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Abstract: This research investigates the application of stacking classifiers combined with meta-learners for water quality classification 

in agricultural settings. Unlike traditional machine learning approaches that rely on single classifiers, this study explores the novel 

combination of multiple base models with a meta-learning framework to enhance predictive accuracy and generalisation. By integrating 

machine learning algorithms such as Logistic Regression, Extra Trees Classifier, K-Nearest Neighbours, and Gradient Boosting 

Classifier, a robust predictive model was developed. The dataset underwent preprocessing and augmentation to enhance model 

performance and generalisation. Among the evaluated models, the Gradient Boosting Classifier meta-learner achieved the highest test 

accuracy of 96.01%, outperforming other configurations. These findings underscore the potential of machine learning for real-time 

water quality monitoring, providing a scalable and efficient approach to support sustainable agricultural practices. 
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1. INTRODUCTION 

Water quality assessment is fundamental for ensuring sustainable agricultural practices. Poor water quality can severely affect crop 

growth, soil fertility, and overall productivity. Contaminated irrigation water, containing excessive salts, heavy metals, or pathogens, 

may deteriorate soil health and reduce crop yields [3]. With increasing environmental concerns and the rising global demand for food 

production, efficient and accurate water quality monitoring systems have become essential. In particular, regions that heavily rely on 

agriculture face significant risks when irrigation water quality is compromised, underscoring the need for rapid and effective monitoring 

mechanisms [4]. 

Conventional water quality testing methods such as titration, spectrophotometry, and laboratory analysis have long been considered 

reliable. However, these methods are often time-consuming, labour-intensive, and require substantial resources for regular assessment 

[2]. The reliance on periodic sampling further limits their ability to detect contamination in real-time, delaying corrective actions and 

increasing the risk of prolonged exposure to harmful substances. Consequently, developing automated, data-driven solutions for fast 

and accurate water quality assessment has become a pressing need [1]. Recent advances in machine learning (ML) have demonstrated 

significant potential for improving water quality prediction by identifying patterns within complex datasets. Researchers have explored 

various ML models, such as Decision Trees, Support Vector Machines (SVMs), and Artificial Neural Networks (ANNs), to predict water 

quality indicators [5] [7]. While these models have achieved some success, they often rely on single classifiers that may fail to capture 

intricate relationships between environmental factors. Furthermore, water quality data is frequently heterogeneous, noisy, and 

imbalanced, posing additional challenges for ML models. Although ensemble models have been explored to address these issues, their 

reliance on limited feature engineering and ineffective handling of class imbalance often restricts their robustness in practical 

applications [8]. 

To address these challenges, this research proposes a novel stacking classifier framework that combines multiple base models with a 

meta-learner to enhance predictive accuracy and generalisation. Unlike conventional ensemble methods, the proposed framework 

leverages the diverse strengths of multiple learning algorithms to improve predictive performance. The base models - Logistic 

Regression, Extra Trees Classifier, K-Nearest Neighbours, and Gradient Boosting Classifier - capture distinct data patterns, while the 

Gradient Boosting Classifier as a meta-learner refines the combined predictions to enhance accuracy. This approach effectively 

addresses data imbalance issues while improving the model's ability to generalise across varying water quality conditions. This study 

aims to introduce a novel stacking classifier framework that integrates diverse base models with a Gradient Boosting Classifier as the 

meta-learner, offering improved predictive accuracy and robustness compared to traditional methods. Additionally, it will implement 

enhanced data preprocessing and augmentation techniques to address noise and class imbalance, improving the model's stability across 

diverse datasets. The model's design ensures adaptability to broader environmental monitoring scenarios, including drinking water 
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assessment, industrial wastewater analysis, and aquatic ecosystem management. By addressing these critical challenges, this research 

presents an innovative and effective machine learning-based solution for accurate, scalable, and real-time water quality monitoring in 

agricultural settings. The proposed framework has the potential to empower agricultural stakeholders with reliable insights, enhancing 

resource management and promoting environmental sustainability. 

 

2. METHODOLOGY 

The methodology adopted in this research is summarised in Fig 1 and elaborated in the following subsections. All analyses and coding 

were conducted using Google Collaboratory, ensuring efficient computation and streamlined implementation. A structured workflow, 

including data preprocessing and augmentation, is presented in Fig 2. 

 

 

Fig 1. Overview of Methodology 

 

 

2.1. DATA COLLECTION 

The dataset utilised in this research was supplied by the Department of IT at Thakur College of Science and Commerce and is in CSV 

format. Due to confidentiality clauses, the original source of the data cannot be revealed. The dataset includes key water quality 

indicators, such as Calcium (Ca), Chloride (Cl), Carbonate (CO3), Electrical Conductivity (EC), Bicarbonate (HCO3), Potassium (K), 

Magnesium (Mg), Sodium (Na), Nitrate (NO3), pH Level, Sulphate (SO4), Total Dissolved Solids (TDS), Total Hardness (TH), Fluoride 

(F), Potability, and Infrastructure Suitability. 

2.2. DATA PRE-PROCESSING 

To ensure data integrity and enhance model performance, several pre-processing steps were undertaken: 

 Removal of Irrelevant Columns: The Year and Infrastructure Suitability columns were removed as they were not relevant to the 

study. 

 Handling of Carbonate (CO3) Parameter: Since all values in this column were zero, it was removed from the dataset. 
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 Managing Missing Values: Rows containing missing values were dropped to maintain consistency. 

 Feature Scaling: Standardisation was applied to ensure all features contributed equally to model training. 

 Renaming of Target Variable: The original target variable “Potability” was renamed to “Agricultural Suitability” to align with the 

study’s objective. 

 

2.3. DATA AUGMENTATION 

To enhance dataset robustness, synthetic variations were introduced by applying random noise at variation probabilities of 2.5%, 5%, 

7.5%, 10%, and 12.5% to the numerical features. The Total Hardness (TH) parameter was recalculated using the equation: 

TH = 2.5 × Ca + 4.1 × Mg [6]    

This augmentation process simulated real-world variations in water quality measurements, ensuring model adaptability. 

 

Fig 2. Overview of Data Processing: Data Pre-processing and Data Augmentation 

 

2.4. EXPLORATORY DATA ANALYSIS (EDA) 

The dataset, comprising 2,676 samples, was analysed to understand data distributions and relationships between features. 

 Distribution Analysis: The ‘not suitable’ class was significantly larger than the ‘suitable’ class, indicating class imbalance. 

 Statistical Summary: The central tendencies and variability of features were examined. 

 Visualisation Techniques: Histograms and correlation heatmaps were used to uncover key relationships. 

 Multicollinearity Detection: A correlation matrix revealed dependencies between features, addressed during model training. 

 

2.5. STACKING CLASSIFIER ARCHITECTURE 

The research employed stacking classifiers as an ensemble learning approach. Fig 3 illustrates the stacking classifier framework, 

integrating multiple base models with a meta-learner. 

 

Fig 3. Stacking Classifier Architecture 

Base Models 

The following models were used as base learners: 

 Logistic Regression (LR): A linear model for classification with L2 regularisation. 
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 Extra Trees Classifier (ET): A tree-based ensemble model to reduce variance. 

 K-Nearest Neighbours (KNN): A non-parametric algorithm relying on proximity-based classification. 

 Gradient Boosting Classifier (GBC): A boosting algorithm optimising weak learners sequentially. 

Each model contributed distinct strengths, ensuring a diverse and robust ensemble. 

 

Meta-Learner Selection 

The study tested four different meta-learners, forming Models A, B, C, and D: 

 Model A: Meta-learner Logistic Regression (LR) 

 Model B: Meta-learner Extra Trees Classifier (ET) 

 Model C: Meta-learner K-Nearest Neighbours (KNN) 

 Model D: Meta-learner Gradient Boosting Classifier (GBC) 

 

2.6. MODEL TRAINING AND EVALUATION 

The dataset was split into 70% training, 15% validation, and 15% test sets. A Stratified K-Fold Cross-Validation (SKF) approach (with 

10 folds) was implemented to prevent overfitting and ensure balanced training. The stacking classifier was trained using the following 

process: 

 Base Models Training: Individual models were trained using standardised features. 

 Prediction Generation: Predictions from base models were used as new features for the meta-learner. 

 Meta-Learner Training: The meta-learner refined predictions using the base model outputs. 

Each model was evaluated using standard classification metrics: 

 Accuracy 

 Precision 

 Recall 

 F1-score 

Results demonstrated that Model D (GBC as meta-learner) achieved the highest test accuracy of 96.01%, outperforming the others in 

generalisation and robustness. 

 

3. RESULTS AND OBSERVATIONS 

The performance of each stacking model was evaluated based on training, validation, and test accuracy. Table 1 presents the accuracy 

values for all models, highlighting the impact of different meta-learners on classification performance. 

 

Table 1. Model Performance Metrics. 

Models 
Base Models Meta Learners 

Training Accuracy 
Validation 

Accuracy 
Test Accuracy 

A 
LR, ET, KNN, 

GBC 

LR 
94.07% 91.27% 93.03% 

B 
LR, ET, KNN, 

GBC 

ET 
94.12% 92.51% 95.27% 

C 
LR, ET, KNN, 

GBC 

KNN 
94.02% 93.26% 93.78% 

D 
LR, ET, KNN, 

GBC 

GBC 
94.60% 94.26% 96.01% 
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Key Observations 

 Superior Performance of Model D: Model D, which employed Gradient Boosting Classifier (GBC) as the meta-learner, achieved 

the highest test accuracy of 96.01%. This suggests that GBC effectively refines base model predictions by minimising residual errors 

and iteratively improving classification performance. 

 Comparison of Meta-Learners: Logistic Regression (Model A) provided stable performance (93.03% test accuracy), but its linear 

nature may have limited its ability to capture complex non-linear relationships in the data.  

Extra Trees (Model B) outperformed Model A, achieving 95.27% test accuracy, as its ensemble approach allowed for better pattern 

recognition and reduced variance.  

K-Nearest Neighbours (Model C) had a validation accuracy of 93.26% but a slightly lower test accuracy (93.78%), possibly due to its 

sensitivity to noise and high computational complexity.  

Gradient Boosting (Model D) demonstrated the best generalisation ability, outperforming all models in both validation and test accuracy. 

Its sequential learning mechanism helped refine predictions and capture nuanced patterns in water quality classification. 

 

 Consistency Between Validation and Test Accuracy: Model D showed the smallest gap between validation (94.26%) and test 

accuracy (96.01%), indicating robust generalisation and reduced overfitting. 

 Impact of Data Augmentation: The preprocessing and augmentation techniques contributed to improved model stability, particularly 

for GBC, which effectively leveraged the enriched dataset for higher predictive performance. 

 

Statistical Insights 

To further validate the results, additional performance metrics such as precision, recall, and F1-score were analysed. Model D 

consistently achieved the highest F1-score, reinforcing its effectiveness in distinguishing between suitable and unsuitable water samples. 

These findings highlight the importance of meta-learner selection in stacking classifiers and demonstrate the efficacy of Gradient 

Boosting in improving predictive accuracy for water quality classification. 

 

4. CONCLUSION AND FUTURE WORK  

This study demonstrated the effectiveness of stacking classifiers with meta-learners for classifying water quality in agricultural 

applications. Unlike conventional machine learning approaches that rely on single models, this research introduced a novel ensemble 

framework that leverages multiple base classifiers combined with a meta-learner to enhance predictive accuracy. By integrating multiple 

machine learning models, the approach addressed the challenges of heterogeneous datasets and improved classification performance. 

Among the tested configurations, the Gradient Boosting Classifier (Model D) achieved the highest test accuracy of 96.01%, 

outperforming other meta-learners due to its ability to refine predictions through iterative learning. The results underscore the potential 

of ensemble learning in real-time water quality assessment, offering a scalable and efficient solution for sustainable agricultural 

practices. 

Beyond achieving high accuracy, the study highlighted the impact of data pre-processing and augmentation in enhancing model 

robustness. Standardisation and feature scaling ensured a balanced contribution of all variables, while synthetic data augmentation 

helped mitigate class imbalance. These techniques collectively improved the model’s generalisation ability, reducing the risk of 

overfitting and increasing adaptability to diverse water quality conditions. Additionally, this research provides a framework that can be 

adapted for broader environmental monitoring applications beyond agricultural water quality assessment like predicting potability and 

detecting contamination in municipal water supplies. 

 

Future Work 

While this research provides a strong foundation, several avenues can be explored to further improve water quality classification models: 

 Incorporation of Additional Environmental Parameters: Future studies can integrate more water quality indicators, such as heavy 

metal concentrations and microbial contaminants, to expand the model’s applicability. 

 Integration with IoT and Real-Time Monitoring Systems: Implementing the model within IoT-based water monitoring frameworks 

can enable continuous assessment and early detection of water contamination in agricultural fields. 

 Exploration of Deep Learning Techniques: Future research can evaluate deep learning models such as Convolutional Neural 

Networks (CNNs) and Recurrent Neural Networks (RNNs) to enhance feature extraction and temporal pattern recognition in water 

quality data. 

 Optimisation of Model Performance: Hyperparameter tuning using advanced optimisation techniques, such as Bayesian 

optimisation or genetic algorithms, could further refine the stacking classifier’s efficiency. 

 Cross-Regional Model Generalisation: Expanding the dataset to include diverse geographical regions and climatic conditions would 

improve the model’s adaptability and ensure its broader applicability. 

http://www.ijrti.org/


                                                           © 2025 IJNRD | Volume 10, Issue 3 March 2025 | ISSN: 2456-4184 | IJNRD.ORG 

IJNRD2503163 International Journal Of Novel Research And Development (www.ijnrd.org) 
 

 

b556 
c556 

 Explainability and Interpretability: Implementing SHAP (Shapley Additive Explanations) or LIME (Local Interpretable Model-

Agnostic Explanations) can enhance transparency in model decision-making, ensuring practical usability for agricultural stakeholders. 

By addressing these areas, future studies can refine machine learning-based water quality classification systems, making them more 

accurate, scalable, and applicable to real-world agricultural challenges. 
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