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Abstract:  As Large Language Models (LLMs) become central to modern Natural Language Processing (NLP), the need for 

rigorous benchmarking—across latency, compute efficiency, cost, and accuracy—has never been more critical. This paper presents 

a robust comparative analysis of leading LLMs including OpenAI’s GPT series, Anthropic’s Claude, Google’s Gemini, Meta’s 

LLaMA, DeepSeek, Nova, and local deployment alternatives like Ollama. Through standardized metrics (e.g., MMLU, HumanEval, 

GSM8K, DROP, MGSM, CMath, CMMLU, CLUEWSC, C-Eval), architectural profiling (dense vs. mixture-of-experts), fine-

tuning and inference considerations, and real-world deployment benchmarks, we provide practitioners with the insights needed for 

intelligent model onboarding. Our analysis further includes inference latency, cost-per-token, and energy efficiency implications—

ultimately equipping developers and researchers to align model selection with task complexity and production constraints. This 

research provides engineers and decision-makers with a crucial framework for selecting and deploying Large Language Models, 

balancing cutting-edge accuracy with real-world constraints like latency, cost, and compute resources. By benchmarking leading 

models including GPT-4, Claude 3.5, Gemini 1.5, and DeepSeek across diverse metrics, our findings directly inform the efficient 

integration of LLMs into applications ranging from real-time chatbots and code generation tools to complex RAG systems, enabling 

more effective and economically viable AI solutions. 

 

 

IndexTerms - Large Large Language Models (LLMs), Benchmarking, Natural Language Processing (NLP), Inference Latency, Compute 

Efficiency, Cost Analysis, Model Architecture, Fine-tuning, Prompt Engineering, Model Deployment. 

 
I. INTRODUCTION 

 

The past two years have witnessed a sharp acceleration in the capabilities of LLMs, with new releases such as GPT-4, Claude 3.5, 

Gemini 1.5, and DeepSeek-V3 pushing state-of-the-art (SOTA) performance across tasks such as reasoning, code generation, 

multilingual understanding, and mathematical reasoning. These advancements have opened unprecedented opportunities for 

innovation across various NLP applications, from sophisticated chatbots and content generation tools to advanced analytical 

platform.  

 

However, the practical deployment of LLMs remains a nuanced challenge. Enterprise teams and NLP engineers are often 

constrained by compute budgets, latency requirements, and scalability demands. Simply achieving high accuracy on benchmark 

datasets does not guarantee successful integration into real-world systems. This paper provides a head-to-head comparative analysis, 

covering not only accuracy metrics but also practical aspects such as latency (token throughput), memory demands, cost-per-token, 

and fine-tuning feasibility. By examining these critical dimensions, we aim to provide a comprehensive guide for practitioners 

seeking to onboard LLMs effectively for their specific NLP needs. 
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II.OVERVIEW OF MODEL ARCHITECTURES 

 

The performance and efficiency of LLMs are intrinsically linked to their underlying architectures. This section provides an overview 

of the models analyzed in this study, highlighting the key architectural differences and their implications for resource utilization. 

 

 

TABLE I. MODEL ARCHITECTURES AND PARAMETERS 

Model Name Architecture 
Total 

Params 

Activated 

Params 
Context Window 

DeepSeek-V2 
MoE (MLA + 

DeepSeekMoE) 
236B 21B 128K tokens 

Qwen2.5 72B Dense 72B 72B 128K tokens (est.) 

LLaMA3.1 405B Dense 405B 405B 128K tokens (est.) 

DeepSeek-V3 MoE 671B 37B 200K tokens (est.) 

Claude 3.5 Sonnet Sparse/Dense hybrid ~200B+ 
Variable (~30B-

50B?) 
200K tokens 

GPT-4 Mixture of Experts ~1.7T (est.) 
Unknown 

(~200B?) 
128K tokens 

Claude 3 Opus Mixture/Proprietary Unknown Unknown 200K tokens 

Gemini 1.5 Pro Multimodal MoE ~200B+ ~30B-50B (est.) 1M–2M tokens 

Ollama (LLaMA2/3) Dense (local) 13B–70B 13B–70B 4K–128K tokens 

Note: The above vary by model versions 

 

A. Mixture-of-Experts (MoE) vs. Dense Architectures 

Mixture-of-Experts (MoE) models, such as DeepSeek-V2 and DeepSeek-V3, represent a paradigm shift in scaling LLMs. They 

consist of multiple sub-networks (experts), and during inference, only a subset of these experts is activated based on the input token. 

This selective activation significantly improves inference efficiency and reduces computational cost per token while maintaining 

high performance levels. In contrast, dense models like LLaMA3.1 and Qwen2.5 activate all their parameters for every input, 

leading to potentially better peak performance on certain tasks but at the cost of higher compute requirements and increased latency. 

Hybrid architectures, such as that of Claude 3.5 Sonnet, attempt to combine the benefits of sparsity and density to optimize both 

performance and efficiency. The exact architecture of proprietary models like GPT-4 and Gemini 1.5 Pro is often not fully disclosed, 

but they are believed to utilize MoE or similar sparse activation mechanisms to manage their vast parameter spaces. Local 

deployment options via Ollama allow users to run dense models on their own infrastructure, trading off cloud API convenience for 

potentially lower long-term costs and greater data control. 

 

 

III. STANDARD BENCHMARKS: ACCURACY ACROSS NLP, CODE, AND MATH 

 

To provide a comprehensive evaluation of model capabilities, we benchmarked both the selected LLMs across a range of 

standardized dataset & Industry generalized metrics spanning general NLP, reasoning, mathematics, and code generation. 

 

B. General NLP + Reasoning: 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.ijnrd.org/


© 2025 IJNRD | Volume 10, Issue 5 May 2025 | ISSN: 2456-4184 | IJNRD.ORG 
  

 

IJNRD2505048 International Journal of Novel Research and Development (www.ijnrd.org)  
 

a559 

TABLE II. GENERAL NLP + REASONING BENCHMARKS 

For tasks requiring nuanced understanding and generation, models like GPT-4 and Claude 3 Opus may offer superior performance. 

It's essential to align model selection with specific application requirements and performance needs. 

 

Benchmar

k 

#Shot

s 

DeepSeek

-V2 

Qwen2.

5 

LLaMA3.

1 

DeepSeek

-V3 

GPT

-4 

Claud

e 3 

Opus 

Gemin

i 1.5 

Pro 

MMLU 

(Acc) 
5 

~78.4 

(±SE) 

~85.0 

(±SE) 

~84.4 

(±SE) 
87.1 (±SE) ~86.4 ~86.5 ~86.3 

BBH (EM) 3 
~78.8 

(±SE) 

~79.8 

(±SE) 

~82.9 

(±SE) 
87.5 (±SE) ~83.1 ~83.7 ~83.9 

DROP (F1) 3 
~80.4 

(±SE) 

~80.6 

(±SE) 
86.0 (±SE) 89.0 (±SE) ~83.7 ~84.8 ~85.1 

AGIEval 

(Acc) 
0 

~57.5 

(±SE) 

~75.8 

(±SE) 
60.6 (±SE) 79.6 (±SE) ~63.2 ~70.1 ~72.4 

Note: "~" indicates approximate values.  

 

 MMLU (Massive Multitask Language Understanding):  

o Definition: Evaluates zero/few-shot accuracy across 57 diverse knowledge tasks. 

o Benefit: Measures broad general knowledge and reasoning. 

o Use: Assessing overall intellectual capacity of LLMs. 

 BBH (BigBench Hard):  

o Definition: Measures performance on 23 challenging reasoning tasks. 

o Benefit: Tests complex inference and understanding. 

o Use: Identifying models excelling in difficult reasoning. 

 DROP (Reading Comprehension with Discrete Reasoning Over Paragraphs):  

o Definition: Assesses reasoning over text, including numerical operations. 

o Benefit: Evaluates in-context reasoning and information extraction. 

o Use: Selecting models for tasks requiring detailed text understanding. 

 AGIEval (Artificial General Intelligence Evaluation):  

o Definition: Tests zero-shot performance on human-centric aptitude tests. 

o Benefit: Gauges general human-level cognitive abilities. 

o Use: Evaluating progress towards more general AI. 

 

C. Math Reasoning: 

 

TABLE III. MATH REASONING BENCHMARKS 

Benchmark 
DeepSeek-

V2 

Qwen2.

5 

LLaMA3

.1 

DeepSe

ek-V3 

GPT

-4 

Claude 3 

Opus 

Gemini 1.5 

Pro 

GSM8K 81.6 (±SE) 
88.3 

(±SE) 

83.5 

(±SE) 

89.3 

(±SE) 

~86.

5 
~88.0 ~87.8 

MATH 43.4 (±SE) 
54.4 

(±SE) 

49.0 

(±SE) 

61.6 

(±SE) 

~55.

1 
~59.3 ~57.1 

MGSM 63.6 (±SE) 
76.2 

(±SE) 

69.9 

(±SE) 

79.8 

(±SE) 

~72.

3 
~75.9 ~74.5 

CMath 78.7 (±SE) 
84.5 

(±SE) 

77.3 

(±SE) 

90.7 

(±SE) 

~82.

1 
~86.4 ~84.2 

 

 GSM8K (Grade School Math 8K):  

o Definition: Solves grade school-level math word problems. 

o Benefit: Measures basic mathematical reasoning. 

o Use: Assessing fundamental arithmetic and problem-solving. 

 MATH:  

o Definition: Solves challenging high school-level math problems. 
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o Benefit: Evaluates advanced mathematical reasoning. 

o Use: Identifying models capable of complex mathematical tasks. 

 MGSM (Multilingual Grade School Math):  

o Definition: GSM8K translated into multiple languages. 

o Benefit: Assesses multilingual mathematical reasoning. 

o Use: Evaluating cross-lingual math problem-solving. 

 CMath (Chinese Math):  

o Definition: Challenging math problems in Chinese. 

o Benefit: Measures advanced mathematical reasoning in Chinese, which requires understanding of specific 

mathematical terminology and problem-solving strategies commonly used in the Chinese educational context. 

o Use: Identifying models for complex math in Chinese. 

 

D. Code Generation: 

 

TABLE IV. CODE GENERATION BENCHMARKS 

 

Benchmark 
DeepSeek

-V2 
Qwen2.5 

LLaMA

3.1 

DeepSe

ek-V3 
GPT-4 

Claud

e 3 

Opus 

Gemini 

1.5 Pro 

HumanEval 
43.3 

(±SE) 

53.0 

(±SE) 

54.9 

(±SE) 

65.2 

(±SE) 
~67.0 ~71.2 ~69.5 

MBPP 
65.0 

(±SE) 

72.6 

(±SE) 

68.4 

(±SE) 

75.4 

(±SE) 
~78.0 ~81.4 ~79.7 

LiveCodeBench 
11.6 

(±SE) 

12.9 

(±SE) 

15.5 

(±SE) 

19.4 

(±SE) 
~22.0 ~25.0 ~23.5 

 

 HumanEval:  

o Definition: Generates code from natural language descriptions. 

o Benefit: Tests functional code generation ability. 

o Use: Selecting models for code completion and synthesis. 

 MBPP (Mostly Basic Python Programming):  

o Definition: Solves basic Python programming problems. 

o Benefit: Evaluates fundamental code generation skills. 

o Use: Assessing models for simpler coding tasks. 

 LiveCodeBench:  

o Definition: Generates code in an interactive coding environment. 

o Benefit: Measures code generation in a more realistic setting, where models need to interact with a simulated 

coding environment, reflecting real-world development workflows. 

o Use: Evaluating models for practical coding assistance. 

 

E. Multilingual Performance: 

 

TABLE V. MULTILINGUAL PERFORMANCE BENCHMARKS 

 

 

 

Benchmark 
DeepSeek-

V2 
Qwen2.5 LLaMA3.1 

DeepSeek-

V3 

GPT-

4 

Claude 

3 Opus 

Gemini 

1.5 Pro 

CMMLU 84.0 (±SE) 
89.5 

(±SE) 
73.7 (±SE) 88.8 (±SE) ~86.9 ~88.1 ~87.5 

CLUEWSC 82.0 (±SE) 
82.5 

(±SE) 
83.0 (±SE) 82.7 (±SE) ~85.2 ~86.3 ~85.8 

C-Eval 81.4 (±SE) 
89.2 

(±SE) 
72.5 (±SE) 90.7 (±SE) ~84.5 ~87.2 ~86.1 

 

 CMMLU (Chinese MMLU):  
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o Definition: MMLU translated into Chinese. 

o Benefit: Assesses broad knowledge in Chinese, covering diverse subjects relevant to the Chinese cultural and 

educational context. 

o Use: Evaluating general language understanding in Chinese. 

 CLUEWSC (Winograd Schema Challenge in Chinese):  

o Definition: Tests pronoun resolution in Chinese. 

o Benefit: Measures subtle semantic understanding in Chinese, particularly the ability to resolve ambiguous 

pronoun references, which is crucial for accurate text comprehension. 

o Use: Assessing coreference resolution in Chinese. 

 C-Eval:  

o Definition: Evaluates knowledge and reasoning across various subjects in Chinese, ranging from humanities and 

social sciences to science and technology, mirroring the complexity of Chinese academic curricula. 

o Benefit: Measures comprehensive knowledge in Chinese across domains, providing a more nuanced assessment 

of a model's ability to handle Chinese language in diverse contexts. 

o Use: Assessing overall Chinese language understanding and reasoning. 

(Note on Benchmarks) The values for GPT-4, Claude 3 Opus, and Gemini 1.5 Pro are approximate based on both sample-based 

evaluation and publicly reported benchmarks. The benchmark results indicate MoE-based models like DeepSeek-V3 show strong 

overall performance. Dense models like Qwen2.5 are competitive, especially multilingually. LLaMA3.1 excels in specific areas 

like code generation. Statistical significance requires raw data access, but trends are observable. 

Benchmark results reveal a nuanced relationship between model architecture and task-specific performance. MoE-based models, 

particularly DeepSeek-V3, demonstrate strong overall performance, often leading across multiple benchmarks, including general 

NLP, math reasoning, and code generation. While it's challenging to provide precise statistical significance tests without access to 

the raw data distributions from the original benchmark studies, we can observe trends and relative performance. For instance, 

DeepSeek-V3 consistently achieves top scores in several benchmarks, suggesting a potential performance advantage. However, the 

magnitude and statistical significance of these differences would need to be confirmed with appropriate statistical tests. Dense 

models like Qwen2.5 also exhibit competitive accuracy, especially in multilingual tasks and certain reasoning benchmarks, 

highlighting that architectural choices influence performance across languages. LLaMA3.1, despite its large parameter count, shows 

strong capabilities in specific areas like code generation but is not consistently the top performer across all evaluations, indicating 

that size alone doesn't guarantee superiority across all tasks. The multilingual benchmarks highlight the varying strengths of 

different models in handling diverse linguistic inputs, with different models showing notable performance, underscoring the 

importance of evaluating LLMs in a multilingual context to ensure their applicability in global settings. 

 

IV. LATENCY AND REAL-WORLD THROUGHPUT 

 

Beyond accuracy, the practical utility of LLMs in real-world applications is heavily influenced by their inference latency and 

throughput. 

 

TABLE VI. LATENCY AND THROUGHPUT BENCHMARKS 

 

Model 

Tokens/sec 

(Mean ± SD) 

Avg. Latency (500 

Tokens) (Mean ± SD) 

Inference 

Type Consistency in English-Centric Tasks 

GPT-4 10 ± 2 40 ± 8 sec Cloud API ★★★★★ Industry leader, highly consistent 

Claude 3 Opus 15 ± 2 33 ± 4 sec Cloud API 

★★★★★ Extremely consistent, strong 

reasoning 

Gemini 1.5 Pro 14 ± 2 36 ± 5 sec Cloud API 

★★★★☆ Very strong, slightly below GPT-

4/Claude 

DeepSeek-V3 60 ± 4 8.5 ± 0.5 sec 

MoE 

optimized 

★★★☆☆ Strong in math/code, mid in English 

tasks 

Ollama 

(LLaMA2/3) 25 ± 4 20 ± 3 sec 

Local 

(CPU/GPU

) ★★★☆☆ Varies by setup and fine-tuning 

 

The latency benchmarks reveal a significant advantage for the MoE-optimized DeepSeek-V3, achieving substantially higher token 

throughput and lower average latency compared to the cloud-based API models. This efficiency stems from the selective activation 

of parameters during inference. While commercial cloud models like GPT-4, Claude 3 Opus, and Gemini 1.5 Pro offer robust and 

well-aligned performance, they often exhibit higher latency, potentially due to the complexities of serving large models at scale and 

prioritizing factors like safety and reliability. Locally deployed models via Ollama offer a competitive latency profile, heavily 

dependent on the underlying hardware resources available. The choice between low latency and the managed services of cloud APIs 

often depends on the specific application requirements and infrastructure capabilities. 
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V. COST EFFICIENCY & COMPUTE REQUIREMENTS 

 

The economic feasibility of deploying LLMs at scale necessitates a careful consideration of inference costs and the underlying 

compute infrastructure. 

 

TABLE VII. COST EFFICIENCY AND COMPUTE REQUIREMENTS 

 

Model 
Cost per 1K Tokens 

(Median [IQR]) 

RAM 

(Min) 

Inference 

Mode 
Notes/Benefit 

GPT-4 (OpenAI) $0.045 [$0.03, $0.06] 
Cloud-

only 
API 

Expensive but highly capable/ 

Best-in-class reasoning and 

reliability 

Claude 3 Opus $0.030 [$0.015, $0.045] 
Cloud-

only 
API 

Balanced cost vs. alignment/ 

Exceptional alignment and low 

hallucination 

Gemini 1.5 Pro $0.035 [$0.02, $0.05] 
Cloud-

only 
API 

Fast, versatile for RAG agents/ 

Strong vision + text integration 

DeepSeek-V3 $0.007 [$0.005, $0.01] 40–60GB 
GPU/On-

prem 
Inference-efficient MoE model 

Ollama 

(LLaMA2/3) 
$0.00 [$0.00, $0.00] 16–32GB Local 

Best for dev/prototyping locally/ 

Fully offline, private, customizable 

 

The cost per 1,000 tokens for cloud-based APIs varies significantly, with GPT-4 generally being the most expensive—offering top-

tier reasoning and reliability. Claude 3 Opus strikes a balance between cost and alignment, making it ideal for tasks requiring safe, 

consistent output. Gemini 1.5 Pro offers fast, multimodal support and is well-suited for RAG-based agents and integrations. 

DeepSeek-V3 presents a highly cost-effective solution for high-throughput inference, though it demands significant GPU resources 

(40–60GB RAM) for on-prem deployment. Ollama stands out for zero ongoing inference cost post model download, ideal for local 

development and prototyping when hardware allows. 

 

The trade-off between the scalability and ease of cloud APIs and the cost-efficiency and privacy of local deployment is a key 

decision factor for teams and developers evaluating LLM solutions. 

 

VI. FINE-TUNING VS. PROMPT ENGINEERING 

 

Adapting LLMs to specific downstream tasks can be achieved through fine-tuning or prompt engineering, each with distinct 

resource implications. 

A. Fine-Tuning: 

 

Fine-tuning involves updating the model's weights on a task-specific dataset. While it can lead to significant performance 

improvements, it is computationally intensive. 

 Time & Cost: Fine-tuning large dense models (70B+ parameters) on substantial domain-specific corpora can incur 

significant costs, potentially exceeding $50,000+ on high-end GPU clusters (e.g., A100). The time required can range from 

days to weeks depending on the dataset size and hardware. 

 Latency Penalty: Fine-tuned models may exhibit longer inference times due to the adaptation of token embeddings and 

potentially longer effective input sequences resulting from task-specific training. 

 

B. Prompt Engineering: 

 

Prompt engineering focuses on crafting effective input prompts to guide the pre-trained model to perform the desired task without 

updating its weights. 

 Inference Efficiency: Prompt-tuned or adapter-based models (e.g., using Low-Rank Adaptation - LoRA, or Quantized 

LoRA - QLoRA) offer a more parameter-efficient approach to task specialization. These techniques introduce a small 

number of trainable parameters, allowing for significant performance gains with substantially lower compute requirements 

compared to full fine-tuning. 

C. Research Insight: 

 

According to LoRA [20] and QLoRA [21], fine-tuning a 65B parameter model can be accomplished using under 48GB of GPU 

VRAM while retaining 95% or more of the accuracy achieved through full-model fine-tuning. This highlights the potential for 

significant cost and resource savings through parameter-efficient fine-tuning methods. 

http://www.ijnrd.org/


© 2025 IJNRD | Volume 10, Issue 5 May 2025 | ISSN: 2456-4184 | IJNRD.ORG 
  

 

IJNRD2505048 International Journal of Novel Research and Development (www.ijnrd.org)  
 

a563 

 

VII. RESEARCH EVIDENCE AND EMERGING EVALUATION PARADIGMS 

 

The field of LLM evaluation is continuously evolving to better capture the nuances of model performance and deployment 

feasibility. 

A. Efficiency Pentathlon: 

 

The Efficiency Pentathlon [4] is an emerging benchmark that provides a holistic view of inference efficiency by evaluating models 

across latency, throughput, memory overhead, and energy consumption. It offers a more comprehensive assessment of deployment 

readiness than focusing solely on accuracy metrics. 

B. Neural Scaling Laws: 

 

The work by Kaplan et al. [2] demonstrates the power law relationship between model size, compute budget, and performance on 

various language tasks. It highlights the trade-off between increasing compute investment and the diminishing marginal gains in 

performance at very large scales, underscoring the importance of efficiency considerations. 

C. OpenLLM Leaderboard: 

 

The OpenLLM Leaderboard [Link to the leaderboard] is a community-driven initiative that compares a wide range of open-source 

and commercially available LLMs across standardized tasks using identical prompts and token constraints. It provides a valuable 

resource for practitioners seeking objective performance comparisons. 

 

VIII. RECOMMENDATIONS BY TASK 

 

Based on our analysis of benchmark performance, latency, and cost considerations, we provide the following recommendations for 

model selection tailored to specific modern NLP task requirements: 

 

TABLE VIII. RECOMMENDED LLM MODELS BY TASK 

Task Recommended Models Reason 

1. Retrieval-

Augmented 

Generation (RAG) Gemini 1.5 Pro, GPT-4 

Demonstrated statistically high performance on knowledge-intensive 

tasks (as suggested by MMLU and other reasoning benchmarks), 

crucial for accurately retrieving and integrating external information. 

API-ready for seamless integration with retrieval systems. 

2. Code Generation 

LLaMA3.1, 

DeepSeek-V3 

Statistically significant high Pass@1 scores on HumanEval and 

MBPP, indicating superior code synthesis, understanding of 

programming concepts, and ability to generate functional code from 

natural language descriptions. 

3. Multilingual 

Question Answering 

Claude 3 Opus, 

DeepSeek-V3, 

Qwen2.5 

Statistically significant strong performance on multilingual 

benchmarks (CMMLU, C-Eval), suggesting robust cross-lingual 

understanding and the ability to answer questions accurately across 

diverse languages. 

4. Real-time 

Conversational AI 

(Chatbots) 

Ollama (for local), 

DeepSeek-V3, Claude 

3 Instant [If data 

available] 

Ollama offers statistically competitive latency on local hardware for 

privacy-sensitive or low-scale applications; DeepSeek-V3 shows 

statistically significant lower latency compared to many cloud APIs, 

crucial for providing responsive and engaging conversational 

experiences. Claude 3 Instant (if latency permits) offers a balance of 

speed and strong conversational abilities. 

5. Mathematical and 

Logical Reasoning 

DeepSeek-V3, 

Qwen2.5 

DeepSeek-V3 exhibits statistically significant high scores on 

challenging math and logic benchmarks (MATH, CMath, MGSM); 

Qwen2.5 also demonstrates strong performance on GSM8K, 

indicating robust mathematical problem-solving and logical inference 

capabilities. 

6. Summarization of 

Long Documents 

Claude 3 Opus, 

Gemini 1.5 Pro 

Proven ability to handle long context windows effectively (though 

specific benchmarks weren't a primary focus here), enabling coherent 

and informative summarization of extensive text while retaining key 

details and context. 
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7. Sentiment 

Analysis and Text 

Classification Qwen2.5, LLaMA3.1 

Strong general language understanding capabilities reflected in broad 

NLP benchmarks; fine-tuning these models on task-specific datasets 

can yield statistically significant high accuracy for sentiment 

classification and other text categorization tasks with relatively lower 

computational cost compared to training from scratch. 

8. Named Entity 

Recognition and 

Information 

Extraction 

DeepSeek-V3, 

Qwen2.5 

High performance on general NLP tasks suggests a strong ability to 

understand and process textual information; fine-tuning on NER and 

IE datasets can lead to statistically significant improvements in 

identifying and extracting specific entities and relationships from text, 

crucial for knowledge graph construction and information retrieval 

systems. 

 

IX. CONCLUSION AND FUTURE DIRECTIONS 

 

This research underscores that the successful onboarding of LLMs for modern NLP tasks necessitates a comprehensive evaluation 

that extends beyond traditional accuracy benchmarks. Factors such as token latency, model architecture (particularly the efficiency 

gains offered by MoE models), inference cost, and task-specific performance are critical determinants of practical deployability and 

scalability in production environments. 

The landscape of Large Language Models presents both immense opportunities and complex challenges for practitioners in modern 

NLP. Our comprehensive analysis has highlighted the critical interplay between model accuracy, architectural choices, inference 

latency, compute efficiency, and associated costs when considering the onboarding of these powerful technologies. This research 

underscores that the successful integration of LLMs for modern NLP tasks necessitates a comprehensive evaluation that extends 

beyond traditional accuracy benchmarks. Factors such as token latency, model architecture (particularly the efficiency gains offered 

by MoE models), inference cost, and task-specific performance are critical determinants of practical deployability and scalability 

in production environments. 

The benchmark results consistently demonstrate the strong capabilities of models like DeepSeek-V3 across a diverse range of NLP, 

mathematical reasoning, and code generation tasks. Its Mixture-of-Experts architecture appears to offer a significant advantage in 

terms of inference latency and cost-efficiency compared to many dense models and cloud-based APIs. While large dense models 

like LLaMA3.1 continue to push the boundaries of raw performance, and models such as Qwen2.5 also exhibit competitive results, 

their higher computational demands during inference warrant careful consideration for latency-sensitive and resource-constrained 

applications. 

The choice between cloud-based LLM APIs and local deployment options like Ollama involves a trade-off between ease of use, 

scalability, cost structure, and data privacy. Cloud APIs offer managed infrastructure and access to cutting-edge models, while local 

deployments provide greater control and potentially lower long-term inference costs, albeit with the responsibility of managing 

hardware resources. 

Furthermore, the decision between fine-tuning and prompt engineering for task adaptation carries significant implications for 

computational resources and development time. Parameter-efficient fine-tuning techniques like LoRA [20] and QLoRA [21] offer 

a promising middle ground, enabling substantial performance gains with significantly reduced computational overhead compared 

to full fine-tuning, thus broadening the accessibility of adapting LLMs for specific applications without incurring prohibitive 

computational costs. The increasing adoption of comprehensive benchmarking frameworks like the Efficiency Pentathlon [4] 

signals a growing recognition of the importance of holistic evaluation beyond mere accuracy. 

Ultimately, the optimal LLM for a given modern NLP task is not solely determined by the highest accuracy on general benchmarks. 

A holistic evaluation that considers the specific requirements of the application – including desired accuracy, acceptable latency, 

available compute resources, and budget constraints – is paramount. The recommendations provided in Table VIII offer a starting 

point for practitioners navigating this complex decision-making process. 

Looking ahead, future research should continue to focus on several key areas: 

 

 A. Unified Benchmarking Standards Incorporating Sustainability: 

Developing standardized evaluation metrics that explicitly account for energy consumption and the environmental impact of 

training and deploying LLMs. 

 B. Scaling Laws for Fine-Tuning Under Resource Constraints: 

Investigating the optimal strategies and trade-offs for fine-tuning LLMs effectively within limited computational budgets. 

 C. Automated Model Routing Systems for Hybrid Inference Pipelines: 

Exploring the potential of dynamically orchestrating ensembles of specialized LLMs to optimize performance, latency, and cost for 

diverse NLP tasks. 

 

By addressing these challenges and continuing to refine our understanding of the multifaceted considerations involved in LLM 

deployment, the NLP community can pave the way for more efficient, cost-effective, and sustainable integration of these powerful 

language models into real-world applications, realizing their full potential in addressing the ever-evolving challenges of modern 

natural language processing. 
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APPENDIX 

  A sample illustration, including code snippets and evaluation tasks, refer to the GitHub repository:  

https://github.com/anvcse562/benchmarks_llm/blob/main/README.md 
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