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Abstract.

We give a smooth survey and investigation following the way of Niufa Fang, Wenxue Xu, Jiazu Zhou
and Baocheng Zhu [31] who study and obtain a sharp convex mixed Lorentz-Sobolev inequality, which
produced the functional version of an L, .. Minkowski inequality. The new sharp convex mixed Lorentz-Sobolev
inequality that implies to and improved the sharp convex Lorentz-Sobolev inequality of Ludwig, Xiao and Zhang
are shown.
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1. Introduction

The Sobolev inequality is one of the fundamental inequalities connecting analysis and geometry. The
Sobolev inequality plays and deals with a number of mathematical branches such as the theory of partial
differential equations, geometric measure theory, algebraic geometry, convex geometry, calculus of variations
and other analytic areas. The Sobolev inequality was originated and developed from the classical isoperimetric
inequality.

The classical isoperimetric problem is to determine a plane figure of the largest possible area whose
boundary has a given length. The solution to the isoperimetric problem is given by a circle and was known
already in Ancient Greece. However, the first mathematically rigorous proof was obtained only in the 19 th
century. The generalized isoperimetric problem is to determine a geometric object of the largest possible volume
whose boundary has a fixed surface area in the Euclidean space R1*2€,

For K be a compact convex set in R1*2€, The surface area S(K) and volume V (K) of K satisfy

S(K)2€ > (1 + 2€)1 %€ w4,V (K)%E, (1.1)
1+2€

where wq,,e = F’%—ie) is the volume of the unit ball in R**2€ and T'(+) is the Gamma function (see [35], [36],
2

[37]). Equality holds in (1.1) if and only if K is a ball in R1*2€,
The isoperimetric inequality (1.1) for sufficiently smooth domains is equivalent to the Sobolev inequality with
optimal constant,

2€

(1+2€)” w1+12+€26f z |VE-(x)|dx = (f Z |fr(x)|1;r§€dx>1+26 (1.2)

forall £. € WL1(R1*2€), the usual Sobolev space of real-valued functions of R1*2€ with L, partial derivatives.
The classical sharp L, Sobolev inequality states that (see [2,8,19,25]):

Let f. € C5° (R1*2¢€), the set of smooth functions with compact support on R*2€, For € > 0, an
1

1+€
( | 2 |Vﬁ(x)|1+fdx) > Crisenve ). Iy lasoasze, (13)
R1+2€ €

r
where |Vf,.(x)]| is the Euclidean norm of the gradient of f., II-lla+ea+2e 1S the usual La+e)a+2e) NOrm of £. on

€ €

q (1+€)(1+2€)

R1+26, and
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1 1+ 2¢ 1+ 2¢ 1+2e
Crizeae = (1+ 26077 [0 el (o T (2 + 2 =) r +20)|

The extremal functions for inequality (1.2) are the characteristic functions of balls and equality holds in (1.3)

1+€ __E A
when f,.(x) tends to (a + blx — xOIT) "€ with @, b > 0 and x, € R1+2€,

The sharp L, Sobolev inequality has been extended in several important ways. In [29], Zhang established the
sharp affine Sobolev-Zhang inequality which is invariant under all affine transformations of R1*2¢. The affine
Sobolev-Zhang inequality is significantly stronger than the classical L, Sobolev inequality. Moreover, the affine
Sobolev-Zhang inequality is equivalent to the generalized Petty projection inequality. The affine Sobolev-Zhang
inequality is a cornerstone of affine geometric analysis. Lutwak, Yang and Zhang [17] extended the affine
Sobolev-Zhang inequality to the L,,. case for € > 0, and they proved that the sharp affine L;,. Sobolev
inequality is the functional version of the L,,. affine isoperimetric inequality in [14], (see also [33]). A new
proof of the sharp affine Sobolev type inequalities was given in [11].

In the affine setting, Haberl and Schuster [9] proved the asymmetric affine L,,. Sobolev inequality that is
stronger than the sharp affine L,,. Sobolev inequality. A general case of the affine L,,. Sobolev inequality
which constitutes a bridge between the affine L,.. Sobolev inequality and the asymmetric affine L,,. Sobolev
inequality was obtained in [28] (see also [33], [34]). Cianchi, Lutwak, Yang and Zhang [5] proved the affine
Morrey-Sobolev inequality. An asymmetric affine PAlya-Szegd principle was established by Haberl, Schuster
and Xiao [10], and the equality cases and stability for the affine PGlya-Szegd principle were established in [27].
Moreover, Wang extended the affine L; Sobolev inequality to BV (R*2€) in [26].

Another important development with respect to the original L, Sobolev inequality (1.3) is the following
Lorentz-Sobolev inequality [1,12], (see also [32]) :

If £, € C3°(R1*2€) and € = 0, then
1+€

o €
1)) V5 I (L @ + 20005 | D VRIS (14)
0
r

=
where [f,]; = {x € R*2¢: |f.(x)| = t} is the level set of f,.

Using Lorentz integrals of the L, . convexification of level sets (see the definition in Section 5) instead of level
sets, Ludwig, Xiao and Zhang [12] obtained the following sharp convex Lorentz-Sobolev inequality:

If £, € C°(R1*2€) and € = 0, then
1+€

I Z VE e (1 +26)w11++22§f0 z V((f.)) T2edt. (1.5)

Equality holds in (1.5) as f,- tends to the characteristic function of an origin-centered ball for e = 0 and for € > 0

1teNTTre . -
equality is attained when f,.(x) tends to (a + b|x|T) ¢ with positive constants a, b.

We are not aware of any geometric inequality corresponding to the Lorentz-Sobolev inequality (1.4). Ludwig,
Xiao and Zhang [12], (see also [32]), showed that the inequality (1.5) is the functional analogue of the following

L4, isoperimetric inequality of Lutwak [13],
1+€

— €
Si+e(K) = (14 26)w, 26V (K) T+, (1.6)
where K ¢ R*2€ is an origin-symmetric convex body and S, ,.(K) is the Ly, surface area of K for e > 0.

Niufa Fang, Wenxue Xu, Jiazu Zhou and Baocheng Zhu [31] establish a new sharp convex mixed
Lorentz-Sobolev inequality for the L,,. convexification of level sets and the L,,. projection body of the L,
convexification of level sets.

Sharp Convex Mixed Lorentz-Sobolev Inequality. Let f,, g, € C° (R1+2€). If € > 0, then
[ D 19 - Vg, oiedndy
R1+2€ R1+2€ p

© € © 1+€
= “1+2€,1+ef Z V(<fr)t)mdtj z V(I 4e(gr)s)1+2€ds, (1.7)
0 T 0 '

2
where """ denotes the standard inner product and @y 4p¢ 14e = S 212e%es1 Equality holds in (1.7) as £ and

WaW2e—1We

g, tend to characteristic functions of dilates of centered polar ellipsoids for € = 0, and for € > 0 when f.(x)

1teN Tive 1teNTTre
tends to (a1 + |Y(x — xg)| € ) and g, (y) tends to (az + Y~y + xo)| e ) with a; > 0(i = 1,2),x, €
R*2€¢ and ¢ € GL(1 + 2¢).
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We will show that the sharp convex mixed Lorentz-Sobolev inequality (1.7) is the functional inequality
corresponding to the following L, .. Minkowski inequality:
Let K,Q c R*2€ pe origin-symmetric convex bodies. If e > 0, then
V1+6(K» H1+EQ)1+26 = V(K)EV(H1+EQ)1+€- (18)
Here V;,.(:,-) denotes the L, mixed volume of convex bodies.
Note that the L,,. isoperimetric inequality (1.6) follows from (1.8) when @ is a ball and the sharp convex
Lorentz-Sobolev inequality (1.5) implies the L,.. isoperimetric inequality (1.6). Motivated by these facts, we
prove that the sharp mixed convex Lorentz-Sobolev inequality (1.7) implies the sharp convex Lorentz-Sobolev
inequality (1.5), and hence also implies the L, .. Sobolev inequalities (1.2) and (1.3).
We collect some facts on the L,,. Petty projection body, the L,,. Minkowski problem that are central
tools in the proofs of our main theorems. We recall some results on L, . John ellipsoids and prove a special L,
Minkowski inequality which will be used the sequel.
2. Preliminaries
For 1*2€ denotes the set of convex bodies (compact, convex subsets with nonempty interiors) in the
Euclidean space R*2¢, we write F1+2€ and F1+2€ for the set of convex bodies containing the origin in their
interiors and the set of origin-symmetric convex bodies in R1*2€, respectively. In this paper it is assumed that all
convex bodies have the origin in their interiors. Let V(K) denote the (1 + 2¢)-dimensional volume of the
convex body K. Let B = {x € R*2€: |x| < 1} denote the standard unit ball in R1*2€, and its volume is denoted

1+2€

by V(B) = wy4¢ = ;Ez—fze) Let S2¢ = {x € R'*2¢: |x| = 1} denote the unit sphere in R1*2€,

2

We write GL(1 + 2¢) for the group of general linear transformations in R1*2€. For ¢, € GL(1 + 2¢) write ¢f
and ¢! for the transpose and inverse of ¢, respectively, and ¢t for the inverse of the transpose
(contragradient) of ¢,., and let det ¢, denote the determinant of ¢,. Let SL(1 + 2¢) = {¢,: |det¢,| = 1,¢, €
GL(1 + 2¢)}.
If K € 3¢1*2€ then its support function, hx(-) = h(K,)): R1*2€ - R, is defined by
h(K,x) = max {x-y:y € K}, x € R1*2€,
A convex body K is uniquely determined by its support function h(K,-). It is obvious that for 1 > 0, the support
function of the convex body AK = {Ax: x € K} satisfies
h(AK,) = Ah(K,").
For real € > 0,K, L € X2*2¢€ and real £ > 0, the Minkowski-Firey L;,. combination K+, - L is the convex
body whose support function is given by
h(K + j4c€- L)Y = h(K,)'*€ + eh(L,)e.
The L, mixed volume V;, (K, L) of convex bodies K and L is defined by

1+¢€ V(IK+,..6-L)—V(K
V1+6(K,L)=1 lim( 1+e€ * L) ()_

+ 2€ e-0* €
The existence of this limit was proven in [13]. In particular,
Viie(K,K) = V(K) (2.1)
for K € 3¢1+2€. By [13], there exists a unique finite positive Borel measure S;...(K,:) on S2€ such that
Viee(K, L) = 1752 . h(L, u)'*€dSy4e(K, u), (2.2)

for L € K}*2¢€. The measure S;.,.(K,") is called the L., surface area measure of K. The measure S, (K,") =
S(K,") = Sk(:) is the classical surface area measure of K. It was shown in [13] that the measure S;,.(K,) is
absolutely continuous with respect to Sk (-) and the Radon-Nikodym derivative is

dSyre(K,) -

———— = h(K,")"".

dS(K,")

If the boundary 0K of K is C? with positive curvature, then the Radon-Nikodym derivative of S, with respect to
the Lebesgue measure on S2€ is the reciprocal of the Gaussian curvature of dK (when viewed as a function of the
outer normals of dK).
If K,L € 31+2€, then

Viie(tK,L) =tV (K, L) for t > 0, (2.3)
Viee(K, tL) = t1*€V;, (K, L) for t > 0, (2.4)

and
Vite(@rK, L) = Vi (K, ¢7'L) for ¢, € SL(1 + 26). (2.5)

The L, Minkowski inequality was proven in [13]:
If K,L € 1*2€ and € > 0, then

IJNRD2502203

International Journal Of Novel Research And Development (www.ijnrd.org)



http://www.ijrti.org/

© 2025 IJNRD | Volume 10, Issue 2 February 2025 | ISSN: 2456-4184 | JNRD.ORG
Vise(K, L)1F2€ = V(K)V (L)1, (2.6)
with equality if and only if K and L are homothetic when € = 0, and K and L are dilates when € > 0.
A star body M is a compact set in R1*2€ which is star shaped with respect to the origin, i.e., if x € M, then the
line segment joining the origin to x is contained in M. The radial function, p,(-) = p(M,"): R1*2€ \ {0} - R, of
M is defined for x # 0 by
p(M,x) = max {1=0:1x € M}.
The radial function is positively homogeneous of —1, that is
p(M,ax) = a 1p(M,x), a > 0.
Let M be a star body in R*2€, Its polar body M* is defined by
M* ={x e R1*2¢:x -y <1 forall y € M}.
Let K € K1*2¢. The well-known Blaschke-Santal6 inequality [24] states that:

VKW (K" < wfize (2.7)
with equality if and only if K is an ellipsoid.
In particular, if K € 3¢1+2€, then
1
p(K*) = , h(K*,) = :
h(K,") p(K,)
If K,L € X21*2¢ and 1 > 0, then
1
K‘;AL@K*QEL*, (2.8)
and
1
K=/1L<=>K*=ZL*. (2.9)

We will frequently apply Federer's co-area formula [7]. For quick reference we state a version that is sufficient
for our purposes.
If £,: R1*2€ - Ris locally Lipschitz and g,: R1*2€ — [0, o) is measurable, then, for any Borel set 4 € R,

9r(x)
SV >, d3*¢(x)dy, 2.10
ff“l“)“{wfrwz 9r () Lffr—lm 0, oGl O (2.10)

r

where 7{£2€ is the (2¢)-dimensional Hausdorff measure.
Let Aff(1 + 2¢) denote the group of invertible affine transformations of R1*2¢, that is, every map ¥ € Aff(1 +
2€) is a general linear transformation followed by a translation. There is a natural left action of R\ {0} X
Aff(1 + 2¢) on functions f,.: R1t2¢ > R, given by

frokfro®™!
for each (k,¥) in R\ {0} x Aff(1 + 2¢). An inequality L[f.] < R[f,] for a class of functions R1*2¢ - R is

called affine if
Llkf, ow™']  LIf]
R[kf, o ¥=1]  R[f] (2.11)

for each (k,W) € R\ {0} x Aff(1 + 2¢).

3. Ly, Projection Body and L4, Minkowski Problem

3.1. L4, Projection Body

The classical projection body was introduced by Minkowski (see [38], [39]). For K € K1*2€, the classical

projection body MK of K is defined as the origin-symmetric convex body in R**2€ with support function:
h(IIK,w) = Vo (K | ut), u € 2. (3.1

Here V,.(K | ut) is the 2e dimensional volume of K projected to the hyperplane passing through the origin with

the normal direction u.

Interest in projection bodies was rekindled by Bolker [4], Petty [20] and Schneider [23] (see also [33]). The

fundamental inequality for projection bodies is the following Petty projection inequality [21]:

If K € 3C1+2€ then

(3.2)

w1+26>1+2€
Wae ’

with equality if and only if K is an ellipsoid. Here IT*K denotes the polar body of the projection body IIK.
The Petty projection inequality (3.2) has been studied widely. In particular, Lutwak, Yang and Zhang [14], (see
also [33]), extended the Petty projection inequality (3.2) to the L;,.-projection body. They defined the L, .-
projection body as follows:

For K € 51*2€ and € > 0, the L,,.-projection body II,,.K of K is the origin symmetric convex body with
support function (Il K,"): R1t2€ - (0, ),

IJNRD2502203
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1+e€
h(Iy K, u) = < lu-v|**edS; . (K, v)) , u € §%¢,(3.3)

(14 26)w1426C142¢14€ —[526

where
W3e-1
C =— 3.4
1+2¢€1+€ Wy Woe—qWe ( )
The constant ¢; 4,¢ 1+¢ IS chosen such that
M,,.B = B. (3.5)
For 1 > 0 and K € 51*2€, one has
€
M4 (AK) = AT+ell, K, (3.6)
and
M4 ($,.K) = ¢, K for ¢, € SL(1 + 2¢). (3.7)

3.2. The Ly, Minkowski Problem

The Minkowski problem is a central problem in integral geometry, convex geometric analysis and PDE.
The classical Minkowski problem asks for necessary and sufficient conditions for a Borel measure on the unit
sphere to be the surface area measure of a convex body in R**2€, The classical Minkowski problem was solved
by Minkowski when the given measure is either discrete or has a smooth density. It was extended to arbitrary
measures independently by Alexandrov, and Fenchel and Jessen. The solution to the Minkowski problem states:
For each Borel measure p on S2¢ that is not supported on a great hemisphere, there exists a unique (up to
translation) convex body K so that

S(K') =u

if and only if

Lze vdu(v) = 0.

Lutwak [13] extended the Minkowski problem to the L, . version, which is a central problem in the L, Brunn-
Minkowski theory (see also [34]).
L1, Minkowski Problem. For K € 1*2€, find necessary and sufficient conditions for a finite Borel measure u
on the unit sphere S2€ so that u is the L, .-surface area measure of convex body K.
A Borel measure on S2€ is even if for each Borel set w < S2€ the measure of w and the measure of —w =
{—x:x € w} are equal. In [13], the following solution to the even case of the L;,. Minkowski problem was
given:
Theorem 3.1. Suppose u is an even positive measure on S2€ that is not supported on a great hypersphere of S2€.
Then for real e > 0 such that e # 0 there exists a unique origin-symmetric convex body K in R**2€ whose L,
surface area measure is u; that is,

1= S1+e(K,). (3.8)
4. Ly, John Ellipsoids
Ellipsoids are important objects in the Brunn-Minkowski theory and the dual-BrunnMinkowski theory. The
celebrated John ellipsoid, associated with each convex body K, is the unique ellipsoid /K of maximal volume
contained in K. Two important results concerning the John ellipsoid are John's inclusion and Ball's volume-ratio
inequality [3]. The John ellipsoid is within the classical Brunn-Minkowski theory and is extremely useful in both
convex and Banach space geometry [3,22].
Lutwak, Yang and Zhang [15] introduced the LY Z ellipsoid I'_, K whose radial function is defined by

1
pr_,xw)? = V) Jze lu - v|?dS, (K, v),
for K € X1+2%€ and u € S2¢,
It was proved in [15] that the properties of the LYZ ellipsoid are analogous to that of the John ellipsoid, such as
the volume of the LYZ ellipsoid is dominated by the volume of K, there is an inclusion identical to John's
inclusion, and a version of Ball's volume-ratio inequality for the LYZ ellipsoid also holds. Unlike the John
ellipsoid, there is an analytic formulation for the LYZ ellipsoid. The domain of the LYZ ellipsoid was extended
to star-shaped sets in [16]. The LYZ ellipsoid for log-concave functions was introduced in [6].
The L, curvature (f-);14+¢(K,-) of a smooth convex body K is an important notion in convex geometry:
(F)r4e(K,) = h*f (K.,

Here f..(K,-) denotes the reciprocal of the Gaussian curvature of dK (when viewed as a function of the outer
normals of dK). It is the core of the integral formula of L. mixed volume and related inequalities. In [18], the
authors studied minimizing the total L,,.-curvature of a convex body under SL (1 + 2¢)-transformations.
For a smooth convex body K € K2*2¢, and a fixed real € > 0, find
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min : : K, u)ds(u).
¢rESL(1+2¢€) e (f)1+e(er )dS(u)
r

By using the integral formula of L, . mixed volume V;,.(K, E) of a convex body K and an origin-centered
ellipsoid E, minimizing the total L, .-curvature can be formulated in the following equivalent ways [18]:
Problem $;,.. Given a convex body K € X2*2¢, find an ellipsoid E, amongst all origincentered ellipsoids,
which solves the following constrained maximization problem:

1

1

V(E)\1+2e Viie(K, E)\1te

( )) subject to <M> <1
V(K)

max ( (4.1)

W1+2e
A maximal ellipsoid is called an S, . solution for K.

The following problem is dual to S; .. :
Problem S,,.. Given a convex body K € %1*2¢, find an ellipsoid E, amongst all origincentered ellipsoids,

which solves the following constrained minimization problem:
1

1

. (M)”E subject to (V(E) )HZE >1. (4.2)
_ V(K) W1+2¢

A minimal ellipsoid is called an §; . solution for K.

The existence of solutions of problem S . and problem S, , . was given by Lutwak, Yang and Zhang.

Theorem 4.1. ( [18, Theorem 2.2 ] ). Suppose real € = 0 and K € K1*2€. Then S;,. as well as S, has a

unique solution.

By Theorem 4.1, Lutwak, Yang and Zhang define L, .. John ellipsoids [18]:

Definition 4.1. Suppose K € K212€ and 0 < e < o. Amongst all origin-centered ellipsoids, the unique ellipsoid

that solves the constrained maximization problem

1 1
V(E) \1+2¢ Vi+e(K, E)\1¥e
( )) subject to (—HE( )> <1,
W142¢ V(K)
is called the L, John ellipsoid of K and is denoted by E;..K. Amongst all origin-centered ellipsoids, the
unique ellipsoid that solves the constrained minimization problem

1

1

V. K, E)\1+e V(E)\1+2¢

n (M) subject to ( ( )> =1, (4.4)
V(K) W1+2¢

is called the normalized L. John ellipsoid of K and is denoted by E; ., .K.

L1+ John ellipsoids provide a unified treatment for several fundamental objects in convex geometry. If the John
point of K, the center of John ellipsoid JK, is at the origin, then E, K is precisely the classical John ellipsoid JK.
The L, John ellipsoid E, K is the LYZ ellipsoid I'_,K. The L, ellipsoid E; K is the Petty ellipsoid.

If K € X21t2¢and 0 < € < oo, then for ¢, € GL(1 + 2¢),

max ( (4.3)

Ei1ePrK = ¢ E K. (4.5)
This means that if E is an ellipsoid centered at the origin, then
E . .E=E. (4.6)

If K € K;+%€ and real € > 0, the star body I'_; 4 K is defined as the body whose radial function, for u € $%¢ is
given by [18]:

1
—+0) = — | u-v|t*edS, (K, v). (4.7)

pF—(1+E)K(u) V(K) g2¢

We will need the following results:
Lemma 4.1. ([18, Corollary 45 ]). If K € F1+2€, then

€
Ey K 2T_5_oK 2 (14 2¢) 22-9E, K when € >0,
€

EieK ST 210K S (1 + 2€)2@+9)E,, K when 0 <€ < oo,

Lemma 4.2. ([18, Theorem 5.2]). If K € K2*2€ and 0 < € < oo, then
V(E14+K) < V(K),

with equality for e > 0 if and only if K is an ellipsoid centered at the origin, and with equality for € = 0 if and
only if K is an ellipsoid.
We can prove the following L, Minkowski inequalities, where ¢;,,. 1., is the constant defined in (3.4) (see
[31]).
Lemma4.3. Let K,L € K}1*2%e,
(i) When € > 0, then
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wm € €
Viee (K, i, L) = 1+2e V(K)T+2eV (L)T+2e, 4.8
1+e( 1+€ ) (1 + 26)61+26,1+E ( ) ( ) ( )
with equality when € = 1 and K and L are dilates of polar ellipsoids centered at the origin.
(i) When 0 < € < oo, then

3
Bt e e
Vore(K, T4 el) = 27e V(K)1+2eV(L)1+2, (4.9)
(1+2€) 2 é142¢2+4¢
with equality when € = 0 and K and L are dilates of polar ellipsoids centered at the origin.
Proof. Let FL"(2+E)L denote the polar body of I'_(, ¢ L. By (3.3) and (4.7), we have
1

. (1 + 2€)Ci42e24eW1426\2+€
[ el = ( e ) M,,.L. (4.10)

(i) For e = 0, by (2.9), (4.10) and Lemma 4.1, we obtain

1
((1 + 2€)C142¢14eW142¢
V(L)

Tive |
) Mitel = T_(14eL S Eq4cL.
Then by (2.8) we have

1
(14 2€)C14261+eW1426\1H€ ”
( = (L‘; < 6) Myl 2 Ef, L. (4.11)

By (2.2), (4.11), the Blaschke-Santal6 inequality (2.7) and Lemma 4.2, we have
V(L)
Vige(K, 111 4L > Vite(K,E{, L
1+e( 1+€ ) (1+26)61+25,1+ew1+26 1+e( 1+€ )
V(L)

T (14 2€)Cri2e14+eW142¢
1-€
V L wl-I-ZE € 1+€
= (L) 1t26  y(K)T+2eV (E; L) T+2e
(1 + 26)C1+26,1+E
1

€ 1+€
V(K)1+2eV(E], L)T+2¢

1+2€

€ €
> itec V(K)T+2eV (L)T+2e. (4.12)
(1 + 26)C1+26,1+E

When e = 1,I_,L = E,L, there is an equality in (4.11). By the equality condition of L;,. Minkowski inequality
(2.6) and Lemma 4.2, we conclude that equality holds in (4.8) when € = 1 and K and L are dilates of polar
ellipsoids centered at the origin.

(if) For € = 0, by (2.9), (4.10) and Lemma 4.1, we have
1

((1 + 2€)C142¢246W142¢
V(L)

T2+e €
) H;+EL = F—(2+6)L = (1 + 26)2(2+6)E2+€L'
which implies

1
_€ /(14 2¢e)c w 2+e
(1 + 2¢)22+ (( ) ;Z;'“E “26) M,,.L2E; L (4.13)
By (2.2), (4.13), the Blaschke-Santalé inequality (2.7) and Lemma 4.2, we have
V(L) )
V2+E(K' H2+€L) = 2+e V2+E(K' E2+EL)
(14 2€) 2 C112e2+eWi42e
V(L) e 2+e
> STe V(K)1+2eV(E;, L)1+2e
(14 2€) 2 Ciy2e2+eW142¢
3—€
V(L wm €-1 2+€
- ey ey (Byyl) T

(14 2€) 2 Cize2+e

3-€
1+2¢
w e—-1 €-1
> e V(K)T+2eV(L)T+ze,

(14 2€) 2 C142¢2+4€
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When € = 0, since I'_,L = E,L, then equality holds in (4.13). By the equality conditions of the L,,. Minkowski
inequality (2.6) and Lemma 4.2, equality holds in (4.9) when € = 0 and K and L are dilates of polar ellipsoids
centered at the origin.
5. Sharp Convex Mixed Lorentz-Sobolev Inequality
The L, .. convexification was introduced in [29] for e = 0 and in [12] for € > 0 (see also [32]). Refer to [5] and
[17] for more detailed information on L, convexification.
Given any measurable functions f,.: R1*2€ — R, the level set [f.], of f. is defined by:
[f]e = {x € RY*2€:|f.(x)| > t}, t > 0. (5.1)
In this paper, we always assume that all functions are such that the level sets [f;]; are compact for all t > 0.
Assume € > 0. Suppose f;. € C;°(R1*2€), by Sard's Lemma, for a.e.
t > 0,{|f-] > t} is abounded open set with a C! boundary, (5.2)
ol >t ={lfl =1t} (5.3)
and
Vf.(x) # 0, for x € {|f,| = t}. (5.4)
Suppose t > 0 and f,. satisfies (5.2), (5.3) and (5.4). Let A.(f.,") be the even positive Borel measure on S2€ such
that

[ Y ewarm = > g wenivs@ican e 65
s2e & Ihl=0 %

Vr(x)
IVf- (01
H26({x:|f-(x)| = tand u - v(x) # 0}) > 0,

Since for fixed u € S%€,

for every even Borel function ¢,: S%¢ - R, where v(x) =

we have
j Z lu - v()||Vf(x)|€dH € (x) > 0. (5.6)
1=t} &

Hence

fsz e - vldA, (. v) > 0, (5.7)

for u € S%¢. Hence, the measure A.(f.,-) is not supported in the intersection of $2¢ with any subspace. By the
solution to the even L,,. Minkowski problem (Theorem 3.1), there exists a unique origin-symmetric convex
body (f;-)+ such that

S((ﬁ")tr')h(<ﬁ”)tr')_e = lt(ﬁ") (58)
We remark that the convex body (f;.); is called the L, . convexification of the level set [f,];. For our aims, some
properties of (f,.); will be listed.
Lemma 5.1. ([12, Lemma 8]). If K € K1*%¢ and f.(x) = ¢, (1/pk(x)), where @, € C1(0,) is strictly
decreasing, then for t > 0 and € > 0, the convex bodies of the L;,. convexification of the level sets of f,. are
dilates of K, that is

(fr)e = c14e (DK,

and ¢; ()€ = lor.(s)|€s%¢, where t = ¢,.(s).
Lemma 5.2. ([12, Lemma 13]). Let € > 0. If £, € C(RY*2€) and Vf.(x) # 0 on d[f;], for t > 0, then

1+€
(kfy o W™h) = ke P(fo)e,
for k > 0and ¥ € Aff(1 + 2¢) given by W(x) = yx + y where 1 € GL(1 + 2¢) and y € R1*2€,
The next result has been proved in [17].
Lemma5.3. Let f. € CP(RM2€). If € > 0, then

© € €
J g V({f)e) TH2edt = (1 + 2€) 1426815, 1, E I f G Eeas2e) - (5.9
0
T

r €

Here
1

Crazetre = (1 + 26)W1426) 1+26C1 4o 146
The following results will be used later (see [31]).
Lemma 5.4. Let f,. € C° (R1+2€),
(i) If £ tends to the characteristic function y,p of the ball aB with a > 0, then (f,.); converges to aB (up to
translation) in Hausdorff metric when 0 < t < 1, and the surface area measure of (f,.); converges weakly to zero
whent > 1

€
1+e\ —

(i) 1f e > 0and £,(x) = (a+ blx[ « ) " with a,b > 0, then
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(fr)e = a(t)B, (5.10)
where
1+2¢
1te\ 1+e
1—at €
a(t)=| ——=— )
b1+2e

and t € (0,4o0) such that a(t) is meaningful depending on a and b.
Proof. (i) We will prove this statement by approximation argument in Zhang [29]. We set
0 dist(x,aB) = ¢,

(r)e(x) = 1 —M dist(x,aB) < ¢,
for small € > 0 and a > 0. Here dist(x,aB) = miny, ¢ p|x — y|,x € R'*2€_ It is clear that (f;). tends to the
characteristic function y,z of the ball aB as ¢ = 0.
If € issmall and 0 < dist(x,aB) < ¢, then there exists a unique x’ € d(aB) such that
dist(x,aB) = |x' — x]|.
Let

) x' —x
v(x') =

Ix" — x|
From the definition of level sets (5.1) yields
[(£).], = {{x € R*2¢: dist(x,aB) < (1 —t)e} 0<t<1,
rJelt —

1) t>1.
Therefore, from (5.5) we have

HAEe) = [ 900w =0,
s2€ {1 )el=t}
for every even Borel function ¢,:S%¢ - R and t > 1. This deduces that the surface area measure of ((f;-)¢):

converges weakly to zero when t > 1.
We assume that 0 < t < 1. We note that

V(f)e(x) = e v(x)
for x € [(f;).];. By (5.5), we have

fsz r(DdA (e ) = fuw:t}z ¢, (v())dH 2 (x)

> 6. (vx)ar(x)

r

-[;xe]R{HZf,x’ea(aB):|x’—x|=(1—t)e}
for every even Borel function ¢,.: S2¢ - R. Therefore, as € — 0, we have

-fszeZ dr(V)dA((fy)e V) = .L(aB)Z o, (v(x"))dF 2 (x")

T
for every even Borel function ¢,:5%¢ —» R. This means that the measure 2,((f.).,-) converges weakly to the

surface area measure of the ball aB as € — 0. By the continuity of the solution to the classical Minkowski
problem (see, e.g., [30], [34]), we conclude that (f,-); converges to aB (up to translation) in Hausdorff metric as
f- tends to the characteristic function y,z of the ball aB.

1+€ __E A A A
(i) When e > 0 and f,.(x) = (a + b|x|T) "€ with a,b > 0, by a direct calculation, we have

1+2€
1+€\  1+e 1 x
Vf.(x) = b (a + b|x|T) Mepr 6D
Let Y(t) = <t_e_a> , Where t € (0, +o0) such that a(t) is meaningful. Then, by (5.5) and (5.11) we have

L } Z 62 () (forv)

- f > G EDIVE A3 ()
Ifrl=t} &
(1+2€)(e)

B (b)gf{|x|=¢<t)}z r (Ifc_|> (a + blxﬁig)_ T plazeeeo

International Journal Of Novel Research And Development (www.ijnrd.org)

IJNRD2502203



http://www.ijrti.org/

© 2025 IJNRD | Volume 10, Issue 2 February 2025 | ISSN: 2456-4184 | JNRD.ORG

for every even Borel function ¢,: S2¢ > R. Let x = (t)u for u € S2¢. Then

(1+2€)(€)
1t+e 1+e

J L2 G ) = = L2 s

Therefore
(1+2¢€)(e)

1te 1+e
S().

—at €

1
2e(f) = )| —

Combining with (5.8) and the uniqueness of the L; .. Minkowski problem, we deduce that

(fr)e = a(t)B

1+2€

with a(t) = (b<) <1_“;_>()

We are now in the position to prove our sharp convex mixed Lorentz-Sobolev inequality (see [31]).
Theorem 5.1. Suppose € > 0. If £, g, € C (R1*2€), then

f f E IV (x) - Vg, '€ dxdy
]Rl +2€ ]R1+26 p
1+€

2 A14+26,1+€ fomz V((fr)t)ﬁdt fo“’z V(T 4e(gr)s)T+2eds, (5.12)

where @y40c14e = (14 26)%w142¢C1126146- FOr € = 0, equality holds as f. and g, tend to the characteristic
functions of dilates of centered polar ellipsoids. For € > 0 equality holds when f.(x) tends to (a1 +

N e\ Tre
l(x — xp)| e ) and g,(y) tends to (az + [P~y + xg)| ) with a; > 0(i = 1,2),x, € R'*2€ and
¥ € GL(1 + 26).

Proof. The proof consists of several steps.
Step 1. Inequality.

Let f., g, € C°(R1*2€). By the co-area formula (2.10),(5.4),v(x) =%, the Fubini theorem, co-area
formula (2.10), u(x) = 2% (55) (5.8) and (3.3), we have

or o)
N fR Z IVE.Gx) - Vg, ()| +edxdy
=] fom f{l m:t}z IVF, (x) - Vg )€1V (0|~ 2 (x)dedy
=] . fow f{l m:t}Z [ (x) - Vg, () *H¥IVF; () [ 2 (x)dedy
= fom f{ml:t}z vE@I | ) ]{ |gr|=s}Z v o) - w1V, ()| dH 2 () dsdH2 () dt
=f000 fﬂfrl:t}z VAN fo : fs D v - ul e dA (g w)dsdF (1) dt
B fo‘” f{|fr|=t}i Vi (=) L‘” L Z [v(x) - u|**eh((gr)s, u) " dS((gr)s u)dsdH ¢ (x)dt

= 2001iare | || DT g v T @I dsdI (e (5.13)
o Jur=nd &

By the Fubini theorem, (5.5), (5.8) and (2.2), we have
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]R1+26 [Rj+2€

— (4 2000 ciense | || D hTudlgn)s v Ed G v)dsde
0 0 S2€
r
= 1+ 2000 ciense | || D hTuelge)s RS ) v EdS(f ) ) dsde
0 0 S2€
r

= (142001 ciizease | | D) Vsl Mielgn)s)dsd. (5.14)
0 0
4
By (2.6) and (5.14), we have
1+€
[ Z 95,09+ T, )y = ayppene [ [ Z VIV (T (g,),) T 3edsdt
R1+2e JRp1i+2e

Step 2. The lnequallty (5.12) is affine, that is
Z f]R1+26 fR1+2€ [V(kfy o WE) - V(kg, o WD €dxdy

1+€

Jy V{(kf, o t) )1+26dtf V(I , kg, o W=1),)1+2¢ds
L Z f]R1+ze f]R1+26 V£ Vgrl”edxdy

oo € oo i
fo V((ﬁ')t)1+26dt fo V(H1+e<gr)s)1+2€d5
for k > 0, ¥ € Aff(1 + 2¢€), ¥(x) = ¥x + 2,3 € GL(1 + 2¢) and z € R1*2€,
By Lemma 5.2, (3.6) and (3.7), we have

z (kfy m-Z K€ WL, and Z Myelgy o ¥71)

Z Kldets [TFep "1, (g, ). (5.15)

By (5.15), (2.3),(2.4) and (2.5) we obtain
z V1+e(<kf;* S qﬂ)tr H1+e<kgr ° lIJ_I)S) = z k2(1+6)V1+e(<ﬁ’)tr H1+6(gr)s)f

D, VU o WTE = ) KU detyp| TV () ),

e _€_ 1te
z V(4 elkgy o WT1)s)T2€ =z k1€ det | T2V (I 4 o (£ ) ) TH2€ .

T T
The desired property follows from the above three formulas and (5.14).
Step 3. Equality conditions of (5.12).
If e=0, and f. and g, tend to the characteristic functions of the unit ball, by Lemma 5.4
(1), we infer that (f.); and (g, )s converge to the unit ball when 0 < t,s < 1, and their surface area measures
converge weakly to zero when t,s > 1. Therefore

f]}g1+26 ,[R1+26 Z V£ () - Vgr (ldxdy = (1 + 2€)? 0, 5¢Cr42¢1,
and

1+ 26)2w1+2651+261f Z V{(fr )t)1+2€dtf z V(H<gr)s)1+26ds = (14 26)?wi 5614261

By the affine invariance of mequallty (5.12), we conclude that equality holds in (5.12) if f,. and g, tend to
XpB—x, AN Xy-tpiy, With xo € R™2€ and 1 € GL(1 + 2¢), respectively.

If >0 and £,00) = (a +bylal e ) *,9,0) = (az +balyl < ) ™™ with a;, b, > 0, = 1,2), by (ii) in

Lemma 5.4(f;.); and (g, ) are balls for every t,s > 0. Then
1+€

V1+e(<ﬁ*)t' H1+e(gr)s) - V((fr)t)1+26V(H1+6(gr>s)1+26-

IJNRD2502203

International Journal Of Novel Research And Development (www.ijnrd.org)



http://www.ijrti.org/

© 2025 IJNRD | Volume 10, Issue 2 February 2025 | ISSN: 2456-4184 | JNRD.ORG
By the affine invariance of inequality (5.12), equality holds in (5.12) for f.(x) tends to (a1 + [P (x —

€ €

1te\ Tive _t reN e . 1+2€
xXo)| e ) and g,(y) tends to (az + [P~ (y + xo)| e ) with a; > 0(i = 1,2),x, € R and ¢ €

GL(1 + 2¢).
Next, we will show that the analytic inequality (5.12) implies a special case of the L;,. Minkowski inequality
(see [31]).
Remark 5.1. The analytic inequality (5.12) implies the following geometric inequality

Vive (K, T3 1cQ)12€ 2 V(K)V (4 Q)1 (5.16)
where K,Q € K1*2%¢ and € > 0.
Proof. Let ¢, € C1(0, ) be strictly decreasing and

1 1
(x) = (—) and g,(y) = (—), 5.17
f;” (pT p[( (x) gT y (pT pQ (y) ( )
for K,Q € K1*?¢ and € > 0. By (5.14), Lemma 5.1, (3.6) and (2.3), the left hand side of (5.12) is

f f > 19400 - Vg, () [+ dxdy
R1+2e JRi+2e &

—rseae | [ D) Vel Midgnsdsde
0 0
r

= a1+26,1+6V1+6(K1H1+EQ)J- Z |<p}(5)|1+6526dsf Z |y ()|} T€t2edt. (5.18)
0 T 0 =
The right hand side of (5.12) is
®ra 1+e€
a1+26,1+6 f f 2 V((ﬁ” t)1+26V(H1+E<gr)s)1+26d5dt

o - (5.19)

1+e

= Gurens e K2V (M Q1sie [ Ioh(@lresieds [ D lop(ol et
g T

Therefore the analytic inequality (5.12) implies the geometric inequality (5.16).

The sharp convex mixed Lorentz-Sobolev inequality (5.12) implies the sharp convex Lorentz-Sobolev inequality
(1.5) of Ludwig, Xiao and Zhang [12] (see also [32]).

Corollary 5.1 (see [31]). If £ € C5°(R**2€) and € > 0, then

1+€

|| Z VF I11E2 (1 + 26)wli2e f Z V(YT L, (5.20)
with equality as £, tends to the characterlstlc function of a ball for e = 0 and for € > 0 equality is attained when

f(x) tends to (a + blx| € ) € with a, b > 0.

Proof. If e =0 and g, tends to the characteristic function of the unit ball B, then by (i) of Lemma
5.4,(3.5),(5.14) and the definition of (f,.);, we have

[ D W Vg 0ldxdy » (14 26F0rnctisaen | Y. Hlh) B
R1+2e JR1+2€ p 0 p
=1+ 2€)w1+2661+26,1f Z SUfr)edde

= (1+ 26112614201 f j Z d3e7(x)dt

{IfrI=t}
=1+ 2€)w1+2661+26,1f z V£ () |dx,
R1+2€ -

and

@ 2€ o 1
(1 + 200101201 | Z VAgOTEde [ ) V(g ds
0 0
T
2+26

® 2€
(4 2670/ e | Ve
T

It follows that (5.12) implies (5.20) when € = 0.
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€

Fore> 0,let o.(t) = (1+ ¢« ) " and g,(») = ¢,(1/ps(»)). Then
€

1+2€

1+e\"1+e I+eN"1+e 1
Vg =V(1+iyle ) == (14 ) T Iye
The left hand side of (5.12) can be written as

[ L a6 varor<dndy
R1+ZE R1+26 p

=f Z |<p;(t)|1+ft26dtf f Z V(%) - u| eduds. (5.21)
0 - R1+2¢e Jg2e -

(r)s = Cl+e(5;)B'
where ¢;,.(s)€ = | (t)|6t%€ and s = @,.(t) = (1 + tl_:E) " Therefore, the right-side of (5.12) is

©  ro € 1+e€
a1+26,1+6 f f Z V((ﬁ‘)t)1+26V(H1+E<gr)s)md5dt
0 0
r

1y
Iyl

From Lemma 5.1, we have

1+€

oo oo € 5
= tupneascolli [ D) oL@ [ Y VTG (522
r 0 T
From Theorem 5.1, (5.21) and (5.22), we have
1+e€ ) €
[ [ 2. 1WA G ult* s > el |2 vagoEd
R1t2€ Jg2€
-

By a direct calculation, one has

f j Z V£ (x) - u|**€dudx =j lvo - ul**€du Z Vi (e
R1+2€ Jg2e = S2€ R1+2€
1+ 26)w W3e_
_ (1 F 26)@110e03c 1] > VA (524)
]R1+26 =

WorWoe—qWe

Inequality (5.20) follows from (5.23) and (5.24).

The equality condition of the sharp convex Lorentz-Sobolev inequality (5.20) comes from Theorem 5.1.
By Lemma 4.3 and (5.14), we obtain the following results (see [31]).

Theorem 5.2. Let f;, g, € C5°(R*2€) and € > 0.

(i) If e = 0, then
f f E IV (x) - Vg, )| e dxdy
R1+2€e JR1+2€
i

2(1+¢€)

> 1+ 290,35 [ D VA
0 T

€ 9 €
TF2edt f Z V((gy)s)T+2eds. (5.25)
0
T

(ii) If € > 0, then
f f E IVf-(x) - Vgr (¥)|**€dxdy
]R1+25 ]R1+2E p

e 2@2+e)

> (1+26) 20,15 f wZ V() TFEd f Z V({g,);)¥2eds. (5.26)

Each equality holds when ¢ =0 and f.(x) tends to (a1+|1/)(x—x0)|1+e)_,gr(y) tends to (a2+

lp~t(y + x0)|1+e) " with q; > 0(i = 1,2),x, € R1*2€ and 3 € GL(1 + 2e).
Proof. (i) For € = 0, by (5.14) and Lemma 4.3 (i), we have
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[ [ wae - ve,0oedxdy
R1+2€ JR1+2€
r

— (1420 %0rcbiizcrse | | D) Ve Miselgn)odsde
0 0
T

2(1+€)

> (1+ 26w, )5 f Y vuprorEa f > vignords.

Similar to the proof in Theorem 5.1, the equality condition follows immediately from the equality condition of
Lemma 4.3.
(if) For € > 0, by (5.14) and Lemma 4.3 (ii), we have

[ L k60 Ve edndy
R1+2€ JR1+2€ -

=1+ 26)2(‘)1+2651+2€,2+6J- J- Z Vore((fr)e: 49y )s)dsdt
o Jo
T

e 2(2+¢ e—1

*® o e-1
> (1+ 26) 2w 112 fo Z VL)) ezedt fo > Vign)iveds.

T
Similar to the proof in Theorem 5.1, the equality condition follows immediately from the equality condition of
Lemma 4.3.
Remark 5.2. The functional inequality (5.25) implies the L,.. Minkowski inequality (4.8) and the functional
inequality (5.26) implies the L, . Minkowski inequality (4.9).
The following analytic inequalities are direct consequences of (5.9) and Theorem 5.2,
Corollary 5.2. Suppose € > 0 and w is given by € = 0. Let £, g, € C5°(R1*2€),

(i) If e = 0, then

[ whe - vg.0dxdy
IR1+ZE R1+26 p-

-1 .2(1+
> (1420750 ) 1 Woaeaol 0 Wfoae- (5.27)
r € €

(i) If € > 0, then
f f E IVf-(x) - Vgr(¥)|**¢dxdy
R1+2€ JRi+2e
r

t€ 20+

2
> (14267 2 (/519 Y L W Eoaseol 0 o (5.28)
r € €
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