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Abstract. 

We give a smooth survey and investigation following the way of Niufa Fang, Wenxue Xu, Jiazu Zhou 

and Baocheng Zhu [31] who study and obtain a sharp convex mixed Lorentz-Sobolev inequality, which 

produced the functional version of an 𝐿1+𝜖 Minkowski inequality. The new sharp convex mixed Lorentz-Sobolev 

inequality that implies to and improved the sharp convex Lorentz-Sobolev inequality of Ludwig, Xiao and Zhang 

are shown.  
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1. Introduction 

The Sobolev inequality is one of the fundamental inequalities connecting analysis and geometry. The 

Sobolev inequality plays and deals with a number of mathematical branches such as the theory of partial 

differential equations, geometric measure theory, algebraic geometry, convex geometry, calculus of variations 

and other analytic areas. The Sobolev inequality was originated and developed from the classical isoperimetric 

inequality. 

The classical isoperimetric problem is to determine a plane figure of the largest possible area whose 

boundary has a given length. The solution to the isoperimetric problem is given by a circle and was known 

already in Ancient Greece. However, the first mathematically rigorous proof was obtained only in the 19 th 

century. The generalized isoperimetric problem is to determine a geometric object of the largest possible volume 

whose boundary has a fixed surface area in the Euclidean space ℝ1+2𝜖. 

For 𝐾 be a compact convex set in ℝ1+2𝜖. The surface area 𝑆(𝐾) and volume 𝑉(𝐾) of 𝐾 satisfy 

𝑆(𝐾)1+2𝜖 ≥ (1 + 2𝜖)1+2𝜖𝜔1+2𝜖𝑉(𝐾)2𝜖,                                        (1.1) 

where 𝜔1+2𝜖 =
𝜋

1+2𝜖
2

Γ(
3+2𝜖

2
)
 is the volume of the unit ball in ℝ1+2𝜖 and Γ(⋅) is the Gamma function (see [35], [36], 

[37]). Equality holds in (1.1) if and only if 𝐾 is a ball in ℝ1+2𝜖. 

The isoperimetric inequality (1.1) for sufficiently smooth domains is equivalent to the Sobolev inequality with 

optimal constant, 

(1 + 2𝜖)−1𝜔1+2𝜖

−
1

1+2𝜖 ∫  
ℝ1+2𝜖

∑  

𝑟

|∇𝑓𝑟(𝑥)|𝑑𝑥 ≥ (∫  
ℝ1+2𝜖

 ∑  

𝑟

|𝑓𝑟(𝑥)|
1+2𝜖

2𝜖 𝑑𝑥)

2𝜖
1+2𝜖

              (1.2) 

for all 𝑓𝑟 ∈ 𝑊1,1(ℝ1+2𝜖), the usual Sobolev space of real-valued functions of ℝ1+2𝜖 with 𝐿1 partial derivatives. 

The classical sharp 𝐿1+𝜖 Sobolev inequality states that (see [2,8,19,25]): 

Let 𝑓𝑟 ∈ 𝐶0
∞(ℝ1+2𝜖), the set of smooth functions with compact support on ℝ1+2𝜖. For 𝜖 > 0, and 

(1+𝜖)(1+2𝜖)

𝜖
, 

(∫  
ℝ1+2𝜖

∑  

𝑟

  |∇𝑓𝑟(𝑥)|1+𝜖𝑑𝑥)

1
1+𝜖

≥ 𝑐1+2𝜖,1+𝜖 ∑  

𝑟

∥ 𝑓𝑟 ∥(1+𝜖)(1+2𝜖)
𝜖

,                        (1.3) 

where |∇𝑓𝑟 (𝑥)| is the Euclidean norm of the gradient of 𝑓𝑟 , ∥⋅∥(1+𝜖)(1+2𝜖)

𝜖

 is the usual 𝐿(1+𝜖)(1+2𝜖)

𝜖

 norm of 𝑓𝑟 on 

ℝ1+2𝜖, and 
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𝑐1+2𝜖,1+𝜖 = (1 + 2𝜖)
1

1+𝜖 [𝜔1+2𝜖Γ (
1 + 2𝜖

1 + 𝜖
) Γ (2 + 2𝜖 −

1 + 2𝜖

1 + 𝜖
) /Γ(1 + 2𝜖)]

1
1+2𝜖

. 

The extremal functions for inequality (1.2) are the characteristic functions of balls and equality holds in (1.3) 

when 𝑓𝑟(𝑥) tends to (𝑎 + 𝑏|𝑥 − 𝑥0|
1+𝜖

𝜖 )
−

𝜖

1+𝜖
 with 𝑎, 𝑏 > 0 and 𝑥0 ∈ ℝ1+2𝜖. 

The sharp 𝐿1+𝜖 Sobolev inequality has been extended in several important ways. In [29], Zhang established the 

sharp affine Sobolev-Zhang inequality which is invariant under all affine transformations of ℝ1+2𝜖. The affine 

Sobolev-Zhang inequality is significantly stronger than the classical 𝐿1 Sobolev inequality. Moreover, the affine 

Sobolev-Zhang inequality is equivalent to the generalized Petty projection inequality. The affine Sobolev-Zhang 

inequality is a cornerstone of affine geometric analysis. Lutwak, Yang and Zhang [17] extended the affine 

Sobolev-Zhang inequality to the 𝐿1+𝜖 case for 𝜖 > 0, and they proved that the sharp affine 𝐿1+𝜖 Sobolev 

inequality is the functional version of the 𝐿1+𝜖 affine isoperimetric inequality in [14], (see also [33]). A new 

proof of the sharp affine Sobolev type inequalities was given in [11]. 

In the affine setting, Haberl and Schuster [9] proved the asymmetric affine 𝐿1+𝜖 Sobolev inequality that is 

stronger than the sharp affine 𝐿1+𝜖 Sobolev inequality. A general case of the affine 𝐿1+𝜖 Sobolev inequality 

which constitutes a bridge between the affine 𝐿1+𝜖 Sobolev inequality and the asymmetric affine 𝐿1+𝜖 Sobolev 

inequality was obtained in [28] (see also [33], [34]). Cianchi, Lutwak, Yang and Zhang [5] proved the affine 

Morrey-Sobolev inequality. An asymmetric affine Pólya-Szegö principle was established by Haberl, Schuster 

and Xiao [10], and the equality cases and stability for the affine Pólya-Szegö principle were established in [27]. 

Moreover, Wang extended the affine 𝐿1 Sobolev inequality to 𝐵𝑉(ℝ1+2𝜖) in [26]. 

Another important development with respect to the original 𝐿1+𝜖 Sobolev inequality (1.3) is the following 

Lorentz-Sobolev inequality [1,12], (see also [32]) : 

If 𝑓𝑟 ∈ 𝐶0
∞(ℝ1+2𝜖) and 𝜖 ≥ 0, then 

∥ ∑  

𝑟

∇𝑓𝑟 ∥1+𝜖
1+𝜖≥ (1 + 𝜖)−(1+𝜖)(𝜖)𝜖(1 + 2𝜖)𝜔1+2𝜖

1+𝜖
1+2𝜖 ∫  

∞

0

∑  

𝑟

𝑉([𝑓𝑟]𝑡)
𝜖

1+2𝜖𝑑𝑡1+𝜖 ,                           (1.4) 

where [𝑓𝑟]𝑡 = {𝑥 ∈ ℝ1+2𝜖: |𝑓𝑟 (𝑥)| ≥ 𝑡} is the level set of 𝑓𝑟. 

Using Lorentz integrals of the 𝐿1+𝜖 convexification of level sets (see the definition in Section 5) instead of level 

sets, Ludwig, Xiao and Zhang [12] obtained the following sharp convex Lorentz-Sobolev inequality: 

If 𝑓𝑟 ∈ 𝐶0
∞(ℝ1+2𝜖) and 𝜖 ≥ 0, then 

∥ ∑  

𝑟

∇𝑓𝑟 ∥1+𝜖
1+𝜖≥ (1 + 2𝜖)𝜔1+2𝜖

1+𝜖
1+2𝜖 ∫  

∞

0

∑  

𝑟

𝑉(⟨𝑓𝑟⟩𝑡)
𝜖

1+2𝜖𝑑𝑡.                              (1.5) 

Equality holds in (1.5) as 𝑓𝑟 tends to the characteristic function of an origin-centered ball for 𝜖 = 0 and for 𝜖 > 0 

equality is attained when 𝑓𝑟(𝑥) tends to (𝑎 + 𝑏|𝑥|
1+𝜖

𝜖 )
−

𝜖

1+𝜖
, with positive constants 𝑎, 𝑏. 

We are not aware of any geometric inequality corresponding to the Lorentz-Sobolev inequality (1.4). Ludwig, 

Xiao and Zhang [12], (see also [32]), showed that the inequality (1.5) is the functional analogue of the following 

𝐿1+𝜖 isoperimetric inequality of Lutwak [13], 

𝑆1+𝜖(𝐾) ≥ (1 + 2𝜖)𝜔
1+2𝜖

1+𝜖
1+2𝜖𝑉(𝐾)

𝜖
1+2𝜖,                                     (1.6) 

where 𝐾 ⊂ ℝ1+2𝜖  is an origin-symmetric convex body and 𝑆1+𝜖(𝐾) is the 𝐿1+𝜖 surface area of 𝐾 for 𝜖 ≥ 0. 

Niufa Fang, Wenxue Xu, Jiazu Zhou and Baocheng Zhu [31] establish a new sharp convex mixed 

Lorentz-Sobolev inequality for the 𝐿1+𝜖 convexification of level sets and the 𝐿1+𝜖 projection body of the 𝐿1+𝜖 

convexification of level sets. 

Sharp Convex Mixed Lorentz-Sobolev Inequality. Let 𝑓𝑟 , 𝑔𝑟 ∈ 𝐶0
∞(ℝ1+2𝜖). If 𝜖 ≥ 0, then 

∫  
ℝ1+2𝜖

∫  
ℝ1+2𝜖

∑  

𝑟

|∇𝑓𝑟(𝑥) ⋅ ∇𝑔𝑟(𝑦)|1+𝜖𝑑𝑥𝑑𝑦

≥ 𝛼1+2𝜖,1+𝜖 ∫  
∞

0

∑  

𝑟

𝑉(⟨𝑓𝑟⟩𝑡)
𝜖

1+2𝜖𝑑𝑡 ∫  
∞

0

∑  

𝑟

𝑉(Π1+𝜖⟨𝑔𝑟⟩𝑠)
1+𝜖

1+2𝜖𝑑𝑠, (1.7) 

where "." denotes the standard inner product and 𝛼1+2𝜖,1+𝜖 =
(1+2𝜖)2𝜔1+2𝜖𝜔3𝜖−1

𝜔2𝜔2𝜖−1𝜔𝜖
. Equality holds in (1.7) as 𝑓𝑟 and 

𝑔𝑟 tend to characteristic functions of dilates of centered polar ellipsoids for 𝜖 = 0, and for 𝜖 > 0 when 𝑓𝑟(𝑥) 

tends to (𝑎1 + |𝜓(𝑥 − 𝑥0)|
1+𝜖

𝜖 )
−

𝜖

1+𝜖
 and 𝑔𝑟(𝑦) tends to (𝑎2 + |𝜓−𝑡(𝑦 + 𝑥0)|

1+𝜖

𝜖 )
−

𝜖

1+𝜖
 with 𝑎𝑖 > 0(𝑖 = 1,2), 𝑥0 ∈

ℝ1+2𝜖 and 𝜓 ∈ GL (1 + 2𝜖). 
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We will show that the sharp convex mixed Lorentz-Sobolev inequality (1.7) is the functional inequality 

corresponding to the following 𝐿1+𝜖 Minkowski inequality: 

Let 𝐾, 𝑄 ⊂ ℝ1+2𝜖  be origin-symmetric convex bodies. If 𝜖 ≥ 0, then 

𝑉1+𝜖(𝐾, Π1+𝜖𝑄)1+2𝜖 ≥ 𝑉(𝐾)𝜖𝑉(Π1+𝜖𝑄)1+𝜖.                                (1.8) 

Here 𝑉1+𝜖(⋅,⋅) denotes the 𝐿1+𝜖 mixed volume of convex bodies. 

Note that the 𝐿1+𝜖 isoperimetric inequality (1.6) follows from (1.8) when 𝑄 is a ball and the sharp convex 

Lorentz-Sobolev inequality (1.5) implies the 𝐿1+𝜖 isoperimetric inequality (1.6). Motivated by these facts, we 

prove that the sharp mixed convex Lorentz-Sobolev inequality (1.7) implies the sharp convex Lorentz-Sobolev 

inequality (1.5), and hence also implies the 𝐿1+𝜖 Sobolev inequalities (1.2) and (1.3). 

We collect some facts on the 𝐿1+𝜖 Petty projection body, the 𝐿1+𝜖 Minkowski problem that are central 

tools in the proofs of our main theorems. We recall some results on 𝐿1+𝜖 John ellipsoids and prove a special 𝐿1+𝜖 

Minkowski inequality which will be used the sequel. 

2. Preliminaries 

For 𝒦1+2𝜖 denotes the set of convex bodies (compact, convex subsets with nonempty interiors) in the 

Euclidean space ℝ1+2𝜖, we write 𝒦𝑜
1+2𝜖 and 𝒦𝑠

1+2𝜖 for the set of convex bodies containing the origin in their 

interiors and the set of origin-symmetric convex bodies in ℝ1+2𝜖, respectively. In this paper it is assumed that all 

convex bodies have the origin in their interiors. Let 𝑉(𝐾) denote the (1 + 2𝜖)-dimensional volume of the 

convex body 𝐾. Let 𝐵 = {𝑥 ∈ ℝ1+2𝜖: |𝑥| ≤ 1} denote the standard unit ball in ℝ1+2𝜖, and its volume is denoted 

by 𝑉(𝐵) = 𝜔1+2𝜖 =
𝜋

1+2𝜖
2

Γ(
2+2𝜖

2
)
. Let 𝑆2𝜖 = {𝑥 ∈ ℝ1+2𝜖: |𝑥| = 1} denote the unit sphere in ℝ1+2𝜖. 

We write GL (1 + 2𝜖) for the group of general linear transformations in ℝ1+2𝜖. For 𝜙𝑟 ∈ GL (1 + 2𝜖) write 𝜙𝑟
𝑡 

and 𝜙𝑟
−1 for the transpose and inverse of 𝜙𝑟 respectively, and 𝜙𝑟

−𝑡 for the inverse of the transpose 

(contragradient) of 𝜙𝑟, and let det 𝜙𝑟 denote the determinant of 𝜙𝑟 . Let SL(1 + 2𝜖) = {𝜙𝑟: |det 𝜙𝑟| = 1, 𝜙𝑟 ∈
GL(1 + 2𝜖)}. 
If 𝐾 ∈ 𝒦1+2𝜖, then its support function, ℎ𝐾(⋅) = ℎ(𝐾,⋅): ℝ1+2𝜖 → ℝ, is defined by 

ℎ(𝐾, 𝑥) = max  {𝑥 ⋅ 𝑦: 𝑦 ∈ 𝐾},  𝑥 ∈ ℝ1+2𝜖. 
A convex body 𝐾 is uniquely determined by its support function ℎ(𝐾,⋅). It is obvious that for 𝜆 > 0, the support 

function of the convex body 𝜆𝐾 = {𝜆𝑥: 𝑥 ∈ 𝐾} satisfies 

ℎ(𝜆𝐾,⋅) = 𝜆ℎ(𝐾,⋅). 
For real 𝜖 ≥ 0, 𝐾, 𝐿 ∈ 𝒦𝑜

1+2𝜖 and real 𝜀 > 0, the Minkowski-Firey 𝐿1+𝜖 combination 𝐾+1+𝜖𝜀 ⋅ 𝐿 is the convex 

body whose support function is given by 

ℎ(𝐾 +  1+𝜖𝜀 ⋅ 𝐿,⋅)1+𝜖 = ℎ(𝐾,⋅)1+𝜖 + 𝜀ℎ(𝐿,⋅)1+𝜖. 
The 𝐿1+𝜖 mixed volume 𝑉1+𝜖(𝐾, 𝐿) of convex bodies 𝐾 and 𝐿 is defined by 

𝑉1+𝜖(𝐾, 𝐿) =
1 + 𝜖

1 + 2𝜖
lim

𝜀→0+
 
𝑉(𝐾+1+𝜖𝜀 ⋅ 𝐿) − 𝑉(𝐾)

𝜀
. 

The existence of this limit was proven in [13]. In particular, 

𝑉1+𝜖(𝐾, 𝐾) = 𝑉(𝐾)                                            (2.1) 

for 𝐾 ∈ 𝒦𝑜
1+2𝜖. By [13], there exists a unique finite positive Borel measure 𝑆1+𝜖(𝐾,⋅) on 𝑆2𝜖 such that 

𝑉1+𝜖(𝐾, 𝐿) =
1

1 + 2𝜖
∫  

𝑆2𝜖

ℎ(𝐿, 𝑢)1+𝜖𝑑𝑆1+𝜖(𝐾, 𝑢),                         (2.2) 

for 𝐿 ∈ 𝒦𝑜
1+2𝜖. The measure 𝑆1+𝜖(𝐾,⋅) is called the 𝐿1+𝜖 surface area measure of 𝐾. The measure 𝑆1(𝐾,⋅) =

𝑆(𝐾,⋅) = 𝑆𝐾(⋅) is the classical surface area measure of 𝐾. It was shown in [13] that the measure 𝑆1+𝜖(𝐾,⋅) is 

absolutely continuous with respect to 𝑆𝐾(⋅) and the Radon-Nikodym derivative is 
𝑑𝑆1+𝜖(𝐾,⋅)

𝑑𝑆(𝐾,⋅)
= ℎ(𝐾,⋅)−𝜖. 

If the boundary ∂𝐾 of 𝐾 is 𝐶2 with positive curvature, then the Radon-Nikodym derivative of 𝑆𝐾 with respect to 

the Lebesgue measure on 𝑆2𝜖 is the reciprocal of the Gaussian curvature of ∂𝐾 (when viewed as a function of the 

outer normals of ∂𝐾). 

If 𝐾, 𝐿 ∈ 𝒦𝑜
1+2𝜖 , then 

𝑉1+𝜖(𝑡𝐾, 𝐿) = 𝑡𝜖𝑉1+𝜖(𝐾, 𝐿)  for  𝑡 > 0,                                (2.3)

𝑉1+𝜖(𝐾, 𝑡𝐿) = 𝑡1+𝜖𝑉1+𝜖(𝐾, 𝐿)  for  𝑡 > 0,                             (2.4)
 

and 

𝑉1+𝜖(𝜙𝑟𝐾, 𝐿) = 𝑉1+𝜖(𝐾, 𝜙𝑟
−1𝐿)  for  𝜙𝑟 ∈ SL(1 + 2𝜖) .                        (2.5) 

The 𝐿1+𝜖 Minkowski inequality was proven in [13]: 

If 𝐾, 𝐿 ∈ 𝒦𝑜
1+2𝜖  and 𝜖 ≥ 0, then 

http://www.ijrti.org/
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𝑉1+𝜖(𝐾, 𝐿)1+2𝜖 ≥ 𝑉(𝐾)𝜖𝑉(𝐿)1+𝜖,                         (2.6) 

with equality if and only if 𝐾 and 𝐿 are homothetic when 𝜖 = 0, and 𝐾 and 𝐿 are dilates when 𝜖 > 0. 

A star body 𝑀 is a compact set in ℝ1+2𝜖 which is star shaped with respect to the origin, i.e., if 𝑥 ∈ 𝑀, then the 

line segment joining the origin to 𝑥 is contained in 𝑀. The radial function, 𝜌𝑀(⋅) = 𝜌(𝑀,⋅): ℝ1+2𝜖 ∖ {0} → ℝ, of 

𝑀 is defined for 𝑥 ≠ 0 by 

𝜌(𝑀, 𝑥) = max  {𝜆 ≥ 0: 𝜆𝑥 ∈ 𝑀}. 
The radial function is positively homogeneous of −1, that is 

𝜌(𝑀, 𝑎𝑥) = 𝑎−1𝜌(𝑀, 𝑥),  𝑎 > 0. 
Let 𝑀 be a star body in ℝ1+2𝜖. Its polar body 𝑀∗ is defined by 

𝑀∗ = {𝑥 ∈ ℝ1+2𝜖: 𝑥 ⋅ 𝑦 ≤ 1  for all  𝑦 ∈ 𝑀}. 

Let 𝐾 ∈ 𝒦𝑠
1+2𝜖. The well-known Blaschke-Santaló inequality [24] states that: 

𝑉(𝐾)𝑉(𝐾∗) ≤ 𝜔1+2𝜖
2 ,                                      (2.7) 

with equality if and only if 𝐾 is an ellipsoid. 

In particular, if 𝐾 ∈ 𝒦𝑜
1+2𝜖, then 

𝜌(𝐾∗,⋅) =
1

ℎ(𝐾,⋅)
,  ℎ(𝐾∗,⋅) =

1

𝜌(𝐾,⋅)
. 

If 𝐾, 𝐿 ∈ 𝒦𝑜
1+2𝜖  and 𝜆 > 0, then 

𝐾 ⊆ 𝜆𝐿 ⟺ 𝐾∗ ⊇
1

𝜆
𝐿∗,                                 (2.8) 

and 

𝐾 = 𝜆𝐿 ⟺ 𝐾∗ =
1

𝜆
𝐿∗.                                       (2.9) 

We will frequently apply Federer's co-area formula [7]. For quick reference we state a version that is sufficient 

for our purposes. 

If 𝑓𝑟: ℝ1+2𝜖 → ℝ is locally Lipschitz and 𝑔𝑟: ℝ1+2𝜖 → [0, ∞) is measurable, then, for any Borel set 𝐴 ⊆ ℝ, 

∫  
𝑓𝑟

−1(𝐴)∩{|∇𝑓𝑟|>0}
∑  

𝑟

𝑔𝑟(𝑥)𝑑𝑥 = ∫  
𝐴

∫  
𝑓𝑟

−1(𝑦)
∑  

𝑟

𝑔𝑟(𝑥)

|∇𝑓𝑟 (𝑥)|
𝑑ℋ2𝜖(𝑥)𝑑𝑦,                               (2.10) 

where ℋ2𝜖 is the (2𝜖)-dimensional Hausdorff measure. 

Let Aff (1 + 2𝜖) denote the group of invertible affine transformations of ℝ1+2𝜖, that is, every map Ψ ∈ Aff (1 +
2𝜖) is a general linear transformation followed by a translation. There is a natural left action of ℝ ∖ {0} ×
Aff (1 + 2𝜖) on functions 𝑓𝑟 : ℝ1+2𝜖 → ℝ, given by 

𝑓𝑟 ↦ 𝑘𝑓𝑟 ∘ Ψ−1 

for each (𝑘, Ψ) in ℝ ∖ {0} × Aff (1 + 2𝜖). An inequality 𝐿[𝑓𝑟] ≤ 𝑅[𝑓𝑟] for a class of functions ℝ1+2𝜖 → ℝ is 

called affine if 

𝐿[𝑘𝑓𝑟 ∘ Ψ−1]

𝑅[𝑘𝑓𝑟 ∘ Ψ−1]
=

𝐿[𝑓𝑟 ]

𝑅[𝑓𝑟]
                                        (2.11) 

for each (𝑘, Ψ) ∈ ℝ ∖ {0} × Aff (1 + 2𝜖). 
3. 𝑳𝟏+𝝐 Projection Body and 𝑳𝟏+𝝐 Minkowski Problem 

3.1. 𝑳𝟏+𝝐 Projection Body 

The classical projection body was introduced by Minkowski (see [38], [39]). For 𝐾 ∈ 𝒦1+2𝜖, the classical 

projection body Π𝐾 of 𝐾 is defined as the origin-symmetric convex body in ℝ1+2𝜖 with support function: 

ℎ(Π𝐾, 𝑢) = 𝑉2𝜖(𝐾 ∣ 𝑢⊥),  𝑢 ∈ 𝑆2𝜖.                    (3.1) 

Here 𝑉2𝜖(𝐾 ∣ 𝑢⊥) is the 2𝜖 dimensional volume of 𝐾 projected to the hyperplane passing through the origin with 

the normal direction 𝑢. 

Interest in projection bodies was rekindled by Bolker [4], Petty [20] and Schneider [23] (see also [33]). The 

fundamental inequality for projection bodies is the following Petty projection inequality [21]: 

If 𝐾 ∈ 𝒦1+2𝜖, then 

𝑉(𝐾)2𝜖𝑉(Π∗𝐾) ≤ (
𝜔1+2𝜖

𝜔2𝜖
)

1+2𝜖

,                                (3.2) 

with equality if and only if 𝐾 is an ellipsoid. Here Π∗𝐾 denotes the polar body of the projection body Π𝐾. 

The Petty projection inequality (3.2) has been studied widely. In particular, Lutwak, Yang and Zhang [14], (see 

also [33]), extended the Petty projection inequality (3.2) to the 𝐿1+𝜖-projection body. They defined the 𝐿1+𝜖-

projection body as follows: 

For 𝐾 ∈ 𝒦𝑜
1+2𝜖 and 𝜖 ≥ 0, the 𝐿1+𝜖-projection body Π1+𝜖𝐾 of 𝐾 is the origin symmetric convex body with 

support function ℎ(Π1+𝜖𝐾,⋅): ℝ1+2𝜖 → (0, ∞), 
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ℎ(Π1+𝜖𝐾, 𝑢) = (
1

(1 + 2𝜖)𝜔1+2𝜖𝑐1+2𝜖,1+𝜖
∫  

𝑆2𝜖

  |𝑢 ⋅ 𝑣|1+𝜖𝑑𝑆1+𝜖(𝐾, 𝑣))

1
1+𝜖

,  𝑢 ∈ 𝑆2𝜖, (3.3) 

where 

𝑐1+2𝜖,1+𝜖 =
𝜔3𝜖−1

𝜔2𝜔2𝜖−1𝜔𝜖
.                                            (3.4) 

The constant 𝑐1+2𝜖,1+𝜖 is chosen such that 

Π1+𝜖𝐵 = 𝐵.                                              (3.5) 

For 𝜆 > 0 and 𝐾 ∈ 𝒦𝑜
1+2𝜖, one has 

Π1+𝜖(𝜆𝐾) = 𝜆
𝜖

1+𝜖Π1+𝜖𝐾,                                          (3.6) 

and 

Π1+𝜖(𝜙𝑟𝐾) = 𝜙𝑟
−𝑡Π1+𝜖𝐾  for  𝜙𝑟 ∈ SL(1 + 2𝜖).                           (3.7) 

3.2. The 𝑳𝟏+𝝐 Minkowski Problem 

The Minkowski problem is a central problem in integral geometry, convex geometric analysis and PDE. 

The classical Minkowski problem asks for necessary and sufficient conditions for a Borel measure on the unit 

sphere to be the surface area measure of a convex body in ℝ1+2𝜖. The classical Minkowski problem was solved 

by Minkowski when the given measure is either discrete or has a smooth density. It was extended to arbitrary 

measures independently by Alexandrov, and Fenchel and Jessen. The solution to the Minkowski problem states:  

For each Borel measure 𝜇 on 𝑆2𝜖 that is not supported on a great hemisphere, there exists a unique (up to 

translation) convex body 𝐾 so that 

𝑆(𝐾,⋅) = 𝜇 

if and only if 

∫  
𝑆2𝜖

𝑣𝑑𝜇(𝑣) = 0. 

Lutwak [13] extended the Minkowski problem to the 𝐿1+𝜖 version, which is a central problem in the 𝐿1+𝜖 Brunn-

Minkowski theory (see also [34]). 

𝑳𝟏+𝝐 Minkowski Problem. For 𝐾 ∈ 𝒦1+2𝜖, find necessary and sufficient conditions for a finite Borel measure 𝜇 

on the unit sphere 𝑆2𝜖 so that 𝜇 is the 𝐿1+𝜖-surface area measure of convex body 𝐾. 

A Borel measure on 𝑆2𝜖 is even if for each Borel set 𝜔 ⊂ 𝑆2𝜖 the measure of 𝜔 and the measure of −𝜔 =
{−𝑥: 𝑥 ∈ 𝜔} are equal. In [13], the following solution to the even case of the 𝐿1+𝜖 Minkowski problem was 

given: 

Theorem 3.1. Suppose 𝜇 is an even positive measure on 𝑆2𝜖 that is not supported on a great hypersphere of 𝑆2𝜖. 

Then for real 𝜖 ≥ 0 such that 𝜖 ≠ 0 there exists a unique origin-symmetric convex body 𝐾 in ℝ1+2𝜖 whose 𝐿1+𝜖 

surface area measure is 𝜇; that is, 

𝜇 = 𝑆1+𝜖(𝐾,⋅).                                                  (3.8) 

4. 𝑳𝟏+𝝐 John Ellipsoids 

Ellipsoids are important objects in the Brunn-Minkowski theory and the dual-BrunnMinkowski theory. The 

celebrated John ellipsoid, associated with each convex body 𝐾, is the unique ellipsoid 𝐽𝐾 of maximal volume 

contained in 𝐾. Two important results concerning the John ellipsoid are John's inclusion and Ball's volume-ratio 

inequality [3]. The John ellipsoid is within the classical Brunn-Minkowski theory and is extremely useful in both 

convex and Banach space geometry [3,22]. 
Lutwak, Yang and Zhang [15] introduced the 𝐿𝑌𝑍 ellipsoid Γ−2𝐾 whose radial function is defined by 

𝜌Γ−2𝐾(𝑢)−2 =
1

𝑉(𝐾)
∫  

𝑆2𝜖

|𝑢 ⋅ 𝑣|2𝑑𝑆2(𝐾, 𝑣), 

for 𝐾 ∈ 𝒦𝑜
1+2𝜖 and 𝑢 ∈ 𝑆2𝜖 . 

It was proved in [15] that the properties of the LYZ ellipsoid are analogous to that of the John ellipsoid, such as 

the volume of the LYZ ellipsoid is dominated by the volume of 𝐾, there is an inclusion identical to John's 

inclusion, and a version of Ball's volume-ratio inequality for the LYZ ellipsoid also holds. Unlike the John 

ellipsoid, there is an analytic formulation for the LYZ ellipsoid. The domain of the LYZ ellipsoid was extended 

to star-shaped sets in [16]. The LYZ ellipsoid for log-concave functions was introduced in [6]. 
The 𝐿1+𝜖 curvature (𝑓𝑟)1+𝜖(𝐾,⋅) of a smooth convex body 𝐾 is an important notion in convex geometry: 

(𝑓𝑟 )1+𝜖(𝐾,⋅) = ℎ𝐾
−𝜖𝑓𝑟 (𝐾,⋅). 

Here 𝑓𝑟 (𝐾,⋅) denotes the reciprocal of the Gaussian curvature of ∂𝐾 (when viewed as a function of the outer 

normals of ∂𝐾). It is the core of the integral formula of 𝐿1+𝜖 mixed volume and related inequalities. In [18], the 

authors studied minimizing the total 𝐿1+𝜖-curvature of a convex body under SL (1 + 2𝜖)-transformations. 

For a smooth convex body 𝐾 ∈ 𝒦𝑜
1+2𝜖, and a fixed real 𝜖 ≥ 0, find 
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min
𝜙𝑟∈SL(1+2𝜖)

 ∑  

𝑟

∫  
𝑆2𝜖

(𝑓𝑟 )1+𝜖(𝜙𝑟𝐾, 𝑢)𝑑𝑆(𝑢). 

By using the integral formula of 𝐿1+𝜖 mixed volume 𝑉1+𝜖(𝐾, 𝐸) of a convex body 𝐾 and an origin-centered 

ellipsoid 𝐸, minimizing the total 𝐿1+𝜖-curvature can be formulated in the following equivalent ways [18]: 

Problem 𝑺𝟏+𝝐. Given a convex body 𝐾 ∈ 𝒦𝑜
1+2𝜖, find an ellipsoid 𝐸, amongst all origincentered ellipsoids, 

which solves the following constrained maximization problem: 

max  (
𝑉(𝐸)

𝜔1+2𝜖

)

1
1+2𝜖

  subject to  (
𝑉1+𝜖(𝐾, 𝐸)

𝑉(𝐾)
)

1
1+𝜖

≤ 1.                       (4.1) 

A maximal ellipsoid is called an 𝑆1+𝜖  solution for 𝐾. 

The following problem is dual to 𝑆1+𝜖  : 

Problem 𝑺𝟏+𝝐
̅̅ ̅̅ ̅̅ . Given a convex body 𝐾 ∈ 𝒦𝑜

1+2𝜖, find an ellipsoid 𝐸, amongst all origincentered ellipsoids, 

which solves the following constrained minimization problem: 

min  (
𝑉1+𝜖(𝐾, 𝐸)

𝑉(𝐾)
)

1
1+𝜖

  subject to  (
𝑉(𝐸)

𝜔1+2𝜖
)

1
1+2𝜖

≥ 1.                   (4.2) 

A minimal ellipsoid is called an 𝑆‾1+𝜖 solution for 𝐾. 

The existence of solutions of problem 𝑆1+𝜖  and problem 𝑆‾1+𝜖  was given by Lutwak, Yang and Zhang. 

Theorem 4.1. ( [18, Theorem 2.2 ] ). Suppose real 𝜖 ≥ 0 and 𝐾 ∈ 𝒦𝑜
1+2𝜖. Then 𝑆1+𝜖  as well as 𝑆‾1+𝜖  has a 

unique solution. 

By Theorem 4.1, Lutwak, Yang and Zhang define 𝐿1+𝜖 John ellipsoids [18]: 

Definition 4.1. Suppose 𝐾 ∈ 𝒦𝑜
1+2𝜖 and 0 ≤ 𝜖 ≤ ∞. Amongst all origin-centered ellipsoids, the unique ellipsoid 

that solves the constrained maximization problem 

max  (
𝑉(𝐸)

𝜔1+2𝜖
)

1
1+2𝜖

  subject to  (
𝑉1+𝜖(𝐾, 𝐸)

𝑉(𝐾)
)

1
1+𝜖

≤ 1,                   (4.3) 

is called the 𝐿1+𝜖 John ellipsoid of 𝐾 and is denoted by 𝐸1+𝜖𝐾. Amongst all origin-centered ellipsoids, the 

unique ellipsoid that solves the constrained minimization problem 

min  (
𝑉1+𝜖(𝐾, 𝐸)

𝑉(𝐾)
)

1
1+𝜖

  subject to  (
𝑉(𝐸)

𝜔1+2𝜖

)

1
1+2𝜖

≥ 1,                   (4.4) 

is called the normalized 𝐿1+𝜖 John ellipsoid of 𝐾 and is denoted by 𝐸‾1+𝜖𝐾. 

𝐿1+𝜖 John ellipsoids provide a unified treatment for several fundamental objects in convex geometry. If the John 

point of 𝐾, the center of John ellipsoid 𝐽𝐾, is at the origin, then 𝐸∞𝐾 is precisely the classical John ellipsoid 𝐽𝐾. 

The 𝐿2 John ellipsoid 𝐸2𝐾 is the LYZ ellipsoid Γ−2𝐾. The 𝐿1 ellipsoid 𝐸1𝐾 is the Petty ellipsoid. 

If 𝐾 ∈ 𝒦𝑜
1+2𝜖 and 0 ≤ 𝜖 ≤ ∞, then for 𝜙𝑟 ∈ GL (1 + 2𝜖), 

𝐸1+𝜖𝜙𝑟𝐾 = 𝜙𝑟𝐸1+𝜖𝐾.                                        (4.5) 

This means that if 𝐸 is an ellipsoid centered at the origin, then 

𝐸1+𝜖𝐸 = 𝐸.                                               (4.6) 

If 𝐾 ∈ 𝒦𝑜
1+2𝜖 and real 𝜖 ≥ 0, the star body Γ−(1+𝜖)𝐾 is defined as the body whose radial function, for 𝑢 ∈ 𝑆2𝜖  is 

given by [18]: 

𝜌Γ−(1+𝜖)𝐾(𝑢)−(1+𝜖) =
1

𝑉(𝐾)
∫  

𝑆2𝜖

|𝑢 ⋅ 𝑣|1+𝜖𝑑𝑆1+𝜖(𝐾, 𝑣).                (4.7) 

We will need the following results: 

Lemma 4.1. ([18, Corollary 4.5 ] ). If 𝐾 ∈ 𝒦𝑜
1+2𝜖, then 

𝐸2−𝜖𝐾 ⊇ Γ−(2−𝜖)𝐾 ⊇ (1 + 2𝜖)
−

𝜖
2(2−𝜖)𝐸2−𝜖𝐾    when     𝜖 ≥ 0, 

𝐸2+𝜖𝐾 ⊆ Γ−(2+𝜖)𝐾 ⊆ (1 + 2𝜖)
ϵ

2(2+𝜖)𝐸2+𝜖𝐾    when       0 ≤ 𝜖 ≤ ∞. 

Lemma 4.2. ([18, Theorem 5.2]). If 𝐾 ∈ 𝒦𝑜
1+2𝜖 and 0 ≤ 𝜖 ≤ ∞, then 

𝑉(𝐸1+𝜖𝐾) ≤ 𝑉(𝐾), 
with equality for 𝜖 > 0 if and only if 𝐾 is an ellipsoid centered at the origin, and with equality for 𝜖 = 0 if and 

only if 𝐾 is an ellipsoid. 

We can prove the following 𝐿1+𝜖 Minkowski inequalities, where 𝑐1+2𝜖,1+𝜖 is the constant defined in (3.4) (see 

[31]). 

Lemma 4.3. Let 𝐾, 𝐿 ∈ 𝒦𝑜
1+2𝜖 . 

(i) When 𝜖 > 0, then 
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𝑉1+𝜖(𝐾, Π1+𝜖𝐿) ≥
𝜔

1+2𝜖

1
1+2𝜖

(1 + 2𝜖)𝑐1+2𝜖,1+𝜖
𝑉(𝐾)

𝜖
1+2𝜖𝑉(𝐿)

𝜖
1+2𝜖,                             (4.8) 

with equality when 𝜖 = 1 and 𝐾 and 𝐿 are dilates of polar ellipsoids centered at the origin. 

(ii) When 0 ≤ 𝜖 ≤ ∞, then 

𝑉2+𝜖(𝐾, Π2+𝜖𝐿) ≥
𝜔1+2𝜖

3
1+2𝜖

(1 + 2𝜖)
2+𝜖

2 𝑐1+2𝜖,2+𝜖

𝑉(𝐾)
𝜖−1

1+2𝜖𝑉(𝐿)
𝜖−1

1+2𝜖,                            (4.9) 

with equality when 𝜖 = 0 and 𝐾 and 𝐿 are dilates of polar ellipsoids centered at the origin. 

Proof. Let Γ−(2+𝜖)
∗ 𝐿 denote the polar body of Γ−(2+𝜖)𝐿. By (3.3) and (4.7), we have 

Γ−(2+𝜖)
∗ 𝐿 = (

(1 + 2𝜖)𝑐1+2𝜖,2+𝜖𝜔1+2𝜖

𝑉(𝐾)
)

1
2+𝜖

Π2+𝜖𝐿.                               (4.10) 

(i) For 𝜖 ≥ 0, by (2.9), (4.10) and Lemma 4.1, we obtain 

(
(1 + 2𝜖)𝑐1+2𝜖,1+𝜖𝜔1+2𝜖

𝑉(𝐿)
)

−
1

1+𝜖
Π1+𝜖

∗ 𝐿 = Γ−(1+𝜖)𝐿 ⊆ 𝐸1+𝜖𝐿. 

Then by (2.8) we have 

(
(1 + 2𝜖)𝑐1+2𝜖,1+𝜖𝜔1+2𝜖

𝑉(𝐿)
)

1
1+𝜖

Π1+𝜖𝐿 ⊇ 𝐸1+𝜖
∗ 𝐿.                             (4.11) 

By (2.2), (4.11), the Blaschke-Santaló inequality (2.7) and Lemma 4.2, we have 

𝑉1+𝜖(𝐾, Π1+𝜖𝐿)  ≥
𝑉(𝐿)

(1 + 2𝜖)𝑐1+2𝜖,1+𝜖𝜔1+2𝜖
𝑉1+𝜖(𝐾, 𝐸1+𝜖

∗ 𝐿)

 ≥
𝑉(𝐿)

(1 + 2𝜖)𝑐1+2𝜖,1+𝜖𝜔1+2𝜖
𝑉(𝐾)

𝜖
1+2𝜖𝑉(𝐸1+𝜖

∗ 𝐿)
1+𝜖

1+2𝜖

 =
𝑉(𝐿)𝜔1+2𝜖

1−𝜖
1+2𝜖

(1 + 2𝜖)𝑐1+2𝜖,1+𝜖

𝑉(𝐾)
𝜖

1+2𝜖𝑉(𝐸1+𝜖𝐿)−
1+𝜖

1+2𝜖

 ≥
𝜔1+2𝜖

1
1+2𝜖

(1 + 2𝜖)𝑐1+2𝜖,1+𝜖
𝑉(𝐾)

𝜖
1+2𝜖𝑉(𝐿)

𝜖
1+2𝜖.                      (4.12)

 

When 𝜖 = 1, Γ−2𝐿 = 𝐸2𝐿, there is an equality in (4.11). By the equality condition of 𝐿1+𝜖 Minkowski inequality 

(2.6) and Lemma 4.2, we conclude that equality holds in (4.8) when 𝜖 = 1 and 𝐾 and 𝐿 are dilates of polar 

ellipsoids centered at the origin. 

(ii) For 𝜖 ≥ 0, by (2.9), (4.10) and Lemma 4.1, we have 

(
(1 + 2𝜖)𝑐1+2𝜖,2+𝜖𝜔1+2𝜖

𝑉(𝐿)
)

−
1

2+𝜖
Π2+𝜖

∗ 𝐿 = Γ−(2+𝜖)𝐿 ⊆ (1 + 2𝜖)
𝜖

2(2+𝜖)𝐸2+𝜖𝐿, 

which implies 

(1 + 2𝜖)
𝜖

2(2+𝜖) (
(1 + 2𝜖)𝑐1+2𝜖,2+𝜖𝜔1+2𝜖

𝑉(𝐿)
)

1
2+𝜖

Π2+𝜖𝐿 ⊇ 𝐸2+𝜖
∗ 𝐿.                               (4.13) 

By (2.2), (4.13), the Blaschke-Santaló inequality (2.7) and Lemma 4.2, we have 

𝑉2+𝜖(𝐾, Π2+𝜖𝐿)  ≥
𝑉(𝐿)

(1 + 2𝜖)
2+𝜖

2 𝑐1+2𝜖,2+𝜖𝜔1+2𝜖

𝑉2+𝜖(𝐾, 𝐸2+𝜖
∗ 𝐿)

 ≥
𝑉(𝐿)

(1 + 2𝜖)
2+𝜖

2 𝑐1+2𝜖,2+𝜖𝜔1+2𝜖

𝑉(𝐾)
𝜖

1+2𝜖𝑉(𝐸2+𝜖
∗ 𝐿)

2+𝜖
1+2𝜖

 =
𝑉(𝐿)𝜔1+2𝜖

3−𝜖
1+2𝜖

(1 + 2𝜖)
2+𝜖

2 𝑐1+2𝜖,2+𝜖

𝑉(𝐾)
𝜖−1

1+2𝜖𝑉(𝐸2+𝜖𝐿)−
2+𝜖

1+2𝜖

 ≥
𝜔1+2𝜖

3−𝜖
1+2𝜖

(1 + 2𝜖)
2+𝜖

2 𝑐1+2𝜖,2+𝜖

𝑉(𝐾)
𝜖−1

1+2𝜖𝑉(𝐿)
𝜖−1

1+2𝜖.
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When 𝜖 = 0, since Γ−2𝐿 = 𝐸2𝐿, then equality holds in (4.13). By the equality conditions of the 𝐿2+𝜖 Minkowski 

inequality (2.6) and Lemma 4.2, equality holds in (4.9) when 𝜖 = 0 and 𝐾 and 𝐿 are dilates of polar ellipsoids 

centered at the origin. 

5. Sharp Convex Mixed Lorentz-Sobolev Inequality 

The 𝐿1+𝜖 convexification was introduced in [29] for 𝜖 = 0 and in [12] for 𝜖 > 0 (see also [32]). Refer to [5] and 

[17] for more detailed information on 𝐿1+𝜖 convexification. 

Given any measurable functions 𝑓𝑟: ℝ1+2𝜖 → ℝ, the level set [𝑓𝑟]𝑡 of 𝑓𝑟 is defined by: 

[𝑓𝑟]𝑡 = {𝑥 ∈ ℝ1+2𝜖: |𝑓𝑟(𝑥)| ≥ 𝑡},  𝑡 > 0.                          (5.1) 

In this paper, we always assume that all functions are such that the level sets [𝑓𝑟 ]𝑡 are compact for all 𝑡 > 0. 

Assume 𝜖 > 0. Suppose 𝑓𝑟 ∈ 𝐶0
∞(ℝ1+2𝜖), by Sard's Lemma, for a.e. 

𝑡 > 0, {|𝑓𝑟| > 𝑡}  is a bounded open set with a 𝐶1  boundary,       (5.2) 

∂{|𝑓𝑟| > 𝑡} = {|𝑓𝑟 | = 𝑡},                                  (5.3) 

and 

∇𝑓𝑟(𝑥) ≠ 0,   for  𝑥 ∈ {|𝑓𝑟| = 𝑡}.                          (5.4) 

Suppose 𝑡 > 0 and 𝑓𝑟 satisfies (5.2), (5.3) and (5.4). Let 𝜆𝑡(𝑓𝑟 ,⋅) be the even positive Borel measure on 𝑆2𝜖 such 

that 

∫  
𝑆2𝜖

∑  

𝑟

𝜙𝑟(𝑣)𝑑𝜆𝑡(𝑓𝑟 , 𝑣) = ∫  
{|𝑓𝑟|=𝑡}

∑  

𝑟

𝜙𝑟(𝑣(𝑥))|∇𝑓𝑟 (𝑥)|𝜖𝑑ℋ2𝜖(𝑥)  (5.5) 

for every even Borel function 𝜙𝑟: 𝑆2𝜖 → ℝ, where 𝑣(𝑥) =
∇𝑓𝑟(𝑥)

|∇𝑓𝑟(𝑥)|
. Since for fixed 𝑢 ∈ 𝑆2𝜖, 

ℋ2𝜖({𝑥: |𝑓𝑟(𝑥)| = 𝑡 and 𝑢 ⋅ 𝑣(𝑥) ≠ 0}) > 0, 
we have 

∫  
{|𝑓𝑟|=𝑡}

∑  

𝑟

|𝑢 ⋅ 𝑣(𝑥)||∇𝑓𝑟(𝑥)|𝜖𝑑ℋ2𝜖(𝑥) > 0.               (5.6) 

Hence 

∫  
𝑆2𝜖

∑  

𝑟

|𝑢 ⋅ 𝑣|𝑑𝜆𝑡(𝑓𝑟 , 𝑣) > 0,                               (5.7) 

for 𝑢 ∈ 𝑆2𝜖 . Hence, the measure 𝜆𝑡(𝑓𝑟 ,⋅) is not supported in the intersection of 𝑆2𝜖 with any subspace. By the 

solution to the even 𝐿1+𝜖 Minkowski problem (Theorem 3.1), there exists a unique origin-symmetric convex 

body ⟨𝑓𝑟⟩𝑡 such that 

𝑆(⟨𝑓𝑟⟩𝑡 ,⋅)ℎ(⟨𝑓𝑟⟩𝑡 ,⋅)−𝜖 = 𝜆𝑡(𝑓𝑟 ,⋅).                         (5.8) 

We remark that the convex body ⟨𝑓𝑟 ⟩𝑡 is called the 𝐿1+𝜖 convexification of the level set [𝑓𝑟]𝑡. For our aims, some 

properties of ⟨𝑓𝑟⟩𝑡 will be listed. 

Lemma 5.1. ([12, Lemma 8]). If 𝐾 ∈ 𝒦𝑠
1+2𝜖 and 𝑓𝑟(𝑥) = 𝜑𝑟(1/𝜌𝐾(𝑥)), where 𝜑𝑟 ∈ 𝐶1(0, ∞) is strictly 

decreasing, then for 𝑡 > 0 and 𝜖 ≥ 0, the convex bodies of the 𝐿1+𝜖 convexification of the level sets of 𝑓𝑟 are 

dilates of 𝐾, that is 

⟨𝑓𝑟⟩𝑡 = 𝑐1+𝜖(𝑡)𝐾, 
and 𝑐1+𝜖(𝑡)𝜖 = |𝜑𝑟

′ (𝑠)|𝜖𝑠2𝜖, where 𝑡 = 𝜑𝑟(𝑠). 
Lemma 5.2. ([12, Lemma 13]). Let 𝜖 > 0. If 𝑓𝑟 ∈ 𝐶0

∞(ℝ1+2𝜖) and ∇𝑓𝑟(𝑥) ≠ 0 on ∂[𝑓𝑟 ]𝑡 for 𝑡 > 0, then 

⟨𝑘𝑓𝑟 ∘ Ψ−1⟩𝑡 = 𝑘
1+𝜖

𝜖 𝜓⟨𝑓𝑟⟩𝑡 , 
for 𝑘 > 0 and Ψ ∈ Aff (1 + 2𝜖) given by Ψ(𝑥) = 𝜓𝑥 + 𝑦 where 𝜓 ∈ GL (1 + 2𝜖) and 𝑦 ∈ ℝ1+2𝜖. 
The next result has been proved in [17]. 
Lemma 5.3. Let 𝑓𝑟 ∈ 𝐶0

∞(ℝ1+2𝜖). If 𝜖 > 0, then 

∫  
∞

0

∑  

𝑟

𝑉(⟨𝑓𝑟⟩𝑡)−
ϵ

1+2𝜖𝑑𝑡 ≥ (1 + 2𝜖)−
𝜖

1+2𝜖𝑐1+2𝜖,1+𝜖
1+𝜖 ∑  

𝑟

∥ 𝑓𝑟 ∥(1+𝜖)(1+2𝜖)
𝜖

1+𝜖 .                           (5.9) 

Here 

𝑐1+2𝜖,1+𝜖 = ((1 + 2𝜖)𝜔1+2𝜖)−
1

1+2𝜖𝑐1+2𝜖,1+𝜖. 
The following results will be used later (see [31]). 

Lemma 5.4. Let 𝑓𝑟 ∈ 𝐶0
∞(ℝ1+2𝜖). 

(i) If 𝑓𝑟 tends to the characteristic function 𝜒𝑎𝐵 of the ball aB with 𝑎 > 0, then ⟨𝑓𝑟 ⟩𝑡 converges to 𝑎𝐵 (up to 

translation) in Hausdorff metric when 0 < 𝑡 < 1, and the surface area measure of ⟨𝑓𝑟⟩𝑡 converges weakly to zero 

when 𝑡 ≥ 1 

(ii) If 𝜖 > 0 and 𝑓𝑟(𝑥) = (𝑎 + 𝑏|𝑥|
1+𝜖

ϵ )
−

ϵ

1+𝜖
 with 𝑎, 𝑏 > 0, then 
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⟨𝑓𝑟 ⟩𝑡 = 𝛼(𝑡)𝐵,                                           (5.10) 

where 

𝛼(𝑡) = (
1 − 𝑎𝑡

1+𝜖
𝜖

𝑏
𝜖

1+2𝜖

)

1+2𝜖
1+𝜖

, 

and 𝑡 ∈ (0, +∞) such that 𝛼(𝑡) is meaningful depending on a and 𝑏. 

Proof. (i) We will prove this statement by approximation argument in Zhang [29]. We set 

(𝑓𝑟 )𝜀(𝑥) = {
0 dist (𝑥, 𝑎𝐵) ≥ 𝜀,

1 −
dist (𝑥, 𝑎𝐵)

𝜀
dist (𝑥, 𝑎𝐵) < 𝜀,

 

for small 𝜀 > 0 and 𝑎 > 0. Here dist (𝑥, 𝑎𝐵) = min𝑦∈𝑎𝐵  |𝑥 − 𝑦|, 𝑥 ∈ ℝ1+2𝜖 . It is clear that (𝑓𝑟)𝜀 tends to the 

characteristic function 𝜒𝑎𝐵 of the ball 𝑎𝐵 as 𝜀 → 0. 

If 𝜀 is small and 0 < dist (𝑥, 𝑎𝐵) < 𝜀, then there exists a unique 𝑥′ ∈ ∂(𝑎𝐵) such that 

dist(𝑥, 𝑎𝐵) = |𝑥′ − 𝑥|. 
Let 

𝜈(𝑥′) =
𝑥′ − 𝑥

|𝑥′ − 𝑥|
. 

From the definition of level sets (5.1) yields 

[(𝑓𝑟)𝜀]𝑡 = {
{𝑥 ∈ ℝ1+2𝜖: dist (𝑥, 𝑎𝐵) ≤ (1 − 𝑡)𝜀} 0 < 𝑡 < 1,

∅ 𝑡 ≥ 1.
 

Therefore, from (5.5) we have 

∫  
𝑆2𝜖

𝜙𝑟(𝑣)𝑑𝜆𝑡((𝑓𝑟)𝜀, 𝑣) = ∫  
{|(𝑓𝑟)𝜀|=𝑡}

𝜙𝑟(𝑣(𝑥))𝑑ℋ2𝜖(𝑥) = 0, 

for every even Borel function 𝜙𝑟: 𝑆2𝜖 → ℝ and 𝑡 ≥ 1. This deduces that the surface area measure of ⟨(𝑓𝑟)𝜀⟩𝑡 

converges weakly to zero when 𝑡 ≥ 1. 

We assume that 0 < 𝑡 < 1. We note that 

∇(𝑓𝑟)𝜀(𝑥) = 𝜀−1𝜈(𝑥′) 

for 𝑥 ∈ [(𝑓𝑟)𝜀]𝑡. By (5.5), we have 

∫  
𝑆2𝜖

 ∑  

𝑟

𝜙𝑟(𝑣)𝑑𝜆𝑡((𝑓𝑟)𝜀, 𝑣) =  ∫  
{|(𝑓𝑟)𝜀|=𝑡}

∑  

𝑟

𝜙𝑟(𝑣(𝑥))𝑑ℋ2𝜖(𝑥)

= ∫  
{𝑥∈ℝ1+2𝜖 ,𝑥′∈∂(𝑎𝐵):|𝑥′−𝑥|=(1−𝑡)𝜀}

∑  

𝑟

 𝜙𝑟(𝜈(𝑥′))𝑑ℋ2𝜖(𝑥)
 

for every even Borel function 𝜙𝑟: 𝑆2𝜖 → ℝ. Therefore, as 𝜀 → 0, we have 

∫  
𝑆2𝜖

∑  

𝑟

𝜙𝑟(𝑣)𝑑𝜆𝑡((𝑓𝑟)𝜀, 𝑣) → ∫  
∂(𝑎𝐵)

∑  

𝑟

𝜙𝑟(𝜈(𝑥′))𝑑ℋ2𝜖(𝑥′) 

for every even Borel function 𝜙𝑟: 𝑆2𝜖 → ℝ. This means that the measure 𝜆𝑡((𝑓𝑟)𝜀,⋅) converges weakly to the 

surface area measure of the ball 𝑎𝐵 as 𝜀 → 0. By the continuity of the solution to the classical Minkowski 

problem (see, e.g., [30], [34]), we conclude that ⟨𝑓𝑟⟩𝑡 converges to 𝑎𝐵 (up to translation) in Hausdorff metric as 

𝑓𝑟 tends to the characteristic function 𝜒𝑎𝐵 of the ball 𝑎𝐵. 

(ii) When 𝜖 > 0 and 𝑓𝑟 (𝑥) = (𝑎 + 𝑏|𝑥|
1+𝜖

ϵ )
−

𝜖

1+𝜖
 with 𝑎, 𝑏 > 0, by a direct calculation, we have 

∇𝑓𝑟(𝑥) = −𝑏 (𝑎 + 𝑏|𝑥|
1+𝜖

𝜖 )
−

1+2𝜖
1+𝜖

|𝑥|
1
𝜖

𝑥

|𝑥|
.           (5.11) 

Let 𝜓(𝑡) = (
𝑡

−
1+𝜖

𝜖 −𝑎

𝑏
)

𝜖

1+𝜖

, where 𝑡 ∈ (0, +∞) such that 𝛼(𝑡) is meaningful. Then, by (5.5) and (5.11) we have 

 ∫  
𝑆2𝜖

∑  

𝑟

𝜙𝑟(𝑣)𝑑𝜆𝑡(𝑓𝑟 , 𝑣)

 = ∫  
{|𝑓𝑟|=𝑡}

∑  

𝑟

𝜙𝑟(𝑣(𝑥))|∇𝑓𝑟(𝑥)|𝜖𝑑ℋ2𝜖(𝑥)

 = (𝑏)𝜖 ∫  
{|𝑥|=𝜓(𝑡)}

∑  

𝑟

𝜙𝑟 (
𝑥

|𝑥|
) (𝑎 + 𝑏|𝑥|

1+𝜖
1+𝜖)

−
(1+2𝜖)(𝜖)

1+𝜖
|𝑥|𝑑ℋ2𝜖(𝑥)
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for every even Borel function 𝜙𝑟: 𝑆2𝜖 → ℝ. Let 𝑥 = 𝜓(𝑡)𝑢 for 𝑢 ∈ 𝑆2𝜖. Then 

∫  
𝑆2𝜖

∑  

𝑟

𝜙𝑟(𝑣)𝑑𝜆𝑡(𝑓𝑟 , 𝑣)  = (𝑏)𝜖 (
1 − 𝑎𝑡

1+𝜖
𝜖

𝑏
)

(1+2𝜖)(𝜖)
1+𝜖

∫  
𝑆2𝜖

∑  

𝑟

𝜙𝑟(𝑢)𝑑𝑆(𝑢). 

Therefore 

𝜆𝑡(𝑓𝑟 ,⋅) = (𝑏)𝜖 (
1 − 𝑎𝑡

1+𝜖
𝜖

𝑏
)

(1+2𝜖)(𝜖)
1+𝜖

𝑆(⋅). 

Combining with (5.8) and the uniqueness of the 𝐿1+𝜖 Minkowski problem, we deduce that 

⟨𝑓𝑟⟩𝑡 = 𝛼(𝑡)𝐵 

with 𝛼(𝑡) = (𝑏
𝜖

𝜖
)

 
(

1−𝑎𝑡
1+𝜖

𝜖

𝑏
)

1+2𝜖

(1+𝜖)

. 

We are now in the position to prove our sharp convex mixed Lorentz-Sobolev inequality (see [31]). 

Theorem 5.1. Suppose 𝜖 > 0. If 𝑓𝑟 , 𝑔𝑟 ∈ 𝐶0
∞(ℝ1+2𝜖), then 

∫  
ℝ1+2𝜖

∫  
ℝ1+2𝜖

∑  

𝑟

|∇𝑓𝑟(𝑥) ⋅ ∇𝑔𝑟(𝑦)|1+𝜖𝑑𝑥𝑑𝑦 

≥ 𝛼1+2𝜖,1+𝜖 ∫  
∞

0

∑  

𝑟

𝑉(⟨𝑓𝑟⟩𝑡)
𝜖

1+2𝜖𝑑𝑡 ∫  
∞

0

∑  

𝑟

𝑉(Π1+𝜖⟨𝑔𝑟⟩𝑠)
1+𝜖

1+2𝜖𝑑𝑠,        (5.12) 

where 𝛼1+2𝜖,1+𝜖 = (1 + 2𝜖)2𝜔1+2𝜖𝑐1+2𝜖,1+𝜖 . For 𝜖 = 0, equality holds as 𝑓𝑟 and 𝑔𝑟 tend to the characteristic 

functions of dilates of centered polar ellipsoids. For 𝜖 > 0 equality holds when 𝑓𝑟(𝑥) tends to (𝑎1 +

|𝜓(𝑥 − 𝑥0)|
1+𝜖

𝜖 )
−

ϵ

1+𝜖
 and 𝑔𝑟(𝑦) tends to (𝑎2 + |𝜓−𝑡(𝑦 + 𝑥0)|

1+𝜖

ϵ )
−

ϵ

1+𝜖
 with 𝑎𝑖 > 0(𝑖 = 1,2), 𝑥0 ∈ ℝ1+2𝜖  and 

𝜓 ∈ GL (1 + 2𝜖). 

Proof. The proof consists of several steps. 

Step 1. Inequality. 

Let 𝑓𝑟 , 𝑔𝑟 ∈ 𝐶0
∞(ℝ1+2𝜖). By the co-area formula (2.10), (5.4), 𝑣(𝑥) =

∇𝑓𝑟(𝑥)

|∇𝑓𝑟(𝑥)|
, the Fubini theorem, co-area 

formula (2.10), 𝑢(𝑥) =
∇𝑔𝑟(𝑥)

|∇𝑔𝑟(𝑥)|
, (5.5), (5.8) and (3.3), we have 

∫  
ℝ1+2𝜖

 ∫  
ℝ1+2𝜖

 ∑  

𝑟

|∇𝑓𝑟(𝑥) ⋅ ∇𝑔𝑟(𝑦)|1+𝜖𝑑𝑥𝑑𝑦 

= ∫  
ℝ1+2𝜖

 ∫  
∞

0

 ∫  
{|𝑓𝑟|=𝑡}

 ∑  

𝑟

|∇𝑓𝑟 (𝑥) ⋅ ∇𝑔𝑟(𝑦)|1+𝜖|∇𝑓𝑟(𝑥)|−1𝑑ℋ2𝜖(𝑥)𝑑𝑡𝑑𝑦 

= ∫  
ℝ1+2𝜖

 ∫  
∞

0

 ∫  
{|𝑓𝑟|=𝑡}

 ∑  

𝑟

|𝑣(𝑥) ⋅ ∇𝑔𝑟(𝑦)|1+𝜖|∇𝑓𝑟(𝑥)|𝜖𝑑ℋ2𝜖(𝑥)𝑑𝑡𝑑𝑦 

= ∫  
∞

0

 ∫  
{|𝑓𝑟|=𝑡}

∑  

𝑟

  |∇𝑓𝑟(𝑥)|𝜖 ∫  
∞

0

 ∫  
{|𝑔𝑟|=𝑠}

 ∑  

𝑟

|𝑣(𝑥) ⋅ 𝑢(𝑦)|1+𝜖|∇𝑔𝑟(𝑦)|𝜖𝑑ℋ2𝜖(𝑦)𝑑𝑠𝑑ℋ2𝜖(𝑥)𝑑𝑡 

 = ∫  
∞

0

 ∫  
{|𝑓𝑟|=𝑡}

 ∑  

𝑟

|∇𝑓𝑟(𝑥)|𝜖 ∫  
∞

0

 ∫  
𝑆2𝜖

 ∑  

𝑟

|𝑣(𝑥) ⋅ 𝑢|1+𝜖𝑑𝜆𝑠(𝑔𝑟 , 𝑢)𝑑𝑠𝑑ℋ2𝜖(𝑥)𝑑𝑡

 = ∫  
∞

0

 ∫  
{|𝑓𝑟|=𝑡}

 ∑  

𝑟

|∇𝑓𝑟(𝑥)|𝜖 ∫  
∞

0

 ∫  
𝑆2𝜖

 ∑  

𝑟

|𝑣(𝑥) ⋅ 𝑢|1+𝜖ℎ(⟨𝑔𝑟⟩𝑠, 𝑢)−𝜖𝑑𝑆(⟨𝑔𝑟⟩𝑠, 𝑢)𝑑𝑠𝑑ℋ2𝜖(𝑥)𝑑𝑡

 = (1 + 2𝜖)𝜔1+2𝜖𝑐1+2𝜖,1+𝜖 ∫  
∞

0

 ∫  
{|𝑓𝑟|=𝑡}

 ∫  
∞

0

 ∑  

𝑟

ℎ(Π1+𝜖⟨𝑔𝑟⟩𝑠, 𝑣(𝑥))1+𝜖|∇𝑓𝑟(𝑥)|𝜖𝑑𝑠𝑑ℋ2𝜖(𝑥)𝑑𝑡. (5.13)

 

By the Fubini theorem, (5.5), (5.8) and (2.2), we have 
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 ∫  
ℝ1+2𝜖

 ∫  
ℝ1+2𝜖

∑  

𝑟

|∇𝑓𝑟(𝑥) ⋅ ∇𝑔𝑟(𝑦)|1+𝜖𝑑𝑥𝑑𝑦

 = (1 + 2𝜖)𝜔1+2𝜖𝑐1+2𝜖,1+𝜖 ∫  
∞

0

 ∫  
∞

0

 ∫  
𝑆2𝜖

 ∑  

𝑟

ℎ(Π1+𝜖⟨𝑔𝑟⟩𝑠, 𝑣)1+𝜖𝑑𝜆𝑡(𝑓𝑟 , 𝑣)𝑑𝑠𝑑𝑡

 = (1 + 2𝜖)𝜔1+2𝜖𝑐1+2𝜖,1+𝜖 ∫  
∞

0

 ∫  
∞

0

 ∫  
𝑆2𝜖

 ∑  

𝑟

ℎ(Π1+𝜖⟨𝑔𝑟⟩𝑠, 𝑣)1+𝜖ℎ(⟨𝑓𝑟⟩𝑡 , 𝑣)−𝜖𝑑𝑆(⟨𝑓𝑟 ⟩𝑡 , 𝑣)𝑑𝑠𝑑𝑡

 = (1 + 2𝜖)2𝜔1+2𝜖𝑐1+2𝜖,1+𝜖 ∫  
∞

0

 ∫  
∞

0

∑  

𝑟

𝑉1+𝜖(⟨𝑓𝑟⟩𝑡 , Π1+𝜖⟨𝑔𝑟⟩𝑠)𝑑𝑠𝑑𝑡.                                           (5.14)

 

By (2.6) and (5.14), we have 

∫  
ℝ1+2𝜖

∫  
ℝ1+2𝜖

∑  

𝑟

|∇𝑓𝑟 (𝑥) ⋅ ∇𝑔𝑟(𝑦)|1+𝜖𝑑𝑥𝑑𝑦 ≥ 𝛼1+2𝜖,1+𝜖 ∫  
∞

0

∫  
∞

0

∑  

𝑟

𝑉(⟨𝑓𝑟 ⟩𝑡)
ϵ

1+2𝜖𝑉(Π1+𝜖⟨𝑔𝑟⟩𝑠)
1+𝜖

1+2𝜖𝑑𝑠𝑑𝑡. 

Step 2. The inequality (5.12) is affine, that is 

∑  

𝑟

∫  
ℝ1+2𝜖  ∫  

ℝ1+2𝜖   |∇(𝑘𝑓𝑟 ∘ Ψ𝑡) ⋅ ∇(𝑘𝑔𝑟 ∘ Ψ−1)|1+𝜖𝑑𝑥𝑑𝑦

∫  
∞

0
 𝑉(⟨𝑘𝑓𝑟 ∘ Ψ𝑡⟩𝑡)

𝜖
1+2𝜖𝑑𝑡 ∫  

∞

0
 𝑉(Π1+𝜖⟨𝑘𝑔𝑟 ∘ Ψ−1⟩𝑡)

1+𝜖
1+2𝜖𝑑𝑠

= ∑  

𝑟

∫  
ℝ1+2𝜖  ∫  

ℝ1+2𝜖   |∇𝑓𝑟 ⋅ ∇𝑔𝑟|1+𝜖𝑑𝑥𝑑𝑦

∫  
∞

0
 𝑉(⟨𝑓𝑟⟩𝑡)

𝜖
1+2𝜖𝑑𝑡 ∫  

∞

0
 𝑉(Π1+𝜖⟨𝑔𝑟⟩𝑠)

1+𝜖
1+2𝜖𝑑𝑠

 

for 𝑘 > 0, Ψ ∈ Aff (1 + 2𝜖), Ψ(𝑥) = 𝜓𝑥 + 𝑧, 𝜓 ∈ GL (1 + 2𝜖) and 𝑧 ∈ ℝ1+2𝜖. 
By Lemma 5.2, (3.6) and (3.7), we have 

∑  

𝑟

⟨𝑘𝑓𝑟 ∘ Ψ𝑡⟩𝑡 = ∑  

𝑟

𝑘
1+𝜖

𝜖 𝜓−𝑡⟨𝑓𝑟⟩𝑡 ,   and  ∑  

𝑟

Π1+𝜖⟨𝑘𝑔𝑟 ∘ Ψ−1⟩𝑡 

= ∑  

𝑟

𝑘|det 𝜓|
1

1+𝜖𝜓−𝑡Π1+𝜖⟨𝑔𝑟⟩𝑡 .                       (5.15) 

By (5.15), (2.3), (2.4) and (2.5) we obtain 

∑  

𝑟

𝑉1+𝜖(⟨𝑘𝑓𝑟 ∘ Ψ𝑡⟩𝑡, Π1+𝜖⟨𝑘𝑔𝑟 ∘ Ψ−1⟩𝑠) = ∑  

𝑟

𝑘2(1+𝜖)𝑉1+𝜖(⟨𝑓𝑟⟩𝑡 , Π1+𝜖⟨𝑔𝑟⟩𝑠),

∑  

𝑟

𝑉(⟨𝑘𝑓𝑟 ∘ Ψ𝑡⟩𝑡)
𝜖

1+2𝜖 = ∑  

𝑟

𝑘1+𝜖| det 𝜓|−
𝜖

1+2𝜖𝑉(⟨𝑓𝑟⟩𝑡)
𝜖

1+2𝜖 ,

∑  

𝑟

𝑉(Π1+𝜖⟨𝑘𝑔𝑟 ∘ Ψ−1⟩𝑠)
1+𝜖

1+2𝜖 = ∑  

𝑟

𝑘1+𝜖| det 𝜓|
𝜖

1+2𝜖𝑉(Π1+𝜖⟨𝑓𝑟⟩𝑡)
1+𝜖

1+2𝜖 .

 

The desired property follows from the above three formulas and (5.14). 

Step 3. Equality conditions of (5.12). 

If 𝜖 = 0, and 𝑓𝑟 and 𝑔𝑟 tend to the characteristic functions of the unit ball, by Lemma 5.4 

(i), we infer that ⟨𝑓𝑟⟩𝑡 and ⟨𝑔𝑟⟩𝑠 converge to the unit ball when 0 < 𝑡, 𝑠 < 1, and their surface area measures 

converge weakly to zero when 𝑡, 𝑠 ≥ 1. Therefore 

∫  
ℝ1+2𝜖

∫  
ℝ1+2𝜖

∑  

𝑟

|∇𝑓𝑟(𝑥) ⋅ ∇𝑔𝑟(𝑦)|𝑑𝑥𝑑𝑦 → (1 + 2𝜖)2𝜔1+2𝜖
2 𝑐1+2𝜖,1, 

and 

(1 + 2𝜖)2𝜔1+2𝜖𝑐1+2𝜖,1 ∫  
∞

0

∑  

𝑟

𝑉(⟨𝑓𝑟⟩𝑡)
2𝜖

1+2𝜖𝑑𝑡 ∫  
∞

0

∑  

𝑟

𝑉(Π⟨𝑔𝑟⟩𝑠)
1

1+2𝜖𝑑𝑠 → (1 + 2𝜖)2𝜔1+2𝜖
2 𝑐1+2𝜖,1. 

By the affine invariance of inequality (5.12), we conclude that equality holds in (5.12) if 𝑓𝑟 and 𝑔𝑟 tend to 

𝜒𝜓𝐵−𝑥0
 and 𝜒𝜓−𝑡𝐵+𝑥0

 with 𝑥0 ∈ ℝ1+2𝜖 and 𝜓 ∈ GL (1 + 2𝜖), respectively. 

If 𝜖 > 0 and 𝑓𝑟(𝑥) = (𝑎1 + 𝑏1|𝑥|
1+𝜖

ϵ )
−

ϵ

1+𝜖
, 𝑔𝑟(𝑦) = (𝑎2 + 𝑏2|𝑦|

1+𝜖

ϵ )
−

ϵ

1+𝜖
 with 𝑎𝑖 , 𝑏𝑖 > 0, (𝑖 = 1,2), by (ii) in 

Lemma 5.4⟨𝑓𝑟⟩𝑡 and ⟨𝑔𝑟⟩𝑠 are balls for every 𝑡, 𝑠 > 0. Then 

𝑉1+𝜖(⟨𝑓𝑟⟩𝑡 , Π1+𝜖⟨𝑔𝑟⟩𝑠) = 𝑉(⟨𝑓𝑟⟩𝑡)
ϵ

1+2𝜖𝑉(Π1+𝜖⟨𝑔𝑟⟩𝑠)
1+𝜖

1+2𝜖. 
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By the affine invariance of inequality (5.12), equality holds in (5.12) for 𝑓𝑟(𝑥) tends to (𝑎1 + |𝜓(𝑥 −

𝑥0)|
1+𝜖

ϵ )
−

ϵ

1+𝜖
 and 𝑔𝑟(𝑦) tends to (𝑎2 + |𝜓−𝑡(𝑦 + 𝑥0)|

1+𝜖

ϵ )
−

ϵ

1+𝜖
 with 𝑎𝑖 > 0(𝑖 = 1,2), 𝑥0 ∈ ℝ1+2𝜖 and 𝜓 ∈

GL (1 + 2𝜖). 

Next, we will show that the analytic inequality (5.12) implies a special case of the 𝐿1+𝜖 Minkowski inequality 

(see [31]). 

Remark 5.1. The analytic inequality (5.12) implies the following geometric inequality 

𝑉1+𝜖(𝐾, Π1+𝜖𝑄)1+2𝜖 ≥ 𝑉(𝐾)𝜖𝑉(Π1+𝜖𝑄)1+𝜖,                      (5.16) 

where 𝐾, 𝑄 ∈ 𝒦𝑠
1+2𝜖, and 𝜖 > 0. 

Proof. Let 𝜑𝑟 ∈ 𝐶1(0, ∞) be strictly decreasing and 

𝑓𝑟 (𝑥) = 𝜑𝑟 (
1

𝜌𝐾(𝑥)
)   and  𝑔𝑟(𝑦) = 𝜑𝑟 (

1

𝜌𝑄(𝑦)
),              (5.17) 

for 𝐾, 𝑄 ∈ 𝒦𝑠
1+2𝜖, and 𝜖 > 0. By (5.14), Lemma 5.1, (3.6) and (2.3), the left hand side of (5.12) is 

 ∫  
ℝ1+2𝜖

 ∫  
ℝ1+2𝜖

 ∑  

𝑟

|∇𝑓𝑟(𝑥) ⋅ ∇𝑔𝑟(𝑦)|1+𝜖𝑑𝑥𝑑𝑦

 = 𝛼1+2𝜖,1+𝜖 ∫  
∞

0

 ∫  
∞

0

 ∑  

𝑟

𝑉1+𝜖(⟨𝑓𝑟⟩𝑡 , Π1+𝜖⟨𝑔𝑟⟩𝑠)𝑑𝑠𝑑𝑡

= 𝛼1+2𝜖,1+𝜖𝑉1+𝜖(𝐾, Π1+𝜖𝑄) ∫  
∞

0

∑  

𝑟

|𝜑𝑟
′ (𝑠)|1+𝜖𝑠2𝜖𝑑𝑠 ∫  

∞

0

∑  

𝑟

  |𝜑𝑟
′ (𝑡)|1+𝜖𝑡2𝜖𝑑𝑡. (5.18)

 

The right hand side of (5.12) is 

𝛼1+2𝜖,1+𝜖  ∫  
∞

0

 ∫  
∞

0

∑  

𝑟

 𝑉(⟨𝑓𝑟⟩𝑡)
ϵ

1+2𝜖𝑉(Π1+𝜖⟨𝑔𝑟⟩𝑠)
1+𝜖

1+2𝜖𝑑𝑠𝑑𝑡

 = 𝛼1+2𝜖,1+𝜖𝑉(𝐾)
ϵ

1+2𝜖𝑉(Π1+𝜖𝑄)
1+𝜖

1+2𝜖 ∫  
∞

0

 ∑  

𝑟

|𝜑𝑟
′ (𝑠)|1+𝜖𝑠2𝜖𝑑𝑠 ∫  

∞

0

∑  

𝑟

  |𝜑𝑟
′ (𝑡)|1+𝜖𝑡2𝜖𝑑𝑡.

   (5.19) 

Therefore the analytic inequality (5.12) implies the geometric inequality (5.16). 

The sharp convex mixed Lorentz-Sobolev inequality (5.12) implies the sharp convex Lorentz-Sobolev inequality 

(1.5) of Ludwig, Xiao and Zhang [12] (see also [32]). 

Corollary 5.1 (see [31]). If 𝑓𝑟 ∈ 𝐶0
∞(ℝ1+2𝜖) and 𝜖 > 0, then 

∥ ∑  

𝑟

∇𝑓𝑟 ∥1+𝜖
1+𝜖≥ (1 + 2𝜖)𝜔1+2𝜖

1+𝜖
1+2𝜖 ∫  

∞

0

∑  

𝑟

𝑉(⟨𝑓𝑟⟩𝑡)
𝜖

1+2𝜖𝑑𝑡,                                (5.20) 

with equality as 𝑓𝑟 tends to the characteristic function of a ball for 𝜖 = 0 and for 𝜖 > 0 equality is attained when 

𝑓𝑟(𝑥) tends to (𝑎 + 𝑏|𝑥|
1+𝜖

ϵ )
−

𝜖

1+𝜖
 with 𝑎, 𝑏 > 0. 

Proof. If 𝜖 = 0 and 𝑔𝑟 tends to the characteristic function of the unit ball 𝐵, then by (i) of Lemma 

5.4, (3.5), (5.14) and the definition of ⟨𝑓𝑟⟩𝑡, we have 

∫  
ℝ1+2𝜖

∫  
ℝ1+2𝜖

∑  

𝑟

|∇𝑓𝑟 (𝑥) ⋅ ∇𝑔𝑟(𝑦)|𝑑𝑥𝑑𝑦 → (1 + 2𝜖)2𝜔1+2𝜖𝑐1+2𝜖,1 ∫  
∞

0

∑  

𝑟

𝑉1(⟨𝑓𝑟⟩𝑡 , 𝐵)𝑑𝑡 

 = (1 + 2𝜖)𝜔1+2𝜖𝑐1+2𝜖,1 ∫  
∞

0

∑  

𝑟

𝑆(⟨𝑓𝑟⟩𝑡)𝑑𝑡

 = (1 + 2𝜖)𝜔1+2𝜖𝑐1+2𝜖,1 ∫  
∞

0

 ∫  
{|𝑓𝑟|=𝑡}

∑  

𝑟

 𝑑ℋ2𝜖(𝑥)𝑑𝑡

 = (1 + 2𝜖)𝜔1+2𝜖𝑐1+2𝜖,1 ∫  
ℝ1+2𝜖

∑  

𝑟

|∇𝑓𝑟(𝑥)|𝑑𝑥,

 

and 

(1 + 2𝜖)2𝜔1+2𝜖𝑐1+2𝜖,1 ∫  
∞

0

∑  

𝑟

𝑉(⟨𝑓𝑟⟩𝑡)
2𝜖

1+2𝜖𝑑𝑡 ∫  
∞

0

∑  

𝑟

𝑉(Π⟨𝑔𝑟⟩𝑠)
1

1+2𝜖𝑑𝑠

→ (1 + 2𝜖)2𝜔1+2𝜖

2+2𝜖
1+2𝜖𝑐1+2𝜖,1 ∫  

∞

0

∑  

𝑟

𝑉(⟨𝑓𝑟⟩𝑡)
2𝜖

1+2𝜖𝑑𝑡. 

It follows that (5.12) implies (5.20) when 𝜖 = 0. 
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For 𝜖 > 0, let 𝜑𝑟(𝑡) = (1 + 𝑡
1+𝜖

𝜖 )
−

𝜖

1+𝜖
 and 𝑔𝑟(𝑦) = 𝜑𝑟(1/𝜌𝐵(𝑦)). Then 

∇𝑔𝑟(𝑦) = ∇ (1 + |𝑦|
1+𝜖

𝜖 )
−

𝜖
1+𝜖

= − (1 + |𝑦|
1+𝜖

𝜖 )
−

1+2𝜖
1+𝜖

|𝑦|
1
𝜖

𝑦

|𝑦|
. 

The left hand side of (5.12) can be written as 

∫  
ℝ1+2𝜖

 ∫  
ℝ1+2𝜖

 ∑  

𝑟

|∇𝑓𝑟(𝑥) ⋅ ∇𝑔𝑟(𝑦)|1+𝜖𝑑𝑥𝑑𝑦 

= ∫  
∞

0

 ∑  

𝑟

|𝜑𝑟
′ (𝑡)|1+𝜖𝑡2𝜖𝑑𝑡 ∫  

ℝ1+2𝜖

 ∫  
𝑆2𝜖

∑  

𝑟

  |∇𝑓𝑟 (𝑥) ⋅ 𝑢|1+𝜖𝑑𝑢𝑑𝑥. (5.21) 

From Lemma 5.1, we have 

⟨𝑔𝑟⟩𝑠 = 𝑐1+𝜖(𝑠)𝐵, 

where 𝑐1+𝜖(𝑠)𝜖 = |𝜑𝑟
′ (𝑡)|𝜖𝑡2𝜖  and 𝑠 = 𝜑𝑟(𝑡) = (1 + 𝑡

1+𝜖

𝜖 )
−

𝜖

1+𝜖
. Therefore, the right-side of (5.12) is 

𝛼1+2𝜖,1+𝜖  ∫  
∞

0

 ∫  
∞

0

∑  

𝑟

 𝑉(⟨𝑓𝑟⟩𝑡)
𝜖

1+2𝜖𝑉(Π1+𝜖⟨𝑔𝑟⟩𝑠)
1+𝜖

1+2𝜖𝑑𝑠𝑑𝑡

 = 𝛼1+2𝜖,1+𝜖𝜔1+2𝜖

1+𝜖
1+2𝜖 ∫  

∞

0

 ∑  

𝑟

|𝜑𝑟
′ (𝑡)|1+𝜖𝑡2𝜖𝑑𝑡 ∫  

∞

0

 ∑  

𝑟

𝑉(⟨𝑓𝑟⟩𝑡̃)
𝜖

1+2𝜖𝑑𝑡.        (5.22)

 

From Theorem 5.1, (5.21) and (5.22), we have 

∫  
ℝ1+2𝜖

∫  
𝑆2𝜖

∑  

𝑟

|∇𝑓𝑟 (𝑥) ⋅ 𝑢|1+𝜖𝑑𝑢𝑑𝑥 ≥ 𝛼1+2𝜖,1+𝜖𝜔1+2𝜖

1+𝜖
1+2𝜖 ∫  

∞

0

∑  

𝑟

𝑉(⟨𝑓𝑟⟩𝑡)
𝜖

1+2𝜖𝑑𝑡. 

By a direct calculation, one has 

∫  
ℝ1+2𝜖

 ∫  
𝑆2𝜖

∑  

𝑟

|∇𝑓𝑟 (𝑥) ⋅ 𝑢|1+𝜖𝑑𝑢𝑑𝑥  = ∫  
𝑆2𝜖

  |𝑣0 ⋅ 𝑢|1+𝜖𝑑𝑢 ∫  
ℝ1+2𝜖

 ∑  

𝑟

|∇𝑓𝑟(𝑥)|1+𝜖𝑑𝑥

 =
(1 + 2𝜖)𝜔1+2𝜖𝜔3𝜖−1

𝜔2𝜔2𝜖−1𝜔𝜖

∫  
ℝ1+2𝜖

 ∑  

𝑟

|∇𝑓𝑟(𝑥)|1+𝜖𝑑𝑥.         (5.24)

 

Inequality (5.20) follows from (5.23) and (5.24). 

The equality condition of the sharp convex Lorentz-Sobolev inequality (5.20) comes from Theorem 5.1. 

By Lemma 4.3 and (5.14), we obtain the following results (see [31]). 

Theorem 5.2. Let 𝑓𝑟 , 𝑔𝑟 ∈ 𝐶0
∞(ℝ1+2𝜖) and 𝜖 > 0. 

(i) If 𝜖 ≥ 0, then 

∫  
ℝ1+2𝜖

∫  
ℝ1+2𝜖

∑  

𝑟

|∇𝑓𝑟(𝑥) ⋅ ∇𝑔𝑟(𝑦)|1+𝜖𝑑𝑥𝑑𝑦 

≥ (1 + 2𝜖)𝜔1+2𝜖

2(1+𝜖)
1+2𝜖 ∫  

∞

0

∑  

𝑟

𝑉(⟨𝑓𝑟 ⟩𝑡)
𝜖

1+2𝜖𝑑𝑡 ∫  
∞

0

∑  

𝑟

𝑉(⟨𝑔𝑟⟩𝑠)
𝜖

1+2𝜖𝑑𝑠.               (5.25) 

(ii) If 𝜖 > 0, then 

∫  
ℝ1+2𝜖

∫  
ℝ1+2𝜖

∑  

𝑟

|∇𝑓𝑟(𝑥) ⋅ ∇𝑔𝑟(𝑦)|2+𝜖𝑑𝑥𝑑𝑦 

≥ (1 + 2𝜖)−
𝜖
2𝜔1+2𝜖

2(2+𝜖)
1+2𝜖 ∫  

∞

0

∑  

𝑟

𝑉(⟨𝑓𝑟 ⟩𝑡)
𝜖−1

1+2𝜖𝑑𝑡 ∫  
∞

0

∑  

𝑟

𝑉(⟨𝑔𝑟⟩𝑠)
𝜖−1

1+2𝜖𝑑𝑠.                  (5.26) 

Each equality holds when 𝜖 = 0 and 𝑓𝑟(𝑥) tends to (𝑎1 + |𝜓(𝑥 − 𝑥0)|
2+𝜖

1+𝜖)

1−𝜖

2+𝜖
, 𝑔𝑟(𝑦) tends to (𝑎2 +

|𝜓−𝑡(𝑦 + 𝑥0)|
2+𝜖

1+𝜖)

1−𝜖

2+𝜖
 with 𝑎𝑖 > 0(𝑖 = 1,2), 𝑥0 ∈ ℝ1+2𝜖 and 𝜓 ∈ GL (1 + 2𝜖). 

Proof. (i) For 𝜖 ≥ 0, by (5.14) and Lemma 4.3 (i), we have 
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 ∫  
ℝ1+2𝜖

 ∫  
ℝ1+2𝜖

 ∑  

𝑟

|∇𝑓𝑟(𝑥) ⋅ ∇𝑔𝑟(𝑦)|1+𝜖𝑑𝑥𝑑𝑦

 = (1 + 2𝜖)2𝜔1+2𝜖𝑐1+2𝜖,1+𝜖 ∫  
∞

0

 ∫  
∞

0

∑  

𝑟

𝑉1+𝜖(⟨𝑓𝑟⟩𝑡 , Π1+𝜖⟨𝑔𝑟⟩𝑠)𝑑𝑠𝑑𝑡

 ≥ (1 + 2𝜖)𝜔
1+2𝜖

2(1+𝜖)
1+2𝜖 ∫  

∞

0

∑  

𝑟

 𝑉(⟨𝑓𝑟⟩𝑡)
𝜖

1+2𝜖𝑑𝑡 ∫  
∞

0

∑  

𝑟

 𝑉(⟨𝑔𝑟⟩𝑠)
𝜖

1+2𝜖𝑑𝑠.

 

Similar to the proof in Theorem 5.1, the equality condition follows immediately from the equality condition of 

Lemma 4.3. 

(ii) For 𝜖 > 0, by (5.14) and Lemma 4.3 (ii), we have 

 ∫  
ℝ1+2𝜖

 ∫  
ℝ1+2𝜖

 ∑  

𝑟

|∇𝑓𝑟(𝑥) ⋅ ∇𝑔𝑟(𝑦)|2+𝜖𝑑𝑥𝑑𝑦

 = (1 + 2𝜖)2𝜔1+2𝜖𝑐1+2𝜖,2+𝜖 ∫  
∞

0

 ∫  
∞

0

 ∑  

𝑟

𝑉2+𝜖(⟨𝑓𝑟⟩𝑡 , Π2+𝜖⟨𝑔𝑟⟩𝑠)𝑑𝑠𝑑𝑡

 ≥ (1 + 2𝜖)−
𝜖
2𝜔1+2𝜖

2(2+𝜖)
1+2𝜖 ∫  

∞

0

∑  

𝑟

 𝑉(⟨𝑓𝑟 ⟩𝑡)
𝜖−1

1+2𝜖𝑑𝑡 ∫  
∞

0

 ∑  

𝑟

𝑉(⟨𝑔𝑟⟩𝑠)
𝜖−1

1+2𝜖𝑑𝑠.

 

Similar to the proof in Theorem 5.1, the equality condition follows immediately from the equality condition of 

Lemma 4.3. 
Remark 5.2. The functional inequality (5.25) implies the 𝐿2+𝜖 Minkowski inequality (4.8) and the functional 

inequality (5.26) implies the 𝐿2+𝜖 Minkowski inequality (4.9). 

The following analytic inequalities are direct consequences of (5.9) and Theorem 5.2. 

Corollary 5.2. Suppose 𝜖 > 0 and 
(1+𝜖)(1+2𝜖)

𝜖
 is given by 𝜖 = 0. Let 𝑓𝑟 , 𝑔𝑟 ∈ 𝐶0

∞(ℝ1+2𝜖). 

(i) If 𝜖 ≥ 0, then 

∫  
ℝ1+2𝜖

∫  
ℝ1+2𝜖

∑  

𝑟

|∇𝑓𝑟(𝑥) ⋅ ∇𝑔𝑟(𝑦)|1+𝜖𝑑𝑥𝑑𝑦 

≥ (1 + 2𝜖)−1𝑐1+2𝜖,1+𝜖
2(1+𝜖)

∑  

𝑟

∥ 𝑓𝑟 ∥(1+𝜖)(1+2𝜖)
𝜖

1+𝜖 ∥ 𝑔𝑟 ∥(1+𝜖)(1+2𝜖)
𝜖

1+𝜖 .                       (5.27) 

(ii) If 𝜖 > 0, then 

∫  
ℝ1+2𝜖

∫  
ℝ1+2𝜖

∑  

𝑟

|∇𝑓𝑟(𝑥) ⋅ ∇𝑔𝑟(𝑦)|2+𝜖𝑑𝑥𝑑𝑦 

≥ (1 + 2𝜖)−
2+𝜖

2 𝑐1+2𝜖,2+𝜖
2(2+𝜖)

∑  

𝑟

∥ 𝑓𝑟 ∥(1+𝜖)(1+2𝜖)
𝜖

2+𝜖 ∥ 𝑔𝑟 ∥(1+𝜖)(1+2𝜖)
𝜖

2+𝜖 .                             (5.28) 
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