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Abstract: We present in this paper first a brief quantum dynamical reviews of some functionally important nano-structured 

materials for quantum electronic devices. The energy quantization of nanostructures can be described by various quantum 

mechanical methods like Schrodinger differential wave equation and other approaches in. terms of wave functions in complex 

vector (Hilbert) space. 

Further to understand the quantum behavior of electrons and other charge carriers including elementary excitations or Quasi 

Particle (QP)and Collective Excitations (CE) in nanostructures, we need the best generalized accurate way to use the language 

of quantum field theory (QFT) with Feynman Diagram (FD) for quantum electronic devices. To explain quantum confinement 

effect (QCE) and other important quantum effects for nano quantum materials utilized for quantum electronic devices, QFT with 

FD provides a very powerful tool for modelling nanostructured quantum materials in terms of relativistic quantum fields in 

complex vector (Hilbert) Space. Actually, particles are minimum quantum of oscillations in the corresponding quantum fields 

according to QFT. The quantum interactions among quantum particles are really the interactions among corresponding relativistic 

quantum fields with the exchange of Quasi Particle (QP) and Collective Excitations (CE) within the regime of QFT with FD. 

Keywords: Collective Excitations, Energy Quantization, Feynman diagrams, Hilbert space, Nano structures, Quantum Dynamics, 

Quasi particle, Quantum Field Theory, Quantum Oscillations, Quantum Confinement Effect, Relativistic Quantum Fields, Vector 
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I. INTRODUCTION 

 
To understand the quantum dynamics of nano structures, we use common conventional methods of quantum mechanics like 

Schrodinger differential wave equation or Heisenberg’s matrix method or Dirac’s Clifford (geometric) algebraic methods in Hilbert 

Space. Symmetry effects and hence conservation principles (Noether’s theorem) are also very important in the systematic quantum 
dynamical analysis of atoms, molecules, nano particles or nano composites. It is observed now in scientific research of nano-

quantum materials in such a stage that the individual electrons, atoms or molecule activating quantum mechanism [1] fall under 

observation and sometimes the thrust on materials approaches the single electron or multi electron cloud, bosons, fermions, photons 

or other elementary particles/quasi particles [2]. 

 

Quantum electronics or spinotronics devices with quantum nano-materials are on the basis of energy transfer in terms of spin current 

instead of conducted electronic current which promotes fundamental new avenues for applying these nano objects into nano electro-

mechanical system, nano resonators, nano motors, nano thermal sensors, microprocessors, memory cards as in quantum computers, 

sensors. Spinotronics also helps in miniaturization (ULSI) of integrated circuits (IC) for quantum computers minimizing heat 

dissipation effect for extended “Coherence’’, for example, Jos generation of Josephson neurons and synapses are practically possible 
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via Josephson contacts with tunable critical current, hybrid superconductor ferromagnetic structures. Such tunable non-linear circuit 
elements with memory can be created [3]. 

 

The most dominating factor is experiments and direct work with new quantum nano-materials. But technical utilization and 

optimization for improved quantum nano-electronic devices need theoretical research methodology. 

 

 

II. CHARACTERISTICS OF MODELING NANO STRUCTURED MATERIALS USING NON-QFT QUANTUM MECHANICAL 

METHODS. 

 
Here we will briefly discuss some important conventional quantum mechanical methods and related good approximation models 

for the structures and properties of nano materials [4]. We start with Schrodinger differential time dependent wave equations to 

explain atomic and electronic structure, dynamics and properties of nano systems. For the exact solution of it is simplified by 

adiabatic approximation or Born-Oppenheimer approximation [5] with Hamiltonian including spin state. Further simplified 

approach was given by Hartee-Fock approximation [6], considering electrons move in an average field gradually refined. 

 

The following matrix determinant is obtained for multi-electron wave function as: 

                       Ψ(r1⃗⃗  , s1⃗⃗⃗  … , rNe⃗⃗ ⃗⃗  ⃗, sNe⃗⃗ ⃗⃗ ⃗  t) =
1 

√Ne!
det[Ψi(rj⃗⃗ , sj⃗⃗ )]..............................(1) 

Wherer = radius vectors;  s = spin vectors; Ne = Total number of electrons. 

The first in the Density Functional Theory (DFT) group is Thomas-Fermi Theory [7] with weakly interacting particles as almost 

all characteristics of nano system is determined by its electron density. Kohn- Sham [8] proposed more advanced approach by 

elaborating the Hohenberg-Kohnfunctional FHK as 

                     𝐹𝐻𝐾 [𝑛 (
𝑟
→)] = 𝑇𝑆 [𝑛 (

𝑟
→)] +

1

2
∬
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→)𝑛(

𝑟′
→ )
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𝑟′
→ −
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→|
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𝑟
→d

𝑟′
→+𝐸𝑋𝐶 [𝑛 (

𝑟
→)]……………………..(2) 

Where, Ts=Kinetic energy; Exc = Exchange co-relational contribution to energy. 

The more accurate exchange correlation energy is given by Meta Generalized Gradient Approximation (MGGA) [7]. Further 

accurate quantum dynamical methods like Born-Oppenheimer Molecular Dynamics (BOMD)[8] or Car-Parrinello Molecular 

Dynamics (CPMD)-[9] are suitable for metals (conductors), semiconductors and di-electric nano system. 

Some recent accurate approximation methods in this regard are Attached Plane Wave (APW), Atomic Sphere Approximation 

(ASA), Vannier Functions (VF), base selection in the form of Muffin Tin Orbitals (MTO), Gaussian Orbitals (GO), Slater Type 

Orbitals (STO) etc. 

 

III. THEORETICAL MODELING OF NANO STRUCTURED MATERIALS USING QUANTUM FIELD THEORY (QFT) WITH FEYNMAN 

DIAGRAM 

  

“Fictitious bodies” or “quasi particles” or “renormalized particles” and Collective Excitations (CE). 

 

To find the characteristic properties of QP or CE i.e., ”effective mass”, “lifetime”, probability “amplitude” and “energy” of them in 

the Many Body System (MBS), QFT (QED) introduces a physical parameter called “propagator” or “Greens function” which 

describes and links all type of interaction in the nano system with accuracy in a universal way like one particle propagator two 

particles (electron-hole)propagator, no particle propagator(vacuum amplitude) etc.[11]. 

 

Fig (1 and 2) below shows all the configuration of the particles and holes which maybe kicked up by the bare particles as it 

propagates through many bodies nano-system at particular time t0(dashed line). We can use GR as retarded Green’s function 
propagator for electron and GA as advanced green function propagator for hole. 
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Fig-(2) 

Now if we compare quasi-particle (QP) in Fig (1) then ever-changing cloud of particles and holes surrounding the bare particle 

(BP) has converted it into quasi-particle (QP). 

Why do we need QFT? To explain it let us consider Dirac’s relativistic quantum mechanical equation for electron (positron) as 

this approach utilizes Clifford (Geometric) algebra in complex vector (Hilbert) space, convenient in terms of QFT for a nano-

system.[12]. 

Dirac’s equation in Lorentz Covariant (Tensor) form in natural units (i.e.=c=1) as 

(−iγμ
∂

∂xμ
−m)ψ(xμ) = 0................(3) 

Or in another equivalent form as: 

         (iβ
d

dt
+ α⃗⃗ . ∇⃗⃗ − m)ψ(t, x⃗ ) = 0..........................(4) 

Where the terms have the usual meaning and α, β, γ are Dirac’s Matrices. 

The equation ( 4) can be thought of as kind of “square root” of Klein-Gordon equation which gives quantum dynamics of bosons 

(e.g.-photon) and follows Bose-Einstein quantum statistical mechanism like Fermi-Dirac Statistics restricted by Pauli ‘exclusion 

principle. Therefore, in a relativistic theory, fluctuations of the vacuum energy (Casimir effect-experimentally verified) are to allow 

the creation of particle-antiparticle pair electron-positron out of the vacuum to be seen how the multi particle interpretation is forced 

upon us by relativistic invariance. Relativistic invariance forces the introduction of quantum field as when we insist in keeping 

a single particle interpretation that we crash against causality violations. 

Bare 

Particle 

One particle+ 

one hole 

Two particles+ 

one holes 

Three particles+ 

Two holes 

Fig-(1) 
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We consider Dirac four component spinors ψ (in 4D) as equivalent to two, two component Weyl right-handed chiral (helicity) and 

left-handed chiral spinors u+ and u- (in 2D) respectively for parity invariance theory. 

The general solution to the Dirac’s equation withk0 = ωk = (|k⃗ |. |k⃗ | + m
2)
0.5

, including creation and annihilation operators 

b̂†and b̂ for particle (electron) respectively and d̂†&d̂ for antiparticle (positron) respectively with positive energy solution u and 

negetive energy solution v as 

ψ̂(t, x⃗ ) = ∫
d3k

(2π)3×2ωk
∑ [u(k⃗ , s)b̂(k⃗ , s)e−iωk .t+ik⃗⃗ .x⃗ + v(k⃗ , s)d̂†(k⃗ , s)eiωk .t−ik⃗⃗ .x⃗ ]s=±1 2⁄

................(5) 

With more accurate Hamiltonian: Ĥ:by removing divergent contribution with the normal order prescription is 

: Ĥ: = ∑ ∫
d3k

(2π)3×2ωk
[ωkbk̂ …… . . ]s=±1 2⁄

 ................................(6) 

Indicating four vector gauge potential (ϕ, A→) with Lorentz invariant gauge fixing condition ∂𝑣𝐴𝑣= 0 𝑎𝑛𝑑∂𝑣𝐹𝜇𝑣= 0, 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 Klein-

Gordan quantum field equation for the boson (e.g., photon). 

Lorentz invariant electrodynamics equation using four vector gauge potential𝐴𝜇(ϕ, A→) and   the   anti-symmetric   rank   two   field   

strength   tensor   F𝜇𝜈 indicating 𝐴𝜇satisfies Klein-Gordan quantum field equation for the boson (e.g., photon), 𝐴𝜇 can expanded 

in the complete basis of the solution of Dirac’s spinor as 

Aμ̂(t, x⃗ ) = ∑ ∫
d3k

(2π)3×2|k⃗⃗ |
[∈μ (k⃗ , λ)â(k⃗ , λ)e

−i|k⃗⃗ |.t+ik⃗⃗ .x⃗ +∈μ (k⃗ , λ)â
†(k⃗ , λ)e−i|k⃗⃗ |.t+ik⃗⃗ .x⃗ ]λ=±1  ..............(7) 

Where λ=±1represents the helicity (polarization) of photon and ∈μ (k⃗ , λ)as solution to the equation of motion. The Langrangian of 

spin (1/2) field coupled (interaction) to electro-magnetism is written as 

  ∝QED= −
1

4
FμνF

μν + ψ̅(iγμDμ−m)ψ ...........................(8) 

Where the terms have the usual meaning. 

By plugging in quantized covariant Maxwell field equations into the Langrangian we find that interaction between fermion and 

photon to be 

         ∝QED
(int)= −eAμψ̅γ

μψ ............................(9) 

With current density four vector in Dirac’s theory,jμ = eψ̅γμψ. 

QED is a form of QFT based on the Abelian gauge symmetry of local unitary U (1) phase rotation. This interaction part of the action 

S containing a relativistic “photon quantum field” and a “Spinor quantum field” and its Hermitian conjugate as 

    SQED = ∫d
4x [−

1

4
FμνF

μν + ψ̅(iγμDμ−m)ψeAμψ̅γ
μψ]....................(10)  

is shown in Feynman’s diagram Fig-(3), the vertex V. 

 

                                        Fig- (3) FD of interaction part of Poincare invariant action S  
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Using Feynman rules, corresponding amplitude for contribution of each corresponding one can be calculated. The basic concept is, 
each of its building blocks from the given diagram (vertices and external, internal lines) with associated contribution from the 

corresponding diagram can be computed. As shown in fig. (4), the following correspondence for vertices and internal propagators 

for QED in the Feynman gauge. The extra piece in the photon propagator is indicated by a change in gauge. 

    (
i

γμp−m+iε
)
βα

;      
iημν

p2+iε
 

 

 

     −ieγβα
μ (2π)4δ(4)(p1 + p2 + p3) 

 

                              Fig- (4) FD of building blocks with propagators for QED  

 

For renormalization of the charge to eliminate in finite terms the partial sum for QED which takes into account first correction of the 

propagator of the virtual photon, exchanged due to vacuum polarization as shown in Fig-(4) with Corresponding expression where 

the diagram between brackets is given by Fig- (5) With corresponding expression for the interaction Hamiltonian. 

 

Hint = e ∫d
4
xAμψ γμψ ………(11) 

 

                                                

                                                 Fig-(5) FD with expression for propagator expansion  

By implementing gauge invariance and using standard techniques in the Computation of Feynman diagrams [13,14], the 

polarization tensor ∏𝜇𝑣(q) defined in Fig-(5) the bracketed part can be written as (Setting scale dependent renormalization with 

me=0)   

∏(q)=(𝑞2𝜂𝜇𝑣−𝑞𝜇𝑞𝑣) ∏(𝑞2) ..................................................................................................................... (12) 

Where the momentum q is the total momentum of the virtual electron- position pair by propagating photon in the intermediate 

channel. 

 

 

 

 

 

𝜈 

𝝁

𝛽 

𝛼 
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                                                          Fig– (6) Formation of quasi-Einstein phonon 

In a nano-crystal system with quantum lattice oscillations (phonon) as MBS can be expressed as the sum of (i) an unperturbed part 

describing a very primitive sort of collective excitation (CE) called “Einstein phonon” and (ii) a perturbation describing the 

interactions among “Einstein phonon” quantum field. On accounting the interaction, the Einstein phonon becomes surrounded by 

a cloud of other Einstein phonons; this dress it and converts it into an ordinary phonon as shown in Fig-(6). Hence the ordinary 

phonon can be interpreted as a quasi-particle (QP) in quasi collective excitations (CE), Similar to quasi-Plasmon. 

The renormalized Einstein phonon frequencies i.e. well-known phonon dispersion law is generated by calculating summation of 

self-energy diagrams (Feynman) accurately to all orders with the pole of the resultant clothed propagator. By setting the quasi-

particle (QP) or collective excitations (CE) with the phonon, field theoretic path (QED or QFT) is utilized.[5]. 

The Bosonic operators âk
† and âk, yields Hamiltonian H as 

H = ∑ ωk (âk
†
⋅ âk +

1

2)k ...................... (13) 

With dispersion law, ω = ω0√(1− coskd) and ground state energy, E = ∑
ωk

2k . 

Now using Dyson’s perturbating equation for evaluation of phonon propagator as shown in Fig-(7) 

                                                 

                                                           (a) Expansion of Einstein phonon propagator 

 

 
 

 

 (b)Dyson Equation (c) Irreducible Self energy expansion 
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                                                    (d)Expansion of Einstein phonon propagator 

 

                                                                                 Fig– (7) 

 

                         Fig-(7) yields in (k,ω) space (Fourier transformed) with free propagator 𝐷0 as 

iD (k,ω) = i𝐷0[1+(i𝐷0)(-i𝑣𝑘+i(i𝐷0)2(-i𝑣𝑘)2+……….]=
iD0

1−D0Vk
                                                     ...............................(14)  

With i𝐷0 for each line and – i𝑣 𝑘 for each wiggle, gives 

D (k,ω)= 2𝜔0 ≃ 
2𝜔0                                         ……………….

(15) 

𝜔2−𝜔02[1−𝑐𝑜𝑠𝑘𝑑] 𝜔2−𝜔𝑘2+2𝑖𝛿𝜔𝑘 

And the final result 

E = E0 + ∑ linked graphs = ∑ ω0[1 − cos kd]k>0 = ∑
ωk

2k                                                       .......................(16) 

In more complex nano-solid superconducting  crystal system, then the net Hamiltonian is given by {with reference to FD in Fig-(8)}as 

       

                                      Fig– (8) FD of interaction mechanism in superconducting nano-crystal. 

 

𝐻𝑡𝑟𝑎𝑛𝑓=𝐻𝑞𝑢𝑎𝑠𝑖−𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛+𝐻𝑠ℎ𝑒𝑖𝑙𝑑𝑒𝑑−𝑐𝑜𝑢𝑙𝑜𝑚𝑏+𝐻𝑒𝑙𝑒−𝑝ℎ𝑜𝑛−𝑒𝑙𝑒+𝐻𝑑𝑟𝑒𝑠𝑠𝑒𝑑𝑝ℎ𝑜𝑛𝑜𝑛+ ..............(17) 

Where𝐻𝑞𝑢𝑎𝑠𝑖−𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛=∑𝑘,
 †
𝑘, 𝜎𝐶𝑘,𝜎;𝐻𝑑𝑟𝑒𝑠𝑠𝑒𝑑𝑝ℎ𝑜𝑛𝑜𝑛=∑kℏωk (

Bk̂
†
Bk̂ +

1

2). 

Now, it is defined systematically a set of observable critical exponents, exponents of scaling laws that describe quantum 

thermodynamic effect in the vicinity of the critical point. It can be shown, using Callan-Symanzik equation that all these exponents 

can be reduced to two basic   an anomalous dimension [15]. 

The above facts can be utilized for a comparative test with these important predictions of QFT to experimental results away from 

the critical points, two-point correlation function G (x) should decay exponentially according to (<s(x)>≠0) 

 

G(x)~𝑒
− |x| ................................................................................................... 

(18) 

With G(x)=<s(x)s(0)>; s(x)=spin field. 
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We expect correlation length ξ should increase to infinity in terms of exponent as 

ξ~|t|-ν ................................................................................................................................. (19) 

 

The parameter t can point out to characteristic approach to critical point as 

 

t=
𝑇−𝑇𝑐 …………(20) 

     𝑇𝐶 

With T=any temperature; TC= critical temperature. 

Power law decay is set for correlation function exactly at t=0. G(x)can be expressed in terms of exponent η by the formula 

G(x)~
1

|x|d−2+η
 ……….(21) 

Where d is the Euclidian space dimension. 

The Langrangian strongly moves towards fixed points of the renormalization group in the field of long-range correlation. In 

d<4, this is the Wilson-Fisher fixed points. Ind≥4, it is the free field fixed points. 

The specific heat capacity CH of the quantum thermodynamic nano-system at fixed external magnetic field, H =0 in terms of 

exponent 𝛼 as 

CH~|𝑡|−𝛼................................................................................................................................ (22) 

Ordering sets in at t=0, the magnetization M at H=0 as 𝑡 → 0 from below, M in terms of another exponents 𝛽 𝑎𝑛𝑑 𝛿 as 

M~|𝑡|𝛽and M~𝐻𝛿 .............................................................................................................................. (23) 

Finally, the magnetic susceptibility χ diverges at critical point, the divergence is in terms of exponent 𝛾 as 

 

Χ~|𝑡|−𝛾................................................................................................................................................... (24) 

Equations (18-24) define a set of critical exponents’ 𝛼, 𝛽, 𝛾, 𝛿, 𝜈, 𝜂 which can be measured experimentally for a variety of quantum 

thermodynamical nano-systems. 

The following tabular data (Table-1) gives the comparative theoretical value of critical exponents for both QFT and non-QFT 

quantum mechanical framework and experimental values for statistical quantum nano-system [16]. 
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                                                                                     Table-1 

Critical Exponent Non-QFT 

QM 

Methods 

QFT 

Framework 

Experimental      result Statistical Nano 

systems 

 𝛾 1.230 1.241 1.240 Binary Liquid 

 𝜈 0.632 0.630 0.625 Binary Liquid 

N=1 

System 

𝛼 0.103 0.110 0.113 Binary Liquid 

 𝛽 0.329 0.325 0.325 Binary Liquid 

 𝜂 0.032 0.020 0.016 Binary Liquid 

 𝛾 1.320 1.316 1.315 Super Fluid 𝐻𝑒4 

N=2 

System 

𝜈 0.674 0.670 0.672 Super Fluid 𝐻𝑒4 

 𝛼 0.010 -0.007 -0.013 Super Fluid 𝐻𝑒4 

 𝛾 1.386 1.401 1.400 EuO,EuS(Ferromagne

tic) 

 𝜈 0.711 0.705 0.700 RbNn𝐹3(Antiferroma

gnetic) 

N=3 

System 

𝛼 -0.111 -0.090 -0.011 EuO,EuS, 

RbNn𝐹3 

 𝛽 0.365 0.371 0.370 EuO,EuS 

 𝜂 0.041 0.033 0.035 EuO,EuS 

Where N= Number of fluctuating spin components/quantum thermodynamic variable components at the critical point. 

IV. PRACTICAL APPLICATIONS OF NANOSTRUCTURED MATERIALS FOR QUANTUM ELECTRONIC DEVICES 

There are wide range of applications for functional nanostructured materials in all types of energy efficient and cost-effective 

electronic devices including quantum electronic devices (spinotronics) [11]. 

http://www.ijrti.org/
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We start with the estimate of effective mass of quasi-electron m∗ =
ℏ2

∂2E

∂k2

= 0.13me,me = electronic rest mass 

=  9.1× 10
_     _31kg for CdSe/ZnS nano materials QD (quantum dot) material (Zero-dimensional nano-material) from 

QFT or other QM theoretical prediction. For heterostructure or composite nano materials, effective mass is a tensor of rank two 

as mij
∗ =

ℏ2

∂2E

∂ki ∂kj

. 

“QDLED” Light Emitting Diodes) of all color range with nano-materials In P, ZnSe, ZnS, GaN, CsPb(Br)3, CsPbI3, CdSe, CdS, 

SiO2, PbS, Graphene oxide etc. QD solar cell with nanomaterial Si, ZnO, TiO2, Nb2O5 etc utilized for non-conventional energy 

resources in remote areas and hybrid vehicles. Single electron (SE) quantum electronic devices like SE box, SET (transistor 

/oscillators) in the regime of “Coulomb Blockade” with nano-materials Al, AlOX, CdSe, Ti, Si, SiO2 etc. 

 

CNT (Carbon Nano Tube) a one-dimensional nano material and graphene sheet (2D material) for FET (Field Effect transistor) in 

modern nano-electronic devices. In Micro-Electro-Mechanical-Systems (MEMS) and Nano-Electro-Mechanical systems (NEMS) 

with nano materials Si, Au, Ni, Al, SiC, Ag, Polymer etc. In modern day applications of QD (0D) or QR(1D) or QS (2D) nano 

materials also include medical imaging devices as in HDCT, CTMRI and in quantum computers, SQUID (Super Conducting 

Quantum Interference Devices) etc. 

 

V. CONCLUSION 

We can design quantum nano-materials depending on the type of applications using QFT based analysis. QFT and other good 

quantum mechanical methods undoubtedly occupy a key position in the study of “nano systems” characteristic properties. Various 

modifications and assumptions are able to eliminate limitation of the quantum theoretical methods as well as reduce complexity 

and dimensionality of solved problems by reducing the   number of investigated object’s degrees of freedom. 

As for example in calculating vacuum amplitude using QED (QFT) we took “flat space time” for relativistic quantum fields or is 

to be replaced by “curved space time” 

We need to apply more accurately to explore “quasi-particle–poisoning-protected topological quantum computation with Majorana 

“Zero modes” using QFT with FD. In July 2021 a case of formation of “quantum time crystal” state (sixth state of matter) or 4D 

quantum material in the quantum processor of Google’s” SYCAMORE ”20 qubits quantum computers were reported to exist. It 

is a future research possibility to model such systems using QFT with FD for efficiency enhancement. 
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