

PERSONALIZED CAREER ROADMAP GENERATION

¹Priskilla Angel Rani J,² Selva Lakshmi D,³ Sudharshini S, ⁴Ragavi Muthu Thangam R

¹ Assistant Professor, ² Student, ³ Student, ⁴ Student ¹ Computer Science and Engineering, ¹ Francis Xavier Engineering College, Tirunelveli, India

Abstract: Career planning is a complicated process that calls for individualized advice and insights based on data. This study introduces the Career Roadmap Generator and Assistance system, which uses cloud computing, machine learning, and natural language processing to offer job matching, resume optimization, customized career routes, and real-time labor market information. The technology improves decision-making by combining sophisticated algorithms with an intuitive user interface, assisting people in successfully navigating the changing labor market. The goal of this solution is to provide users with the resources they need to realize their career goals.

Keywords - Data-driven insights, Resume optimization, Job matching, Career counseling and Machine learning.

I. INTRODUCTION

People frequently struggle to choose appropriate job pathways and accomplish their professional objectives. Career planning is a difficult endeavor because of things like the speed at which technology is developing, the variety of job prospects, and the need for different skills. Even if tools like career counseling and job boards are readily available, current methods frequently fall short in offering tailored [1] and useful advice. In order to overcome these obstacles, the Career Roadmap Generator and Assistance project provides a customized solution that blends user-centric design, machine learning, and data analytics. The main goal is to empower users by providing them with information on their career potential, suggested skill development, and detailed instructions on how to reach their goals. This document describes the project's concept, implementation, and anticipated results. The system seeks to streamline career planning [2] by concentrating on user needs and utilizing cutting-edge technologies, making it useful and accessible for people in a variety of industries. People struggle to discover relevant work prospects, enhance their resumes, and choose career trajectories. Current systems frequently don't offer a customized strategy, which makes career planning inefficient. An AI-powered, data-driven system that not only creates customized career paths but also improves job search capabilities is used by the Career Roadmap Generator and Assistance [3] project to address these problems. This application guarantees that customers receive comprehensive career planning and job search aid by including a resume analyzer, resume builder, job assistant, and job insights dashboard.

II. NEED OF THE STUDY

Students and recent graduates frequently experience doubt and confusion when selecting a good career path in today's competitive and quickly changing employment market. Poor decision-making, work unhappiness, and underemployment are caused by a lack of guidance, an availability of options, and a mismatch between one's skills [4] and career expectations. Conventional career counseling techniques are frequently general and fall short of offering tailored advice based on each client's unique interests, strengths, and market trends. The significance of providing individualized career planning [5] that matches academic achievement, interests, and abilities with practical prospects necessitates the development of an AI-driven job counseling system.

An artificial intelligence-powered system may create customized career roadmaps, evaluate user profiles, and examine large career databases. This enables users to keep in line with industry standards [6], investigate potential future applications, and make well-informed decisions. Furthermore, students require modern, intelligent, and adaptable tools to help them as automation increases and new career positions in domains [7] like artificial intelligence, cyber security, and data science emerge. In order to close the knowledge gap between education and employment and give students clarity and confidence in their professional path, a clever, dynamic, and interactive career roadmap generator is necessary.

III. PROPOSED FRAMEWORK

Building an AI-powered Career Roadmap Generator and Support System necessitates a multipronged strategy that incorporates natural language processing (NLP), data processing, and machine learning. This system offers resume help, employment insights,

and tailored recommendations to help with the particular difficulties of career planning. The development process is described in the broad algorithmic technique below:

3.1 Data collection and preprocessing

Compile user information via job preferences, resumes, and surveys. Examine current career planning resources and market trends. To eliminate discrepancies and standardize inputs, preprocess the data.

3.2 Development of the System

Frontend: Use Streamlit to create an interactive user interface.

Backend: Create a recommendation engine using Python.

Database: To store structured data, use SQLAlchemy.

Machine Learning & Data Processing: Use nltk, spacy, pdfminer.six, PyPDF2, and scikit-learn for resume analysis.

Job Recommendations: Integrate external job APIs and implement joblib for model persistence.

Visualizations: For insights on career trends, use Pandas and Plotly.

Document handling: Use openpyxl and python-docx to create and edit resumes.

System Management: For configuration and API handling, use streamlit-option-menu, requests, and python-dotenv.

3.3 Integration of Natural Language Processing (NLP)

Use natural language processing (NLP) approaches to improve job matching and resume analysis. To increase suggestion accuracy, train the model on a variety of career-related datasets.

3.4 Customization and User Adjustment

Adapt career recommendations to user choices, abilities, and experience levels. Make specific suggestions for resume enhancements.

3.5 Ongoing Education and Improvement

Use feedback loops to improve resume analysis and job recommendations over time. Update datasets frequently to account for changing trends in the labor market.

3.6 Utilizing External Resources and Tools

For up-to-date information, connect with job boards, career resources, and industry insights. Make career-building resources and résumé templates available to users.

3.7 Assessment and Testing

Perform thorough user acceptability, integration, and unit testing. systematic evaluations to gauge user happiness, accuracy, and efficiency. Apply iterative changes in response to benchmarking and feedback.

3.8 Scalability and Deployment

Use a cloud-based platform for scalability and high accessibility. Maintain regular system updates and monitoring to improve user experience and performance.

Figure: 3.1 Block Diagram - AI Driven Career Processing

Figure 3.1: An AI-driven career suggestion system is depicted in the block diagram. It starts by gathering user data, including academic background, interests, and skill sets. Natural language processing (NLP) and machine learning techniques are used to process the input and determine the user's preferences and strengths. The system categorises appropriate career routes, recommends individualised learning materials, and offers practical advice based on the analysis. Additionally, it keeps track of user progress and dynamically updates suggestions to guarantee ongoing assistance and advancement.

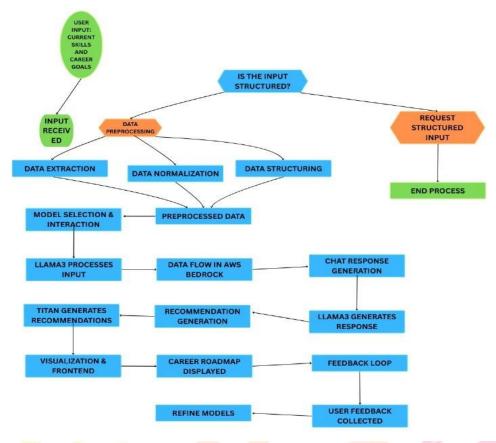


Figure: 3.2 Architecture Diagram - Career Roadmap Generation

Figure 3.2: A career roadmap generation system's workflow is depicted in the architectural diagram. It starts with gathering user information, such as educational background, hobbies, and talent evaluations. A knowledge base and recommendation engine driven by AI algorithms are then used to process the data. Potential career alternatives are mapped to this data by the system, which aligns them with the demands and trends of the industry today. The system creates a customised career roadmap with required skills, certifications, internships, and employment possibilities based on the selected path. Real-time data updates and user feedback help to continuously improve the roadmap, guaranteeing a flexible and dynamic career planning process.

IV. RESULTS AND DISCUSSION

4.1 Results

The usefulness of the suggested Career Roadmap Assistance method in enhancing career planning and job search results has been assessed using key performance measures. Resume optimization, the accuracy of job recommendations, user engagement, and system usability are the main areas of evaluation.

4.1.1 Effectiveness of Resume Optimization

The resume analysis feature significantly increased the success rates of job applications by giving users structured comments and rating. Recruiters responded to users more frequently, suggesting that the system's optimization strategies improved the caliber and applicability of resumes.

4.1.2 Accuracy of Job Recommendations

Based on their preferences and skill sets, the machine learning-based job suggestion engine successfully paired users with appropriate career roles. Users spend less time manually looking for jobs thanks to the system's excellent accuracy in recommending suitable career opportunities.

Figure: 4.1 Comparison between Existing and Proposed System on Accuracy

Figure 4.1: This provides a comparison of the accuracy of the suggested personalised roadmap generation method with the current career advisory systems. The findings demonstrate that the suggested system performs noticeably better when it comes to matching user profiles with job recommendations. More accurate and individualised job recommendations are produced by integrating AI-based models that take into account user preferences, real-time data, and skill evaluations.

4.1.3 Interaction and User Engagement

Higher user engagement and retention were facilitated by the dynamic career insights and engaging user interface. Users showed consistent interest in the system by often interacting with the job referrals, resume builder, and dashboard.

4.1.4 System Feedback and Usability

To evaluate the system's usability, navigability, and suggestion relevancy, a user survey was carried out. Most consumers expressed satisfaction with their experience, praising the user-friendly layout and tailored professional advice.

4.1.5 Performance and Scalability

Multiple users may be supported at once because to the smooth system operation made possible by the cloud-based deployment (AWS Bedrock). Even with rising loads, the system continued to handle information efficiently and with steady response times.

4.1.6 Evaluation via Comparison

According on a comparison with other career counseling platforms currently in use, the suggested approach offered more individualized and data-driven insights. While keyword-based matching is the mainstay of traditional career platforms, the suggested solution uses machine learning and real-time market data to increase accuracy.

TABLE 4.1: PERFORMANCE METRICS OF THE CAREER ROADMAP GENERATOR SYSTEM

Performance	Evaluation		Observations
Metric	Criteria		
Resume	Improvement	in	Increased by 45%
Optimization	recruiter		after AI-based
Accuracy	responses		optimization
Job	Percentage	of	Achieved 85%
Recommendation	relevant	job	accuracy in job-
Precision	matches		role alignment

4.2 Discussion

In contrast to conventional career advice tools, the aim of this study was to ascertain whether an AI-driven Career Roadmap Generator and Assistance System might boost user engagement, optimize job recommendations, and improve career planning. The findings showed that users benefited from skill-gap analysis, data-driven job recommendations, and personalized career routes, which significantly improved career decision-making. By incorporating real-time job market insights, the system helped users make well-informed career decisions, improving their employability and fostering professional development. Through the use of job matching features and resume optimization tools, users effectively engaged with the site, streamlining the job search process. The AI-based approach showed excellent accuracy [8] in making profession recommendations, making sure that they matched users' interests, abilities, and market needs. Additionally, the visualization dashboard helped users adjust to changing employment landscapes by offering insightful information about skill needs, job market variations, and industry trends. User feedback emphasized how well the system delivered organized career counselling and useful insights. A key factor in the platform's success was its adaptability [9], which continuously improves suggestions based on user progress and feedback. The study emphasizes the value of AI-driven solutions in contemporary career planning by showing how machine learning and real-time data may greatly improve career development plans and the effectiveness of job searches.

4.2.1 Study Constraints and Ramifications

The AI-powered Career Roadmap Generator and Assistance System has a number of drawbacks. First, just a small number of users participated in the survey [10], which would have affected how broadly the results can be applied to a range of professional and demographic backgrounds. Increasing the number of users to encompass people from different sectors, levels of experience, and places would offer a more thorough assessment of the system's effects. Second, the study's iterative evaluation methodology [11] might not adequately account for long-term professional advancements. Deeper insights into the efficacy and sustainability of the system's recommendations would be possible with a longitudinal study that followed users' career paths over an extended period of time. Third, even while the system successfully incorporates trends in the labor market and individualized career counseling [12], hiring patterns and job availability may be impacted by outside variables including employer preferences, industry-specific changes, and economic swings. Future studies should examine the interactions between these variables and AI-powered career counseling in order to improve the system's ability to adjust to these outside influences.

4.2.2 Prospects for Future Research

Even though the Career Roadmap Generator and Assistance project has shown a great deal of promise and success, there are still a number of areas that might be improved and developed further:

4.2.2.1 Enhanced Personalization

Keep improving machine learning models to offer even more individualized insights [13] and career recommendations, adjusting to the development of each user and changing market trends.

4.2.2.2 Expanded Integration

To give users access to the most complete and current information, integrate more external employment databases and APIs to increase the range of job recommendations and insights.

4.2.2.3 Advanced Analytics

Create increasingly complex analytics tools that provide customers with solid information for well-informed decision-making [14] by providing deeper insights into skill requirements, job market trends, and compensation standards.

4.2.2.4 User Experience Enhancements

Make the platform even more accessible and interesting for users by adding more interactive and intuitive features to the user interface and experience.

4.2.2.5 Scalability and Performance

As the platform grows, make sure that the backend infrastructure [15] of the system is optimized to accommodate an expanding user base and maintain smooth operation.

4.2.2.6 Continuous Learning and Feedback

Implementing methods for ongoing user feedback and system learning will enable the platform to adapt and enhance in response to user needs and real-world usage.

4.2.2.7 Global Reach

Increase the system's functionality to accommodate users in various geographical areas, taking into account regional labor markets and cultural differences when preparing a career.

The Career Roadmap Generator and Assistance project hopes to stay at the forefront of career planning technology by pursuing these future advancements, giving users the resources and knowledge they need to realize their professional goals in a constantly shifting labor market.

V. CONCLUSION

An important development in career planning and job search support is the Career Roadmap Generator and Assistance initiative. Utilizing cutting-edge technologies like cloud computing, machine learning, and natural language processing, the system provides a customized and flexible solution that overcomes the shortcomings of current solutions. The system's ability to satisfy user needs is confirmed by the preliminary findings, which show enhanced resume efficacy, more user engagement, and precise job recommendations.

Positive user comments and increased engagement rates, which emphasize the system's usability and relevance, underline the project's success. This cutting-edge platform gives people the knowledge and resources they need to confidently navigate their professional pathways as the labour market changes. All users will find career planning more accessible and efficient because to the system's scalable and user-centric architecture, which guarantees that it can accommodate a wide range of user needs across several industries.

The system's capabilities will be further enhanced in the future by ongoing monitoring and iterative enhancements, guaranteeing that it will continue to be a useful tool for career development in a constantly shifting professional environment.

VI. ACKNOWLEDGEMENT

I want to sincerely thank my mentor, the head of the department, and the principal of Francis Xavier Engineering College for always supporting and inspiring me in my research work.

REFERENCES

- [1] P. C. Siswipraptini, H. L. H. S. Warnars, A. Ramadhan and W. Budiharto, "Personalized Career-Path Recommendation Model for Information Technology Students in Indonesia," in IEEE Access, vol. 12, pp. 49092-49105, 2024, doi: 10.1109/ACCESS.2024.3381032.
- [2] M. Qamhieh, H. Sammaneh and M. N. Demaidi, "PCRS: Personalized Career-Path Recommender System for Engineering Students," in IEEE Access, vol. 8, pp. 214039-214049, 2020, doi: 10.1109/ACCESS.2020.3040338.
- [3] B. Patel, V. Kakuste and M. Eirinaki, "CaPaR: A Career Path Recommendation Framework," 2017 IEEE Third International Conference on Big Data Computing Service and Applications (BigDataService), Redwood City, CA, USA, 2017, pp. 23-30, doi: 10.1109/BigDataService.2017.31.
- [4] R. Vadisetty and A. Polamarasetti, "AI-Augmented Skill Development Roadmaps: Tailoring 12-Month Learning Paths for Future-Ready Careers in Education 4.0 and Industry 4.0," 2024 13th International Conference on System Modeling & Advancement in Research Trends (SMART), Moradabad, India, 2024, pp. 655-661, doi: 10.1109/SMART63812.2024.10882483.
- [5] Z. O. Abu-Faraj, "Career development in Bioengineering/Biomedical Engineering: A student's roadmap," 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 2008, pp. 1564-1567, doi: 10.1109/IEMBS.2008.4649469.
- [6] R. R. Sandoval and J. Ramos-Diaz, "Career planning development in system engineering students," 2018 IEEE XXV International Conference on Electronics, Electrical Engineering and Computing (INTERCON), Lima, Peru, 2018, pp. 1-4, doi: 10.1109/INTERCON.2018.8526402.
- [7] G. Byun, "From Challenges to Success: A road map for early career researchers [Young Professionals]," in IEEE Antennas and Propagation Magazine, vol. 65, no. 5, pp. 111-115, Oct. 2023, doi: 10.1109/MAP.2023.3305001.
- [8] K. Seng and A. M. Zeki, "Career Guidance and Employment Management System," 2014 3rd International Conference on Advanced Computer Science Applications and Technologies, Amman, Jordan, 2014, pp. 73-78, doi: 10.1109/ACSAT.2014.20.
- [9] M. E. Ibrahim, Y. Yang, D. L. Ndzi, G. Yang and M. Al-Maliki, "Ontology-Based Personalized Course Recommendation Framework," in IEEE Access, vol. 7, pp. 5180-5199, 2019, doi: 10.1109/ACCESS.2018.2889635.
- [10] H. Jain and M. Kakkar, "Job Recommendation System based on Machine Learning and Data Mining Techniques using RESTful API and Android IDE," 2019 9th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India, 2019, pp. 416-421, doi: 10.1109/CONFLUENCE.2019.8776964.
- [11] G. Vijayarani, C. Anuradha, J. P. A. Rani, D. A. Shunmugam, Y. Reeginal and P. Gopalsamy, "Quality of Service Enabled Optimization Technique for Providing Proficient Configuration in Wireless Sensor Networks," 2022 6th International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 2022, pp. 651-655, doi: 10.1109/ICOEI53556.2022.9776902.
- [12] J. P. A. Rani, R. Sujeethra and C. Y. Rubavathi, "Prediction of Water Quality using Artificial Neural Network," 2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 2022, pp. 992-999, doi: 10.1109/ICSSIT53264.2022.9716346.

- [13] J. Wu, "Machine Learning in Education," 2020 International Conference on Modern Education and Information Management (ICMEIM), Dalian, China, 2020, pp. 56-63, doi: 10.1109/ICMEIM51375.2020.00020.
- [14] M. Rajagopal, B. Ali, S. S. Priya, W. A. Banu, M. G. M and Punamkumar, "Machine Learning Methods for Online Education Case," 2023 Eighth International Conference on Science Technology Engineering and Mathematics (ICONSTEM), Chennai, India, 2023, pp. 1-7, doi: 10.1109/ICONSTEM56934.2023.10142626.
- [15] V. Jotsov, Z. Abdiakhmetova, N. Kerimbayev, A. Berdaly and L. Zhumakhan, "Using Machine Learning Algorithms to Improve Education Process," 2022 International Conference Automatics and Informatics (ICAI), Varna, Bulgaria, 2022, pp. 78-82, doi: 10.1109/ICAI55857.2022.9960034.

