its toxic metabolite from urine by supercritical fluids. Quantitation by high performance liquid chromatography with UV detection. Talanta 2003; 61: 377–83.
- 69. Patel DS, Sharma N, Patel MC et al. Quantitation of nitrofurantoin in human plasma by liquid chromatography tandem mass spectrometry. Acta Pharm 2013; 63: 141–58.
- 70. Huttner A, Verhaegh EM, Harbarth S et al. Nitrofurantoin revisited: a systematic review and meta-analysis of controlled trials. J Antimicrob Chemother 2015; 70: 2456–64.
- 71. Muller AE, Verhaegh EM, Harbarth S et al. Nitrofurantoin's efficacy and safety as prophylaxis for urinary tract infections: a systematic review of the literature and meta-analysis of controlled trials. Clin Microbiol Infect 2016; 23: 355–63.
- 72. Freeman R, Smith W, RichardsonJ et al. Long-term therapy for chronic bacteriuria in men. U.S. Public Health Service cooperative study. Ann Intern Med 1975; 83: 133–47.

