

Formulation and Evaluation of Anthelmintic Suspension by using Bael leaf Extract

¹Ch.Ramya, ²Dr.N.V.V.Jagan Mohan Reddy, ³Dr. D. Narendra, ⁴T. Deekshitha, ⁵T.Bhavya prasanna, ⁶V. Geethika,

⁷V. Pravallika

¹Assistant Professor, ²Professor, ³Principal, ^{4,5,6,7}Students ¹Pharmaceuticas, ¹VJ's College Of Pharmacy, Rajamahendravaram, India

Abstract: The creation and assessment of an anthelmintic suspension with Bael (Aegle marmelos) leaf extract are the main objectives of the study. The medicinal qualities of Bael leaf, such as its anthelmintic activity, which aids in the treatment of parasitic worm infestations, have long been utilised in herbal therapy. The Bael leaf extract was made, standardised, and added to an oral suspension formulation for this study. In vitro studies against common intestinal parasites were used to assess the effectiveness of the anthelmintic. The physicochemical characteristics of the suspension were evaluated, including its stability, pH, and viscosity. Significant anthelmintic action was shown by the formulation, offering a safe and natural substitute for synthetic anthelmintic medications. The findings imply that Bael leaf extract is a viable option for creating potent plant-based anthelmintic solutions.

Key Words: Anthelmintic suspension, Aegle marmelos, Bael leaf extract, Helminth infections, Herbal medicine, Natural dewormer, Phytopharmacology.

INTRODUCTION

Bael leaves, known as Bilva leaf, is a tropical plant also native to India and widely found in Southeast Asia. The Bael tree produces these leaves, which hold significant cultural, medicinal, and spiritual value, particularly in Hinduism. Bael tree is a significant medicinal species in India. Bael trees are native in India and thrive abundantly in the Himalayan regions, Bengal, Central and South India, as well as in Sri Lanka, Burma, Thailand, Bangladesh, Nepal, Vietnam, Laos, Cambodia, and Pakistan. The leaves of Bael leaves of the Bael tree are offered to the Indian deity, Lord Shiva and thus, the tree is frequently planted in temples. In scientific name of Bael is Aegle marmelos L. (Family: Rutaceae), commonly referred to as Bael in Hindi, is a significant food plant in India. Historically, the leaves have been utilized to manage helminthic activity, and other issues. The leaves of Aegle marmelos are abundant in alkaloids, flavonoids, tannins, coumarins, carotenoids, and terpenoids. Key bioactive compounds include aegeline, rutin, quercetin, and kaempferol.[1] The leaves are trifoliate and arranged alternately, with each leaflet measuring 5-14 cm(2-5+ $\frac{1}{2}$ in) by 2-6 cm (3/4-2=1/4 in). They ovate with a pointed tip tapering to a rounded base, either smooth or have shallow rounded teeth. Young leaves appear pale green or pink and are finely hairy, while mature leaves are dark green and have a completely smooth texture. Each leaf possesses 4-12pairs of lateral veins that are connected at the edges. The process of collecting, verifying, and extracting Aegle marmelos leaves is essential. While bael leaves are generally considered safe, it's important to consult a health care provider before using them for medicinal purposes, especially if you are pregnant, breastfeeding, or have any existing medical conditions.[2]

Bael leaf widely used in traditional Indian medicine (Ayurveda) for their various medicinal properties, including anti-diarrheal, antiinflammatory. antioxidant, and digestive benefits; they areoftenused to treat stomachailments like dysentery, ulcers, and indigestion, with the leaves being consumed as a decoction, poultice, or applied to pically; the leaves are also considered tohaveanti-diabeticpotentialandcanbeusedtomanagebloodsugarlevels;duetotheirastringent nature,theymayalso be used totreat wounds. Inthe treatment of jaundice, asthma, it is found to be very useful. Bael leaves are a good aid in removing mucilage secretion from bronchialtubes.

Helminthiasis is a parasitic illness that primarily imparts disadvantaged communities around the globe. The occurrence of this diseaseisassociatedwithlowlivingstandardsandadequatesanitation. Parasitichelminthstypicallyspread, leading to helminthiasis, through the consumption of improperly cooked meat, contaminated vegetables, and polluted water. The most common helminths responsible for helminthiasis in humans include Ascaris lumbricoides, Ancylostoma duodenale, Trichuris, schistosomes, and filarial worms. [3]

1. BIOMARKERPROFILE

MARMELOSIN:

It is a Coumarin derivative found in the Aegle marmelos leaves. Specifically, it is a furanocoumarin. Marmelosin is considered a biomarker fortheAegle marmelos fruit and leaves. Abiomarker is unique chemical compound that can be used to identify a specific plant, animal, or substance. In this case, Marmelos in is a distinctive compound found in the Aegle marmelos fruit and leaves, making it a useful biomarker for authentication and identification purposes. [33]

Structure of ssssmarmelosin:

InvitroanthelminticactivityofvariousextractsoftargetesAeglemarmelosleaves on earthworm(Pheretimaposthuma)

Groups	Concentrationused	Timetakenfor	Timetakenfor death
	(mg/ml)	paralysis(min)	(min)
Standard	0.1ml	45	ration
(Albendazole)	0.01ml	37	-
Suspension prepared withethanolicextract	12ml	10	18
of the sample	14ml	8	14

Suspension prepared with aqueous extract		10	20
of the sample	2ml	19	20

$P^{H}OFTHEBAELSUSPENSIONS$:

F1	F2	F3	F4
1.9pH	2.6pH	3.7pH	4.8pH

Table.pHofthesuspension

VISCOSITY:

S.NO	F1	F2	F3	F4
1	652.2mpa×sec	667.9mpa×sec	675.3mpa×sec	692.9mpa×sec

TABLE. VISCOSITYFOR BAELSUSPENSION

SEDIMENTATION VOLUME:

TIME	H _U /H _O F1	H _U /H _O F2
0	1	2
5	0.75	0.98
10	0.74	0.97
15	0.72	0.96
20	0.73	0.96
25	0.75	0.95
30	0.73	0.94
45	0.71	0.91
60	0.5	0.8

Table.SedimentationvolumeforF1&F2

TIME	Hu/H₀F3	H _u /H _o F4
0	3	4
5	0.98	1.98
10	0.98	1.96
15	0.97	1.96
20	0.97	1.92
25	0.96	1.9
30	0.9	1.89

45	0.98	1.88
60	0.94	1.87

$Table. Sedimentation Volume for F3\&F4: \\ 3 Comparison of sedimentation volume between F3 and F4 formulation$

	F1	F2	F3	F4
TIME	(H_U/H_O)	(H_U/H_O)	(H_U/H_O)	(H_U/H_O)
0	1	2	3	4
5	0.75	0.98	0.98	1.98
10	0.74	0.97	0.98	1.96
15	0.72	0.96	0.97	1.96
20	0.73	0.96	0.97	1.92
25	0.75	0.95	0.96	1.9
30	0.73	0.94	0.9	1.89
45	0.71	0.91	0.98	1.88
60	0.5	0.8	0.94	1.87

Table Comparisonofsedimentationvolumeforfourformulations

FLOWPROPERTIES:

S.NO	F1	F2	F3	F4
1	0.56ml/sec	0.64ml/sec	1.166ml/sec	1.204ml/sec

TABLE.FLOWPROPERTIESOFBAELSUSPENSION

ASSAYOFBAELSUSPENSIONS:

F1	F2	F3	F4
92.2%	92.7 <mark>%</mark>	93.9%	96.22%

TABLE. ASSAYOFTHESUSPENSION

STABILITYSTUDIES

PARAMETER	INITIAL	116	AFTER	1	AFTER	2	AFTER	3
	MONTHS		MONTH		MONTH	I'S	MONTI	HS
Storage Conditions	Room	Temp	Room	Temp	Room	Temp	Room	Temp
	$(25^{\circ}\text{C} \pm 2^{\circ}\text{C})$	C)	$(25^{\circ}\text{C} \pm 2$	°C)	$(25^{\circ}\text{C} \pm 2)$	2°C)	(25°C ±	2°C)

Physical Appearance	Clear, Greenish Brown	Slightsettlingof particles	Minor color change, slight turbidity	Slightturbidity, slight color fading
ActiveIngredient	100%	98%(Reduction	95% (Further	93% (Notable
Content	(Standardized)	in bioactive	decrease in	reduction in
		compounds)	active	bioactive
			compounds)	compounds)
Degradation	None	Minor traces	Lowlevelsof	Moderatelevels
Products		Minor traces detected	degradation	of degradation
		detected	products	products
Anti-Helminthic	Full Activity	98% Activity	93% Activity	90% Activity
Activity	(100%)	(Slightdecrease)	(Noticeable	(Substantial
			decrease)	decrease)

CONCLUSION:

The formulation and evaluation of an anthelmintic suspension using Bael leaf extract showed promising results, demonstrating significant potential for combating helminthic infections. The Baelleafextract exhibited effective anthelmintic activity, withdose-dependent effects leading to theparalysisandexpulsionofworms. The suspension was successfully formulated with desirable characteristics such as stability, appropriate viscosity, and ease of administration. The presence of bioactive compounds like coumarin, flavonoids, alkaloids, and tannins in the extract likely contributed to its therapeutic effects.

Extraction, FTIR studies shoes good compatability with all the excipients. Formulation of F1 do not contains us pending agents formulation F2, F3, F4 having suspending agent with concentrations (0.5, 1.0, 1.5, 2.0) respectively.

Alltheformulationwereconcluded by PHshows (1.9, 2.6, 3.7, 4.8) ranges. Viscosity (652.2,

667.9, 675.3, 692.9mpa*sec), Particle size(4.25, 4, 3.3, 2.8), sedimentation rate(0.5, 0.8, 0.94, 1.87) and among which the F4shows the better results. so, that F4 will consider has optimal formulation compare with the marketed formulation. It shows similar anthelminthic activity in whichwithmarketedformulationbasedonthis respectively. F4 foundtobethebest formulation.

REFERENCES

- 1. Fauziahn, Ar-RizqiMA, Hana S, PatahuddinNM, DiptyanusaA. Stunting as a Risk Factorof Soil-Transmitted Helminthiasis in Children: ALiterature Review. Interdisciplinary Perspectives on Infectious Diseases. 2022 Aug 3;2022.
- 2. Riaz M, Aslam N, Zainab R, Aziz-Ur-Rehman, Rasool G, Ullah MI, Daniyal M, Akram M. Prevalence, risk factors, challenges, and the currently available diagnostic tools for the determination of helminths infections in human. European Journal of Inflammation. 2020 Sep;18:2058739220959915.