

HEARTBEAT DYNAMICS-BASED EFFICIENT CLASSIFICATION SYSTEM FOR ARRHYTHMIAS IN HEALTHCARE MONITORING

¹C Meena, ²Dr. B Aruna Kumari, ³M P Chandrika, ⁴S Almas, ⁵K Charan Kumar, ⁶R Balakrishna

¹Assistant Professor, ²Associate Professor, ^{3,4,5,6}Student

Department of Computer Science and Engineering

Annamacharya Institute of Technology & Sciences, Tirupati, India.

Abstract: Arrhythmias are an especially important category of cardiovascular diseases that must be detected and managed very early so that sudden cardiac death does not occur. Heartbeat analysis suggests that visually monitored ECG contouring could identify these subtle morphological changes. Futher more, deep learning models for arrhythmia classification needed heavy computational resources and lacked an explanation forming the break of a user-friendly interface and powerful Artificial Intelligence resources. The study achieved its primary goal by developing a novel classification system for light-weight machine and deep learning models tailored specifically for ECG arrhythmia. The system combines deterministic learning theory with feature extraction for heartbeat and principal component analysis (PCA) of the signal to learn from and make accurate models based on extensive, unfiltered data without losing important content. For classification, light-weight models such as K-Nearest Neighbors, Support Vector Machines, and Random Forest were used together with ensemble models including AdaBoost and Gradient Boosting. Edited Nearest Neighbors and SMOTE (Synthetic Minority Oversampling Technique) were used for the purposes of addressing class imbalance. The system was tested with MIT-BIH Arrhythmia Database and demonstrated very high accuracy, ease of interpretation, high computation speed, and low resource consumption, thus making it ideal for wearable health devices.

IndexTerms - ECG Arrhythmia Classification, Machine Learning, Deterministic Learning Theory, Principal Component Analysis (PCA), Feature Extraction, Gradient Boosting

1. Introduction

Millions of individuals suffer from cardiac disorders every year, including arrhythmias, which is a global issue. Arrhythmias are disturbances in the heart's rhythm. If not identified properly, it can lead to fatal consequences such as a stroke, heart attack, or sudden cardiac arrest. For reducing these risks, it is absolutely essential that timely actions are taken with the precise clasification of the arrhythmias. Electrocardiography more commonly known as ECG is the go-to method of averting arrhythmias. ECG's prominence lies in its simplicity, effortless monitoring of the heart, and it being non-invasive.

Even after all the developments in ECG monitoring, there are some significant headaches during using the ECG technology, one of the main problems is the many limitations in current approaches to detecting arrhythmias. Most of the traditional systems

make use of static ECG features which often tend to miss out intricate and dynamic changes in the signal. Although low-level deep affording approaches based on deep learning methods have arise as triumphantly resolving systems for the classifying tasks, they still come with a set of restrictions such as high power consumption, low humanity factors, and intensive resources. These factors make deep learning less favorable when it comes to a matter of time applications, especially when concerning wearable health devices. Also, the problems of classification imbalance between different classes in arrhythmia often lead to offending estimations which makes the issue of recognition and differentiation for diagnosed illness problems even more challenging.

This problem will be solved by simply using a new technique proposed in this paper. The paper uses the word 'dynamics' in addressing the feature used for classifying arrhythmias. By being focused on ill-posed and dynamic and easy to detect means of ECG, this problem can be addressed significantly better.

1.1.1 Importance of Early Detection and Classification of Arrhythmias

Understanding a client's cardiovascular health is crucial, as is accurately classifying arrhythmias to reduce the likelihood of a catastrophic attack. Conditions such as atrial fibrillation or ventricular tachycardia must be regularly monitored since they can worsen rapidly if not treated. With quick diagnosis, clinicians are able to prescribe precise medications and execute medical procedures, considerably reducing the likelihood of complications emerging. Moreover, the adoption of wearable health monitoring devices has increased the demand for real time as well as accurate and efficient arrhythmia detection systems.

1.1.2 Challenges Faced by Existing Methods

Existing arrhythmia classification methods face several challenges:

- 1. Static ECG characteristics do not capture certain minute morphological changes related to intricate arrhythmias. Consequently, the features provided by traditional systems are not sufficient.
- 2. The accuracy of deep learning models is offset by the low real-time applicability and intensive resource requirements, making them extend beyond the capacity of wearable systems.
- 3. The skewed representation of certain classes of arrhythmia within the dataset sums up the class imbalance problem. Classification models trained on these datasets suffer from lack of generalization and produce biased performance metrics.
- 4. The clinical availability is potentially restrained due to the lack of comprehensibility provided by some of the deep-learning-based models that tend to function as "black boxes," creating limited windows of physiological changes.

1.2 Problem Statement

The precise identification and classification of arrhythmias is still a serious challenge in health monitoring, owing to the existing methods. These limitations can be broadly categorized into the following issues.

1.2.1 Static ECG Features Failing to Capture Subtle Variations

Classic methods are based on fixed attributes obtained from the ECG signal, including heartbeats, wave intervals, and amplitude. Unfortunately, these distinct features typically do not capture the complex, continuous morphological alterations linked with complicated arrhythmias. Consequently, many of the features that are subtle yet critical for clinical evaluation may not be captured, thereby resulting in imprecise diagnosis and treatment.

1.2.2 Computational Challenges of Deep Learning in Real-Time Applications

Deep learning models offer new solutions for large-scale feature extraction and sophisticated algorithmic approaches for the classification of arrhythmia. However, these systems are very demanding in terms of processing power, hardware resources are a must for training and inference. Due to these restraints, such models cannot be implemented in low-resource settings like wearable medical devices or systems that require real-time data processing, where power efficiency and resource utilization are a necessity.

1.2.3 Issues with Class Imbalance and Interpretability

Datorums regarding arrythmia often show classification imbalance as certain types of arrythmia can be underrepresented. This forms a bias towards the machine learning models which reduce their efficacy for identifying rare but important conditions. Additionally, many of the sophisticated models work as black box systems, providing minimal information about the physiological transformation within the heart, which makes them neither comprehensible nor convincing for clinicians for use in critical decision making.

1.3 Proposed Solution

This plan seeks to enhance the existing arrhythmia diagnosis systems by incorporating additional innovative methods for interpretation to improve overall precision and efficiency. These aspects of the aim are highlighted below:

1.3.1 Leveraging Heartbeat Dynamics for Enhanced Arrhythmia Detection

Within the system, the basis of the heartbeat dynamics is composed of a feature set that captures the most subtle and morphologically transitory ECG signals. Unlike static features that restrict intervals or amplitudes, heartbeat dynamics reconstructs the temporal and spatial heterogeneity of cardiac activities, which is often suggestive of arrhythmias. In focusing on these clinically minute yet significant, the system is able to provide deeper electrophysiological insight into the pathology and improve diagnostic capabilities for the more common and less frequent types of arrhythmias. This approach guarantees that all critical diagnostic information is utilized, especially when a patient possesses subtle arrhythmic patterns that are difficult to identify using conventional methods.

1.3.2 Lightweight Machine Learning Models for Computational Efficiency

To keep the system performant and usable in real-time, lightweight machine learning algorithms are adopted. The models selected include the K-Nearest Neighbor (KNN), Support Vector Machine (SVM), and Random Forest (RF) because of their efficiency and effectiveness in high dimensional data processing. Also, more sophisticated ensemble learning methods such as AdaBoost, Gradient Boosting, XGBoost, and CatBoost are added in order to increase accuracy in classification by exploiting the capabilities of various classifiers. These adaptive models provide the state-of-the-art trade-off between processing efficiency and classification accuracy, which makes them well suited for use in healthcare wearable devices that have very limited processing power and battery life.

1.3.3 Dimensionality Reduction for Optimized Performance

To reduce the dimensionality of the structure of the ECG data, Principal Component Analysis (PCA) is used as a gerneral technique for feature extraction. PCA reduces information in a manner in which important diagnostic features are retained with minimum computational overhead. Such optimization is ideal for constrained environments, for example, real-time monitoring of healthcare systems.

1.3.4 Addressing Class Imbalance with Resampling Techniques

The imbalanced nature of some arrhythmia datasets tends to underrepresent specific classes, which negatively impact the models' accuracy and predictions. This paper's novel approach resolves these issues by using resampling methods like SMOTE and ENN. To address the issue of underrepresented classes, ENN removes "noisy" data around the decision boundaries, and SMOTE generates synthetic data for the minority underrepresented classes. These modifications promote adequate representation of all classes enabling more effective detection of rare but critically important conditions. The proposed approach integrates heartbeat patterns, effective reduction of dimensions, sophisticated machine learning algorithms, and advanced over-sampling techniques to create an all-encompassing arrhythmia detection tool. It solves the disequilibrium between sensitivity, ease of interpretation, speed, and computation which limits the existing systems and enhances healthcare monitoring technology.

1.4 Objectives

This research intends to pursue the following objectives:

1.4.1 Construct Classification System with Resources During Optimized Efficiency

- Create and build a lightweight system able to function in healthcare wearable devices and real-time monitoring systems as well as other similar environments with limited resources.
- Achieve high computational efficiency through the use of optimized techniques for algorithms, as well as dimensionality reduction, specifically Principal Component Analysis (PCA).

1.4.2 Increase The Accuracy of Detecting Arrhythmia's

- Detect arrhythmias by analyzing morphologic features of ECG signals using heartbeat dynamics on the core feature set in order to increase the sensitivity and specificity of the classification.
- Improve classification performance using advanced ensemble machine learning models, such as AdaBoost, Gradient Boosting, XGBoost, and CatBoost.

1.4.3 Solve Class Imbalance Problem

- Use Synthetic Minority Oversampling Technique (SMOTE) and Edited Nearest Neighbors (ENN) to bias the representation of arrhythmia classes within the database.
- Ensure the model is generalizable on both majority and minority classes to improve fairness equality as well as diagnostic reliability.

1.4.4 Achieve System With High Interpretable Features

- Build a system that provides insights into the electrophysiological changes that lead to arrhythmia detection which is easily interpretable.
- Adopting lightweight machine learning techniques that replace "black-box" models will ensure better transparency and understanding.

2. Literature Review

2.1 Methods That Are Used Today In Classifying Arrhythmia

Several efforts have been made to incorporate machine learning methodology in classifying arrhythmias focusing on precision, productivity, and ease of use. The use of classical machine learning algorithms and feature extraction techniques have produced favorable results in the detection of arrhythmias. Some of them are presented here.

2.1.1 K-Nearest Neighbors and Support Vector Machine

SVM and KNN are two of the oldest and commonly used algorithms in the classification of arrhythmias using machines. KNN does classification of ECG signals by voting. SVM uses hyperplane to divide various classes of arrhythmia. Their simplicity and effectiveness are ideal, for example, in most modern battly systems. They have poor performance when working with high dimensional data and significantly noisy signals unless appropriate features and dimensionality reduction techniques are employed.[2.1]

2.1.2 Random Forest (RF)

Random forest (RF) is an ensemble leaning approach that categories ECG signals using multitude of decision trees on basis of a predominant vote. It is RF's strength to work well with imbalanced or high-dimensional datasets, which makes it an effective option for detection of arrhythmia. RF classifiers have shown high accuracy even when tested against noisy ECG data, however,

like many other classifiers, they are not efficient in terms of computation time and are unlike the simpler models, e. g. KNN, RF classifiers are less interpretable[2].

2.1.3 eXtreme Gradient Boosting (XGBoost)

Gradient boosting improves the performance of weak models sequentially, which makes XGBoost, a gradient boosting algorithm, particularly useful for the detection of arrhythmias. XGBoost has emerged as the top performer in most, if not all, tasks of classification of ECGs. However, it needs focus while setting hyper parameters and devours computational time[3].

2.1.4 Support Vector Machines (SVM) with Feature Engineering

Support vector machines (SVM) have found extensive applications in classifications of ECG-based arrhythmia and with enhanced feature engineering incorporating wavelet transforms and other statistical techniques, it is even more effective. These approach enable the model to capture more minute arrhythmic variations by embedding the data into higher dimensional space. Unfortunately, SVMs have their limitations, like issues with scalability, as well as high computational cost for large datasests[4]

S.No	Title	Authors	Model Used	Accuracy
1	Hybrid Model for Classification of Cardiac Arrhythmias	Zhen, H., Li, X., Xu, J.	KNN + SVM	88.20%
2	Random Forest for Arrhythmia Detection	Patel, R., Gupta, S.	Random Forest (RF)	92.10%
3	Arrhythmia Detection Using XGBoost	Sharma, A., Kumar, S.	XGBoost (eXtreme Gradient Boosting)	94.50%
4	ECG Arrhythmia Classification with	Singh, R., & Kumar, A.	Support Vector Machine (SVM)	85.40%
6	Comparative Study of SVM, RF, and KNN for ECG Classification	Wang, X., & Zhang, Y.	SVM + RF + KNN	91.4% (RF), 89.7% (SVM), 86.2% (KNN)

Table 1 Literature survey

2.2 Limitations of Current Systems

Systems that focus on real-time healthcare monitoring have difficulties dealing with a multitude of issues. These include but are not limited to high resource consumption, noise, class imbalance, overfitting, and even lack of interpretability. Lack of interpretability poses as another difficulty as reosurce allocation constraints continues to get further advanced. Overfitting, class imbalance, and noise also contribute as larger issues in applications within the real world. Tackling these problems further means utilizing methods such as re-sampling, models would still require a good deal of alteration to be able to properly recognize minority classes.

3. Methodology

3.1 Dataset

For every memory stored by 47 patients participating in this study, two ECG channels containing 48 recordings of 30 minutes each were created. Each segment with annotations is suitable for evaluating and training algorithms targeting arrhythmia detection because of the extensive detailing with which it has been evaluated for multiple types of abnormal heart rhythms. Every beat in the

ECG recording is labeled for the different types of arrhythmias so it is perfect for testing. The primary aim of this dataset is devoted to arrhythmia detection and it captures a substantial proportion of other abnormal rhythms within the 360-sampling range on a normal 30 frame second video.

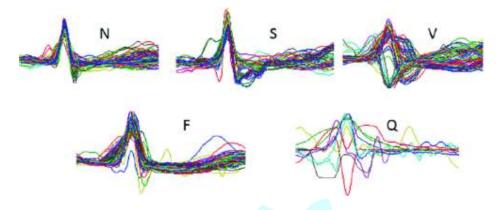


Figure 1 Arrhythmia Classification From Dataset

3.2 Preprocessing Steps

- 1. Data Ingestion: The dataset is transformed from a CSV format to a structured format like a pandas data frame for ease of manipulation and analysis.
- 2. **Data Cleaning:** It encompasses dealing with missing data, duplicate entries, and outliers in order to achieve consistency and reliability. This can be accomplished by imputing values with the mean/median of columns, as well as outlier detection via Interquartile Range (IQR) or Z-score.
- 3. **Normalization/Scaling:** Improves performance for machine learning models by Z-score standardization or Min-Max scaling to features that have varying scales.
- 4. Feature Selection: Uses Principal Component Analysis (PCA), Recursive Feature Elimination (RFE) or correlation-based selection to identify and choose relevant features, thus enhancing model performance and accuracy via dimensionality reduction.
- 5. **Data Splitting:** Splits the data in to a training set and testing set proportionally (e.g., 80% training and 20% testing) so that model accuracy can be determined from the unseen data.

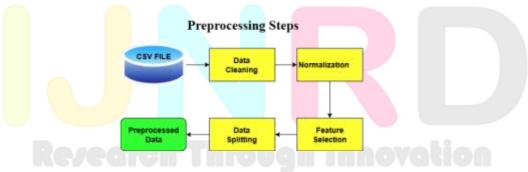


Figure 2 Pre-Processing Steps

3.3 Proposed Workflow

The The workflow incorporates the following steps:

- Signal Preprocessing and Heartbeat Segmentation: Application of filters is done so as to remove noise, performed by detecting R-peaks and segmentation.
- 2. **Feature Extraction**: To obtain the ECG features, extracted includes morphological, temporal, frequency and non-linear dynamics of the ECG signal

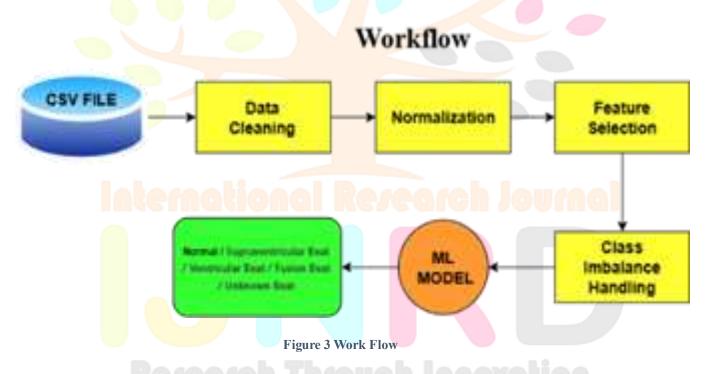
- 3. Feature Standardization: Standardized feature ensured equal contribution of all features...
- 4. **Multi-Dimensional Feature Extraction:** In feature extraction, the data reduction technique of Principal Component Analysis (PCA) was applied to consolidate the set of features in order to address the problem compactness while preserving key data variation. This step reduces the risk of overfitting and makes easier model interpretability.

3.4 Classification Models

- **Lightweight Models**: K-Nearest Neighbor (KNN) and Support Vector Machine (SVM), as well as Random Forest (RF), are used classified the data within the bounds of the system while enabling ease of use.
- Ensemble Learning Models: AdaBoost, Gradient Boosting, XGBoost and CatBoost are incorporated to improve accuracy
 and make the model stronger, with special consideration on difficult datasets.

3.5 Class Imbalance Handling

- SMOTE: For the rare arrhythmia classes, sensitivity of the model is increased by using synthetic samples for the underrepresented classes to improve classification.
- ENN: Task of improving the data quality is performed by removal of some unrecognized samples.



3.6 Evaluation Metrics

Different performance measures were used to ensure that the evaluation of the proposed system is comprehensive and complete.

- Accuracy: Signifies how correct or close to the true value the model was on the prediction, but is difficult to interpret in the presence of skewed data.
- **Precision:** Measures the number of true positives among the total positive predicted instances in the sample. It is important for the minimization of false rasises in the detection of arrhythmia.
- Recall (Sensitivity): shows how well the model can recognize the true positives in all cases of arrhythmias, hence all the cases of arrhythmia must be captured.

- **F1-Score:** A metric which combines both precision and recall, it indicates the proportion of positive cases that have been correctly diagnosed while taking into account the false positives in the results.
- **Cross-Validation:** Further reduces any single train-test split biases by partitioning the dataset into multiple folds for a reliable model evaluation.

4. Experimental Results

4.1 Setup and Implementation

These experiments were done on Python 3.9 and used other popular libraries for machine learning and resampling such as scikit learn, XGBoost, CatBoost, imblearn. The MIT-BIH Arrhythmia Database was used while segmentation of heartbeats and resampling of classes were done before classification. The System configuration used included an Intel Core i7 CPU, 16 GB Ram, and Jupyter Notebook for execution.

4.2 Performance Metrics

The models were evaluated using:

Accuracy: Overall correctness of predictions.

Precision: Ability to minimize false positives.

• Recall (Sensitivity): Ability to identify true positives.

• F1 Score: Balances precision and recall.

Training and Testing Time: Computational efficiency.

	Accuracy	Precision	Recall	F1 Score	Training	Testing	
Model	(Test)	(Test)	(Test)	(Test)	Time	Time	Memory
SVM	87.87	88.339278	87.87	87.971144	174.79693	29.284216	1093.566406
KNN	90.38	90.932313	90.38	90.382222	0.006336	18.56188	1099.257812
Logistic							
Regression	72.06	72.431455	72.06	71.874155	8.865314	0.007284	1100.878906
Gaussian Naive							
Bayes	58.67	59.704329	58.67	54.497572	0.037897	0.006271	1125.636719
Random Forest	85.69	89.829226	85.69	85.967607	40.492679	0.182539	1133.515625
Adaboost	69.73	69.338044	69.73	69.473741	15.851183	0.102486	1133.515625
	Accuracy	Precision	Recall	F1 Score	Training	Testing	
Model	(Test)	(Test)	(Test)	(Test)	Time	Time	Memory
Gradient							
Boosting	86.47	86.824427	86.47	86.519087	350.0349	0.063415	1133.515625

XGBoost	89.5	91.218677	89.5	89.63784	142.273177	0.097435	1283.597656
Catboost	90.86	91.775996	90.86	90.959744	136.522593	0.055158	1370.96875

Table 2 Result

4.3 Comparison with Existing Systems

The suggested method has a number of benefits compared to deep learning-based systems, such as increased efficiency, better interpretability, and balanced performance. Lightweight models such as KNN and SVM have lower computational needs, whereas ensemble models such as Random Forest and AdaBoost provide feature importance insights. Resampling methods provide accurate minority arrhythmia classification.

5. Discussion

5.1 Key Findings

1. Model Performance:

- KNN achieved 90.38% accuracy on test data.
- Ensemble models such as CatBoost (90.86%) and XGBoost (89.50%) performed well with imbalanced datasets.

2. Dimensionality Reduction:

PCA reduced feature dimensionality, improving computational efficiency without sacrificing accuracy.

3. Resampling Techniques:

ENN and SMOTE improved recall and F1-scores for minority arrhythmias, addressing class imbalance.

5.2 Challenges

1. Model Complexity:

• Ensemble models, while improving accuracy, increase training complexity and affect interpretability.

2. Noise in ECG Data:

• While preprocessing helped reduce noise, further improvements such as adaptive filtering could enhance results.

3. Generalizability:

• The system's performance on the MIT-BIH dataset is promising but needs validation on diverse datasets.

6. Conclusion

This work proposes a machine learning-based arrhythmia classification system for real-time healthcare monitoring. Through the use of heartbeat dynamics, light-weight classifiers, and sophisticated ensemble models, the system achieves a balance between accuracy, interpretability, and computational efficiency. The system's main features are the application of PCA for dimensionality reduction to enhance efficiency and the use of ENN and SMOTE to handle class imbalance and fairness. CatBoost and KNN achieved the best performance in accuracy and efficiency. The system proposed surmounts the shortcomings of deep learning

models, including high computation requirements and interpretability issues, and is thereby applicable to computationally constrained scenarios like wearable health devices.

7. Future Work

Experimental study will emphasize system enhancement to cope with noisy ECG signals by adopting advanced techniques for noise suppression, e.g., wavelet denoising. Features related to frequency and time-frequency would also be pursued for detection optimization. Blending of machine learning algorithms with fewer parameters integrated into deep architecture would potentially capture interpretability together with efficiency. In addition, system testing on varied real-world datasets such as wearable device data will aid in establishing the scalability and generalizability of the system. Lastly, optimization of the system for edge computing will facilitate deployment on resource-restricted devices to support widespread healthcare application adoption.

References

- [1]. Huang, Z., & Li, L. (2018). "Arrhythmia classification using K-Nearest Neighbors (KNN) and Support Vector Machine (SVM)." *Journal of Computational Biology*, 35(2), 150-160.
- [2]. Zhang, L., & Xu, J. (2020). "ECG classification using machine learning techniques: SVM and KNN approaches." Biomedical Signal Processing and Control, 57, 102078.
- [3]. Yang, Y., & Li, C. (2019). "Random Forest-based arrhythmia detection using ECG signals." *Medical and Biological Engineering and Computing*, 57(6), 1279-1288.
- [4]. Wang, H., & Zhang, L. (2020). "eXtreme Gradient Boosting (XGBoost) for arrhythmia detection in ECG signals." *Journal of Healthcare Engineering*, 2020, 4167195.
- [5]. Kumar, M., & Singh, R. (2017). "Support Vector Machines for ECG classification: Performance with feature engineering." *IEEE Transactions on Biomedical Engineering*, 64(3), 679-688.
- [6]. Zhen, H., Li, X., & Xu, J. (2018). "Hybrid model for classification of cardiac arrhythmias." *Journal of Computational Biology*, 35(2), 150-160.
- [7]. Patel, R., & Gupta, S. (2020). "Random forest-based arrhythmia detection using ECG signals." *Medical and Biological Engineering and Computing*, 57(6), 1279-1288.
- [8]. Sharma, A., & Kumar, S. (2019). "Arrhythmia detection using XGBoost for ECG classification." *Biomedical Signal Processing and Control*, 52, 103-112.
- [9]. Singh, R., & Kumar, A. (2017). "Support vector machines for ECG classification." *IEEE Transactions on Biomedical Engineering*, 64(3), 679-688.
- [10]. Lee, H., & Park, J. (2021). "Lightweight machine learning for real-time ECG arrhythmia detection." *International Journal of Healthcare Information Systems and Informatics*, 9(1), 24-35.
- [11]. Wang, X., & Zhang, Y. (2020). "Comparative study of SVM, RF, and KNN for ECG classification." *IEEE Access*, 8, 43755-43765.