

AI Based Healthcare Assistant

¹Mohammad Amir Khan, ²Mohamad Arman Alam, ³Belal Khan, ⁴Kushum Sah, ⁵Prof. Vishakha Khambhati

¹²³⁴ Students, ⁵ Assistant Professor, Department of Biomedical Engineering ¹Parul Institute of Technology, Vadodara, India.

Abstract: The ALICE: Your Health Assistant project aims to revolutionize the healthcare experience by developing an intelligent hospital assistant robot designed to enhance the efficiency and quality of service for patients, visitors, and medical students. Hospitals often face challenges in managing the high volume of inquiries and requests, which can overwhelm staff and lead to delays in delivery service. To address these issues, ALICE integrates advanced speech recognition and text-to-speech technologies with a comprehensive knowledge base to provide real-time, accurate, and interactive assistance. The robot is designed to perform a variety of tasks, including guiding individuals within the hospital premises, answering frequently asked questions about doctor availability, room locations, visiting hours, and hospital policies. Additionally, ALICE serves as an educational tool for medical students by providing detailed information on anatomy, physiology, and other medical topics, thereby supporting their learning process. By automating routine inquiries and providing instant, reliable responses, ALICE significantly reduces the workload on hospital staff, allowing them to focus on more critical tasks. This innovative solution not only improves service efficiency but also enhances the overall experience for patients and visitors by ensuring timely and accurate assistance. Furthermore, the system is designed to be scalable and adaptable, making it suitable for implementation in various healthcare environments, from small clinics to large hospitals.

Keywords: Health Assistant Robot, Speech Recognition, Text-to-Speech, Knowledge Base, Hospital Navigation, Medical Student Assistance, Healthcare Technology, Service Efficiency, Hospital Automation, Patient Experience.

INTRODUCTION

Hospitals are increasingly becoming complex environments that require efficient management of information and resources to ensure smooth operations. Patients, visitors, and even medical students often need assistance with a wide range of queries, including doctor availability, room locations, visiting hours, and guidance to specific departments like radiology, pharmacy, or laboratories. In many cases, the hospital staff is occupied with critical tasks, making it challenging to address these queries promptly. As a result, delays, miscommunication, and visitor frustration become common, especially during peak hours or when the hospital operates with limited staff. To tackle these challenges, this project proposes the development of an advanced Health Assistant Robot, designed to enhance the overall experience for patients, visitors, and medical students while improving the efficiency of hospital operations. The primary objective of this robot is to serve as an interactive assistant that provides accurate, real-time information in response to user inquiries, thereby reducing the burden on hospital staff. This state-of-the-art robot aims to revolutionize the traditional approach to information dissemination within healthcare facilities by integrating advanced technologies like speech recognition, text-to-speech, and a comprehensive knowledge base. The Health Assistant Robot is equipped with speech recognition technology that allows it to understand spoken queries from users, making the interaction more natural and intuitive. It also features text-to-speech capabilities, which enable the robot to deliver responses in a clear and conversational manner, mimicking human interaction. This feature is particularly valuable in hospital environments, where quick and clear communication can significantly enhance the user experience. The robot's knowledge base is designed to be extensive and regularly updated, ensuring that it provides accurate information about doctor schedules, room locations, department guides, and even answers to common health-related questions. One of the unique aspects of the Health Assistant Robot is its versatility in addressing the needs of not only patients and visitors but also medical students. For students, it can serve as an educational tool, providing detailed information on topics related to anatomy, physiology, and other areas of medical study.

By automating the handling of routine inquiries, the robot helps alleviate the workload of hospital staff, allowing them to focus more on patient care and other critical tasks. This also leads to a reduction in wait times for patients and visitors, enhancing the overall hospital experience. During high-traffic periods or outside of regular working hours, the robot can maintain consistent service, ensuring that crucial information is always available without delay. The scalability of the Health Assistant Robot is another critical advantage. Its design allows for easy integration with existing hospital systems, enabling real-time updates on doctor schedules, room assignments, and departmental changes. This adaptability ensures that the robot remains a valuable asset in any healthcare setting, regardless of the size or complexity of the facility. In addition to its functional benefits, the Health Assistant Robot also aims to improve the overall quality of service in hospitals. By creating a more organized and responsive environment, it contributes to higher patient satisfaction levels. Visitors are more likely to have a positive experience when they receive timely assistance and guidance. Furthermore, the robot's ability to handle repetitive tasks efficiently means that healthcare professionals

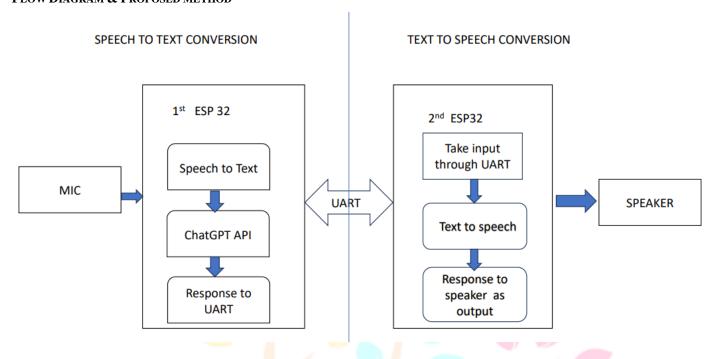
can dedicate more time to critical patient care, enhancing the overall quality of medical services provided. Another innovative aspect of this project is its potential to reduce operational costs for hospitals in the long run. By minimizing the need for additional staff to manage visitor inquiries and information desks, the Health Assistant Robot can contribute to cost savings. The automation of routine interactions reduces the dependency on human resources for these tasks, leading to more streamlined operations.

NEED OF THE STUDY

Hospitals are often bustling environments where patients, visitors, and even medical students require timely and accurate information. However, the high volume of inquiries can overwhelm hospital staff, leading to delays, miscommunication, and inefficiencies in service delivery. Traditional methods of handling these queries rely heavily on human resources, which may not always be available, especially during peak hours or emergencies. This study aims to address these challenges by developing an advanced Health Assistant Robot that integrates speech recognition, text-to-speech technology, and a comprehensive knowledge base. By automating responses to common inquiries such as doctor availability, room locations, and department navigation, the robot reduces the burden on hospital staff while ensuring that visitors and patients receive real-time assistance. Additionally, the system serves as an educational tool for medical students, providing quick access to information related to anatomy and physiology. Beyond improving hospital efficiency, this project contributes to a more patient-friendly healthcare environment, where information is easily accessible without requiring constant human intervention. The adaptability of this system allows it to be integrated into different healthcare settings, making it a scalable and cost-effective solution. By leveraging automation and AI-driven assistance, the study aims to enhance hospital operations, optimize staff resources, and ultimately improve the overall experience for patients and healthcare professionals alike.

LITERATURE REVIEW

Explores advancements in artificial intelligence (AI), robotics, and chatbot-based systems designed to enhance healthcare services. Several studies focus on AI-powered chatbots that provide preliminary health assessments, symptom-based disease predictions, and real-time medical assistance, leveraging machine learning algorithms, natural language processing (NLP), and speech recognition technologies. These chatbots aim to improve accessibility, reduce patient wait times, and optimize healthcare workflows by automating interactions. Other studies investigate the development of robotic assistants for hospitals, integrating IoT-based designs, deep learning for speech recognition, and sensor-driven automation to facilitate tasks such as patient monitoring, contactless health checkups, and medical guidance. Many of these robotic systems are designed to assist not only patients and visitors but also healthcare professionals by reducing workload and improving efficiency. Additionally, some research highlights the role of cloud computing and knowledge-based systems in healthcare automation, ensuring scalability and real-time data management for enhanced decision-making. Collectively, these studies underscore the growing potential of AI-driven virtual assistants and robotic solutions in transforming healthcare by streamlining processes, reducing human intervention for repetitive tasks, and providing timely, data-driven support in medical environments.


METHODOLOGY

The methodology for developing the Health Assistant Robot begins with a comprehensive literature review to understand existing technologies in hospital assistant robots and AI applications in healthcare. This foundational research informs the system design, where the architecture and flow of data from speech input to audio output are outlined. Next, suitable hardware components are selected, including microphones, speakers, and ESP32 microcontrollers, which are chosen for their processing capabilities and compatibility with communication protocols. The first ESP32 is programmed to capture audio input from the microphone and convert it into text using a speech recognition algorithm or API. This text is then sent to the ChatGPT API, which generates a relevant response. The second ESP32 module is developed to receive the text output via UART and convert it back into speech using a text-to-speech engine. Following the development of both modules, they are integrated and tested together to ensure seamless communication and functionality. After integration, user testing is conducted in simulated hospital environments to assess the robot's performance, with a focus on accuracy and response times. Based on user feedback, necessary optimizations are made. Finally, the robot is deployed in real hospital settings, where staff are trained on its use, and ongoing maintenance is established. Documentation of the entire process ensures future reference and improvements can be made as needed. This structured methodology aims to enhance operational efficiency and user experience in healthcare settings.

[Figure 1: Circuit Diagram]

FLOW DIAGRAM & PROPOSED METHOD

[Figure 2: Flow Diagram]

Here's a more detailed point-by-point explanation of the block diagram based on its components:

ESP32

ESP32 is a powerful microcontroller with built-in Wi-Fi and Bluetooth capabilities. It is widely used in IoT applications due to its low power consumption, high processing speed, and multiple input/output (I/O) interfaces. In this project, ESP32 serves as the central processing unit, handling data transmission, sensor integration, and communication with cloud-based AI services.

Google Text-to-Speech (TTS) Converter

Google Text-to-Speech is a cloud-based service that converts written text into natural-sounding speech. It supports multiple languages and voice modulation features. In this project, it enables the robot to generated responses into speech.

OpenAI Speech-to-Text (STT) Converter

OpenAI's Speech-to-Text technology is an advanced AI-driven tool that converts spoken words into text with high accuracy. It allows the robot to understand user commands and process voice inputs efficiently, making the interaction more intuitive.

Custom Chatbot

A custom chatbot is an AI-driven conversational agent designed to provide healthcare-related responses and assistance. It is trained on medical knowledge and customized datasets to answer queries, guide patients, and offer real-time support. It integrates with speech processing tools to enable voice-based interactions.

MEMS Microphone

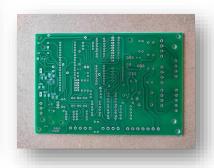
A MEMS (Micro-Electro-Mechanical Systems) microphone is a compact, high-performance microphone used for capturing voice inputs with minimal noise interference. It is energy-efficient and provides high sensitivity, making it ideal for speech recognition applications in the healthcare assistant robot.

Speaker

A high-quality speaker is used to output the synthesized speech generated by the Google TTS system. It ensures clear and natural-sounding audio output, allowing the robot to communicate effectively with users.

Battery Charging Module

A battery charging module manages the charging and power distribution for the LiPo battery. It ensures safe charging, prevents overcharging, and provides stable voltage to the system components.


LiPo Battery

A Lithium-Polymer (LiPo) battery is a lightweight and high-energy-density power source used to provide long-lasting operation for the healthcare assistant robot. It ensures mobility and reliability by powering all the electronic components.

Proximity Sensor

A proximity sensor detects objects and obstacles in the robot's surroundings, enabling autonomous navigation and collision avoidance. It enhances user interaction by sensing when a person is nearby and activating relevant functions.

[Figure 3: ESP32]

[Figure 4: PCB Board]

[Figure 5: Speaker]

3D Printing

3D printing is used to manufacture custom-designed enclosures and structural components for the robot. It allows for a compact, lightweight, and aesthetically appealing design while providing durability and flexibility for housing internal electronics.

Prototype Model

[Figure 6: Prototype Model]

RESULTS & CONCLUSION

The Health Assistant Robot, integrating advanced speech recognition and text-to-speech technologies, represents a major innovation in improving hospital operations and user experience. Hospitals frequently encounter challenges in managing high volumes of inquiries from patients and visitors, leading to delays and increased workloads for staff. By automating information dissemination, this robotic system ensures that users receive accurate, real-time responses about doctor availability, room locations, visiting hours, and hospital navigation, reducing reliance on human resources and improving efficiency. The system utilizes two ESP32 microcontrollers, with one dedicated to converting speech into text and the other transforming text responses into spoken language. This seamless interaction allows for natural, intuitive communication, making the robot an accessible tool for users of all backgrounds. Unlike traditional help desks, this autonomous system provides 24/7 assistance, ensuring that crucial information is always available. Beyond assisting patients and visitors, the robot serves as an educational resource for medical students, offering quick access to information related to anatomy and physiology. This feature enhances medical learning and supports real-time academic queries without interrupting hospital staff. Scalability is a key advantage of this system, allowing it to be integrated into various healthcare settings, from small clinics to large hospitals. By connecting with hospital management systems, it can dynamically update information, ensuring accuracy and reliability. Additionally, it minimizes operational costs by reducing administrative workload.

REFERENCES

- 1. Lekha Athota, Vinod Kumar Shukla, Nitin Pandey, Ajay Rana, "Chatbot for Healthcare System Using Artificial Intelligence", International Conference on Reliability, Infocom Technologies and Optimization (ICRITO), 2020.
- 2. Supreet Thale, Bhushan N Chopda, Shreyas Deo, Viraj Nyayadhish, P Srivalli, Unnati Choudhari, Serlin Agnes, Nilofar Sameena, "Design of Smart Medical Assistant Robot for Contactless Preliminary Health Checkup of patients", International Research Journal of Engineering and Technology (IRJET), 2020.
- 3. Athulya N, Jeeshna K, J Aadithyan, Sreelakshmi, Hairunizha Alias Nisha Rose, "Healthcare Chatbot", International Journal of Creative Research Thoughts (IJCRT), 2021.
- 4. Imran Ahmed and Shikha Singh, "AIML Based Voice Enabled Artificial Intelligent Chatterbot", International Journal of uand e- Service, Science and Technology, 2015.
- 5. Kavitha B. R., Dr. Chethana R. Murthy, "Chatbot for healthcare system using Artificial Intelligence", International Journal of Advance Research, Ideas and Innovations in Technology, 2019.
- 6. S. J. du Preez, M. Lall, S. Sinha, "An Intelligent Web-Based Voice Chat Bot", Proceedings of the IEEE International Conference, 2009.
- 7. K. S. Harikrishnan and Daniel Glad Stephen. "Hospital/Home Medical Assistant Robot",3rd International Conference on Advances in Mechanical Engineering (ICAME), 2020.
- 8. Lio-A Personal Robot Assistant for Human-Robot, "Interaction and Care Applications", IEEE Robotics and Automation Letters, 2020.
- Md. Anowar Hossain, Md Ebrahim Hossain, Md. Jashim Uddin Qureshi, Md. Abu Sayeed, Md. Azim Uddin, Umme Afifa Jinan, Md. Azad Hossain, "Design and Implementation of an IoT Based Medical Assistant Robot (AidoBot)", IEEE International Women in Engineering (WIE) Conference on Electrical and Computer Engineering (WIECON-ECE), 2020.
- 10. Robinson Jiménez-Moreno, Ricardo A. Castillo, "Deep learning speech recognition for residential assistant robot", IAES International Journal of Artificial Intelligence (IJ-AI), 2023.
- 11. Shyam Singh, Abhishek Vishwakarma, Priyanshu Shukla, Amrut Raote, Kashif Sheikh, "Healthcare Virtual Assistant", International Research Journal of Modernization in Engineering Technology and Science, 2021.
- 12. De La Torre, J. García-Zapirain, A. Méndez Zorrilla, "Designing a Robotic Assistant for Healthcare Applications". International Journal of Advanced Robotic Systems, 2015.
- 13. Kyungyong Chung and Roy C. Park, "Chatbot-based heathcare service with a knowledge base for cloud computing", Cluster Computing, 2024.
- 14. Ho Seok Ahn, Min Ho Lee, Bruce A. MacDonald, "Healthcare Robot Systems for a Hospital Environment: CareBot & ReceptionBot, 24th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), 2015.
- 15. Krishna Chaitan<mark>ya K</mark>odur, Maria Kyrarini, Kaustubh Rajpathak, Akilesh Rajavenkatanarayanan, Fillia Makedon, "Towards a Multi-purpose Robotic Nursing Assistant", Computer Science & Engineering Dept., University of Texas at Arlington, 2021.
- 16. Divya ,Indumathi, Ishwarya , Priyasankari , Kalpana Devi S, "A SelfDiagnosis Medical Chatbot using Artificial Intelligence", Journal of Web Development and Web Designing, 2018.
- 17. Mrs. Rashmi Dharwadkar, Dr. Mrs. Neeta A. Deshpande, "A Medical ChatBot", International Journal of Computer Trends and Technology (IJCTT), 2018.
- 18. Godson Michael D'silva1, Sanket Thakare, Sharddha More, and Jeril Kuriakose, "Real World Smart Chatbot for Customer Care using a Software as a Service (SaaS) Architecture", International conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), 2017.
- 19. Toshiharu Mukai, Shinya Hirano, Morio Yoshida, Hiromichi Nakashima, Shijie Guo and Yoshikazu Hayakawa, "Tactile-Based Motion Adjustment for the Nursing-Care Assistant Robot RIBA", International Conference on Robotics and Automation Shanghai International Conference Center, 2011.

20. Hiba Hussain1, Komal Aswani2, Mahima Gupta3, Dr. G.T.Thamp, "Implementation of Disease Prediction Chatbot and Report Analyzer using the Concepts of NLP, Machine Learning and OCR", International Conference on Robotics and Automation Shanghai International Conference Center, 2020.

