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Abstract: We present in this paper first a brief quantum dynamical reviews of some functionally important nano-structured
materials for quantum electronic devices. The energy quantization of nanostructures can be described by various quantum
mechanical methods like Schrodinger differential wave equation and other approaches in. terms of wave functions in complex
vector (Hilbert) space.

Further to understand the quantum behavior of electrons and other charge carriers including elementary excitations or Quasi
Particle (QP)and Collective Excitations (CE) in nanostructures, we need the best generalized accurate way to use the language
of quantum field theory (QFT) with Feynman Diagram (FD) for quantum electronic devices. To explain quantum confinement
effect (QCE) and other important quantum effects for nano quantum materials utilized for quantum electronic devices, QFT with
FD provides a very powerful tool for modelling nanostructured quantum materials in terms of relativistic quantum fields in
complex vector (Hilbert) Space. Actually, particles are minimum quantum of oscillations in the corresponding quantum fields
according to QFT. The quantum interactions among quantum particles are really the interactions among corresponding relativistic
quantum fields with the exchange of Quasi Particle (QP) and Collective Excitations (CE) within the regime of QFT with FD.
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l. INTRODUCTION

To understand the quantum dynamics of nano structures, we use common conventional methods of quantum mechanics like
Schrodinger differential wave equation or Heisenberg’s matrix method or Dirac’s Clifford (geometric) algebraic methods in Hilbert
Space. Symmetry effects and hence conservation principles (Noether’s theorem) are also very important in the systematic quantum
dynamical analysis of atoms, molecules, nano particles or nano composites. It is observed now in scientific research of nano-
quantum materials in such a stage that the individual electrons, atoms or molecule activating quantum mechanism [1] fall under
observation and sometimes the thrust on materials approaches the single electron or multi electron cloud, bosons, fermions, photons
or other elementary particles/quasi particles [2].

Quantum electronics or spinotronics devices with quantum nano-materials are on the basis of energy transfer in terms of spin current
instead of conducted electronic current which promotes fundamental new avenues for applying these nano objects into nano electro-
mechanical system, nano resonators, nano motors, nano thermal sensors, microprocessors, memory cards as in quantum computers,
sensors. Spinotronics also helps in miniaturization (ULSI) of integrated circuits (IC) for quantum computers minimizing heat
dissipation effect for extended “Coherence’’, for example, Jos generation of Josephson neurons and synapses are practically possible
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via Josephson contacts with tunable critical current, hybrid superconductor ferromagnetic structures. Such tunable non-linear circuit
elements with memory can be created [3].

The most dominating factor is experiments and direct work with new quantum nano-materials. But technical utilization and
optimization for improved quantum nano-electronic devices need theoretical research methodology.

1. CHARACTERISTICS OF MODELING NANO STRUCTURED MATERIALS USING NON-QFT QUANTUM MECHANICAL
METHODS.

Here we will briefly discuss some important conventional quantum mechanical methods and related good approximation models
for the structures and properties of nano materials [4]. We start with Schrodinger differential time dependent wave equations to
explain atomic and electronic structure, dynamics and properties of nano systems. For the exact solution of it is simplified by
adiabatic approximation or Born-Oppenheimer approximation [5] with Hamiltonian including spin state. Further simplified
approach was given by Hartee-Fock approximation [6], considering electrons move in an average field gradually refined.

The following matrix determinant is obtained for multi-electron wave function as:
— — — 1 —
Y(r,,S; o, Tyer Spe £) = ﬁdet[‘}'i(?,’, 39 ] (1)

Wherer = radius vectors; s = spin vectors; Ne = Total number of electrons.

The first in the Density Functional Theory (DFT) group is Thomas-Fermi Theory [7] with weakly interacting particles as almost
all characteristics of nano system is determined by its electron density. Kohn- Sham [8] proposed more advanced approach by
elaborating the Hohenberg-Kohnfunctional FHK as

Fu [ (2)] = 7 0 ()] + 30 S st () @

Where, Ts=Kinetic energy; Exc = Exchange co-relational contribution to energy.

The more accurate exchange correlation energy is given by Meta Generalized Gradient Approximation (MGGA) [7]. Further
accurate quantum dynamical methods like Born-Oppenheimer Molecular Dynamics (BOMD)[8] or Car-Parrinello Molecular
Dynamics (CPMD)-[9] are suitable for metals (conductors), semiconductors and di-electric nano system.

Some recent accurate approximation methods in this regard are Attached Plane Wave (APW), Atomic Sphere Approximation
(ASA), Vannier Functions (VF), base selection in the form of Muffin Tin Orbitals (MTO), Gaussian Orbitals (GO), Slater Type
Orbitals (STO) etc.

I1l. THEORETICAL MODELING OF NANO STRUCTURED MATERIALS USING QUANTUM FIELD THEORY (QFT) WITH FEYNMAN
DIAGRAM

“Fictitious bodies” or “quasi particles” or “renormalized particles” and Collective Excitations (CE).

To find the characteristic properties of QP or CE i.e., "effective mass”, “lifetime”, probability “amplitude” and “energy” of them in
the Many Body System (MBS), QFT (QED) introduces a physical parameter called “propagator” or “Greens function” which
describes and links all type of interaction in the nano system with accuracy in a universal way like one particle propagator two
particles (electron-hole)propagator, no particle propagator(vacuum amplitude) etc.[11].

Fig (1 and 2) below shows all the configuration of the particles and holes which maybe kicked up by the bare particles as it
propagates through many bodies nano-system at particular time tO(dashed line). We can use GR as retarded Green’s function
propagator for electron and GA as advanced green function propagator for hole.
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Now if we compare quasi-particle (QP) in Fig (1) then ever-changing cloud of particles and holes surrounding the bare particle
(BP) has converted it into quasi-particle (QP).

Why do we need QFT? To explain it let us consider Dirac’s relativistic quantum mechanical equation for electron (positron) as
this approach utilizes Clifford (Geometric) algebra in complex vector (Hilbert) space, convenient in terms of QFT for a nano-

system.[12].

Dirac’s equation in Lorentz Covariant (Tensor) form in natural units (i.e.=c=1) as

(—iy“a% — m) PEM) =0, 3)

Or in another equivalent form as:

(IBS+@T=m) YOR) = O @)

Where the terms have the usual meaning and a, 3, y are Dirac’s Matrices.

The equation (4) can be thought of as kind of “square root” of Klein-Gordon equation which gives quantum dynamics of bosons
(e.g.-photon) and follows Bose-Einstein quantum statistical mechanism like Fermi-Dirac Statistics restricted by Pauli ‘exclusion
principle. Therefore, in a relativistic theory, fluctuations of the vacuum energy (Casimir effect-experimentally verified) are to allow
the creation of particle-antiparticle pair electron-positron out of the vacuum to be seen how the multi particle interpretation is forced
upon us by relativistic invariance. Relativistic invariance forces the introduction of quantum field as when we insist in keeping
a single particle interpretation that we crash against causality violations.
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We consider Dirac four component spinors y (in 4D) as equivalent to two, two component Weyl right-handed chiral (helicity) and
left-handed chiral spinors u+ and u- (in 2D) respectively for parity invariance theory.

[N 0.5
The general solution to the Dirac’s equation withk® = w, = (|k|.|k| + m?) ", including creation and annihilation operators
btand b for particle (electron) respectively and dt&d for antiparticle (positron) respectively with positive energy solution u and
negetive energy solution v as

—~ > d3k — ~ = . o — ~y . T
V(%) = [ Gomgar Ze=t1/, [u(k, s)b(k s)e i@kt+ikZ 4 y(k s)dt(k,s)elwkt k] ................ (5)
With more accurate Hamiltonian: H:by removing divergent contribution with the normal order prescription is

—~ d3k —
:H:=Zszi1/zfm[mkbk ] ................................ (6)

Indicating four vector gauge potential (¢,4) with Lorentz invariant gauge fixing condition dyAvp= 0 anddvFw= 0, satisfies Klein-
Gordan quantum field equation for the boson (e.g., photon).

Lorentz invariant electrodynamics equation using four vector gauge potentialAu(¢,2\) and the anti-symmetric rank two field
strength tensor Fuv indicating Ausatisfies Klein-Gordan quantum field equation for the boson (e.g., photon), Ay can expanded
in the complete basis of the solution of Dirac’s spinor as

B3 = Tacer [ —om[e, (R )a(RA)e TR e, (ka)ar(ka)eMerifs] %

(2m)3x2K|

Where A=+1represents the helicity (polarization) of photon and €, (_12, ?\)as solution to the equation of motion. The Langrangian of
spin (1/2) field coupled (interaction) to electro-magnetism is written as

1 /(-
®qep= —; FF* + 1IJ(1\(“Du ) 11/ (8)
Where the terms have the usual meaning.

By plugging in quantized covariant Maxwell field equations into the Langrangian we find that interaction between fermion and
photon to be

%oep M= —eA YUY s ©))

With current density four vector in Dirac’s theory,j* = eyry*{s.

QED is a form of QFT based on the Abelian gauge symmetry of local unitary U (1) phase rotation. This interaction part of the action
S containing a relativistic “photon quantum field” and a “Spinor quantum field” and its Hermitian conjugate as

Sqep = [ d*X [~ 2 F¥ + G(iyHDy, — m)YeA Gy Pl v (10)

is shown in Feynman’s diagram Fig-(3), the vertex V.

Fig- (3) FD of interaction part of Poincare invariant action S
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Using Feynman rules, corresponding amplitude for contribution of each corresponding one can be calculated. The basic concept is,
each of its building blocks from the given diagram (vertices and external, internal lines) with associated contribution from the
corresponding diagram can be computed. As shown in fig. (4), the following correspondence for vertices and internal propagators
for QED in the Feynman gauge. The extra piece in the photon propagator is indicated by a change in gauge.

a —_ﬂ - (y”p—m+i£)6a; MMN\ v ‘%
B \
/ "
. —ieyp, (2m)*6“(p; + py +P3)
a

Fig- (4) FD of building blocks with propagators for QED

For renormalization of the charge to eliminate in finite terms the partial sum for QED which takes into account first correction of the
propagator of the virtual photon, exchanged due to vacuum polarization as shown in Fig-(4) with Corresponding expression where
the diagram between brackets is given by Fig- (5) With corresponding expression for the interaction Hamiltonian.

Hint=e [ d* XAy 0 20 Rl Sl (11)
s it | TS| et ®
N -"4\_.'“1’ 'ﬁ J“‘\;/—“,'\_, s L a ? T B L
S —pt+ie L N’ | pltie

Fig-(5) FD with expression for propagator expansion

By implementing gauge invariance and using standard techniques in the Computation of Feynman diagrams [13,14], the
polarization tensor TTuwv(q) defined in Fig-(5) the bracketed part can be written as (Setting scale dependent renormalization with
me=0)

TT@Z(@NU=GUAV) TI(G?) v (12)

Where the momentum q is the total momentum of the virtual electron- position pair by propagating photon in the intermediate
channel.
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In a nano-crystal system with quantum lattice oscillations (phonon) as MBS can be expressed as the sum of (i) an unperturbed part
describing a very primitive sort of collective excitation (CE) called “Einstein phonon” and (ii) a perturbation describing the
interactions among “Einstein phonon” quantum field. On accounting the interaction, the Einstein phonon becomes surrounded by

a cloud of other Einstein phonons; this dress it and converts it into an ordinary phonon as shown in Fig-(6). Hence the ordinary
phonon can be interpreted as a quasi-particle (QP) in quasi collective excitations (CE), Similar to quasi-Plasmon.

The renormalized Einstein phonon frequencies i.e. well-known phonon dispersion law is generated by calculating summation of
self-energy diagrams (Feynman) accurately to all orders with the pole of the resultant clothed propagator. By setting the quasi-
particle (QP) or collective excitations (CE) with the phonon, field theoretic path (QED or QFT) is utilized.[5].

The Bosonic operators akT and ak, yields Hamiltonian H as

A

H= Y)Wk (alt A+ %) ...................... (13)

Wk

With dispersion law, w = wg+/ (1 — cos kd) and ground state energy, E = Xk 5

Now using Dyson’s perturbating equation for evaluation of phonon propagator as shown in Fig-(7)

k ;i
ST,

(a) Expansion of Einstein phonon propagator

fhte @ vy o

(b)Dyson Equation (c) Irreducible Self energy expansion
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(d)Expansion of Einstein phonon propagator

Fig- (7)

Fig-(7) yields in (k,o) space (Fourier transformed) with free propagator DQ as

iD
iD (ko) = iD0[1+(iD0)(-ivk+i(iDO)Z(-ivk)2+ ---------- ]ﬁ ............................... (14)
With iDg for each line and — iv k for each wiggle, gives
2w
D (k.o)= 200 3 o (15)
a)z—a)oz[l—coskd] wz—wk2+2i5wk
And the final result
Wk
E=E, + Ylinked graphs = ¥, o wo[1 —coskd] =Xk (16)

In more complex nano-solid superconducting crystal system, then the net Hamiltonian is given by {with reference to FD in Fig-(8)}as

— o / Y

] N
AN — A /

e A + .

"‘/ | =T N —r TR

Combined Interaction Coulomb Interaction ele-phon-ele (Frohlich) Interaction

Fig- (8) FD of interaction mechanism in superconducting nano-crystal.

Hiranf=Hquasi—electrontHsheilded—coulomb*Hele—phon—elet*Hdressedphonon™ «----: 17)

h = i . BITB\ + L

WhereH gy gsi-electron=2k, 'k, aCk,o“Hdressedphonon=2kh‘”k( < E)-

Now, it is defined systematically a set of observable critical exponents, exponents of scaling laws that describe quantum
thermodynamic effect in the vicinity of the critical point. It can be shown, using Callan-Symanzik equation that all these exponents

can be reduced to two basic an anomalous dimension [15].

The above facts can be utilized for a comparative test with these important predictions of QFT to experimental results away from
the critical points, two-point correlation function G (x) should decay exponentially according to (<s(x)>#0)

With G(x)=<s(x)s(0)>; s(x)=spin field.
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We expect correlation length & should increase to infinity in terms of exponent as

The parameter t can point out to characteristic approach to critical point as

t:T—T(: ............
Tc
With T=any temperature; TC= critical temperature.

Power law decay is set for correlation function exactly at t=0. G(x)can be expressed in terms of exponent 1 by the formula

1

COO~mazm e (21)

Where d is the Euclidian space dimension.

The Langrangian strongly moves towards fixed points of the renormalization group in the field of long-range correlation. In
d<4, this is the Wilson-Fisher fixed points. Ind>4, it is the free field fixed points.

The specific heat capacity CH of the quantum thermodynamic nano-system at fixed external magnetic field, H =0 in terms of
exponent a as

Ordering sets in at t=0, the magnetization M at H=0 as t — 0 from below, M in terms of another exponents g and § as

M~|t|ﬁand M~ O S8 = SN T e T (23)

Equations (18-24) define a set of critical exponents’ «, 8, v, 8, v, n which can be measured experimentally for a variety of quantum
thermodynamical nano-systems.

The following tabular data (Table-1) gives the comparative theoretical value of critical exponents for both QFT and non-QFT
quantum mechanical framework and experimental values for statistical quantum nano-system [16].
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Table-1
Critical Exponent  |Non-QFT QFT Experimental  result | Statistical Nano
systems
QM Framework
Methods
y 1.230 1.241 1.240 Binary Liquid
v 0.632 0.630 0.625 Binary Liquid
N=1 a 0.103 0.110 0.113 Binary Liquid
System
B 0.329 0.325 0.325 Binary Liquid
n 0.032 0.020 0.016 Binary Liquid
y 1.320 1.316 1.315 Super Fluid He
N=2 v 0.674 0.670 0.672 Super Fluid He
System
a 0.010 -0.007 -0.013 Super Fluid He?
y 1.386 1.401 1.400 EuO,EuS(Ferromagne
tic)
v 0.711 0.705 0.700 RbNnF3(Antiferroma
gnetic)
N=3 a -0.111 -0.090 -0.011 EuO,EusS,
System RbNnF3
B 0.365 0.371 0.370 EuO,EuS
n 0.041 0.033 0.035 EuO,EuS

Where N= Number of fluctuating spin components/quantum thermodynamic variable components at the critical point.

IV. PRACTICAL APPLICATIONS OF NANOSTRUCTURED MATERIALS FOR QUANTUM ELECTRONIC DEVICES

© 2025 IJNRD | Volume 10, Issue 2 February 2025 | ISSN: 2456-4184 | INRD.ORG

There are wide range of applications for functional nanostructured materials in all types of energy efficient and cost-effective
electronic devices including quantum electronic devices (spinotronics) [11].
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2
We start with the estimate of effective mass of quasi-electron m* = :Z—E = 0.13m,, m, = electronic rest mass

K2
= 9.1x10" ‘31kg for CdSe/ZnS nano materials QD (quantum dot) material (Zero-dimensional nano-material) from

QFT or other QM theoretical prediction. For heterostructure or composite nano materials, effective mass is a tensor of rank two
* h?
Bmy" =g

9k; 0K

“QDLED” Light Emitting Diodes) of all color range with nano-materials In P, ZnSe, ZnS, GaN, CsPh(Br)3, CsPbl3, CdSe, CdS,
SiO2, PbS, Graphene oxide etc. QD solar cell with nanomaterial Si, ZnO, TiO2, Nb205 etc utilized for non-conventional energy
resources in remote areas and hybrid vehicles. Single electron (SE) quantum electronic devices like SE box, SET (transistor
Joscillators) in the regime of “Coulomb Blockade” with nano-materials Al, AIOX, CdSe, Ti, Si, SiO2 etc.

CNT (Carbon Nano Tube) a one-dimensional nano material and graphene sheet (2D material) for FET (Field Effect transistor) in
modern nano-electronic devices. In Micro-Electro-Mechanical-Systems (MEMS) and Nano-Electro-Mechanical systems (NEMS)
with nano materials Si, Au, Ni, Al, SiC, Ag, Polymer etc. In modern day applications of QD (0D) or QR(1D) or QS (2D) nano
materials also include medical imaging devices as in HDCT, CTMRI and in quantum computers, SQUID (Super Conducting
Quantum Interference Devices) etc.

V. CONCLUSION

We can design quantum nano-materials depending on the type of applications using QFT based analysis. QFT and other good
quantum mechanical methods undoubtedly occupy a key position in the study of “nano systems” characteristic properties. Various
modifications and assumptions are able to eliminate limitation of the quantum theoretical methods as well as reduce complexity
and dimensionality of solved problems by reducing the number of investigated object’s degrees of freedom.

As for example in calculating vacuum amplitude using QED (QFT) we took “flat space time” for relativistic quantum fields or is
to be replaced by “curved space time”

We need to apply more accurately to explore “quasi-particle—poisoning-protected topological quantum computation with Majorana
“Zero modes” using QFT with FD. In July 2021 a case of formation of “quantum time crystal” state (sixth state of matter) or 4D
quantum material in the quantum processor of Google’s” SYCAMORE 20 qubits quantum computers Were reported to exist. It
is a future research possibility to model such systems using QFT with FD for efficiency enhancement.
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