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Abstract 

Emotion recognition methodologies from physio 
logical signals are increasingly becoming person 
alized, due to the subjective responses of different 
subjects to physical stimuli. Existing works mainly 
focused on modelling the involved physi- ological 
corpus of each subject, without consider- ing the 
psychological factors. The latent correlation
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among different subjects has also been rarely ex- 
amined. We propose to investigate the influence of 
personality on emotional behavior in a hyper graph 
learning framework. Assuming that each vertex is 
a compound tuple (subject, stimuli), multi-modal 
hypergraphs can be constructed based on the per- 
sonality correlation among different subjects and 
on the physiological correlation among correspond- 
ing stimuli. To reveal the different importance 
of vertices, hyperedges, and modalities, we assign 
each of them with weights. The emotion relevance 
learned on the vertex-weighted multi-modal multi- 
task hypergraphs is employed for emotion recog- 
nition. We carry out extensive experiments on the 
ASCERTAIN dataset and the results demonstrate 
the superiority of the proposed method. 

 

1 Introduction 

Emotion recognition (ER) plays an important role in both in- 
terpersonal and human-computer interaction. Though being 
studied for years, ER still remains an open problem, which 
has to face the fact that human emotions are not expressed 
exclusively but through multiple channels, such as speech, 

gesture, facial expression and physiological signals [D’mello 

and Kory, 2015]. Unlike other signals that can be adopted vol- 
untarily or involuntarily, physiological signals are controlled 
by the sympathetic nervous systems, which are generally in- 
dependent of humans’ will and cannot be easily suppressed or 
masked. Therefore, physiological signals may provide more 
reliable information for emotions compared to visual cues 

and audio cues [Shu and Wang, 2017]. Meanwhile, human 
emotions are a highly subjective phenomenon, as shown in 
Figure 1, which can be influenced by a number of contextual 
and psychological factors, such as interest and personality. 

Figure 1: Left: the valence and arousal standard deviations of the 
58 subjects on the 36 video clips. Right: the video distribution with 
different annotated emotion numbers (7-scale) in the ASCERTAIN 
dataset, where “# Emotions” and “# Videos” represent the numbers 
of annotated emotions and videos, respectively. These two figures 
clearly show the emotion’s subjectiveness in this context: the left 
figure shows that the valence and arousal STD of most videos are 
larger than 1, while the right one indicates that all the videos are 
labeled with at least 4 emotions by different subjects. 

 

 
In this paper, we focus on personalized emotion recogni- 

tion (PER) from physiological signals, which enables wide 
user-centric applications, ranging from character analysis to 
personalized recommender systems. The emotion we aim to 
recognize here is perceived emotion. For the difference be- 
tween expressed, perceived and induced emotions, please re- 

fer to [Juslin and Laukka, 2004]. However, PER is still a non-
trivial problem because of the following challenges: 

Multi-modal data. Emotions can be expressed through 

physiological signals from different modalities [D’mello and 

Kory, 2015], such as Electroencephalogram (EEG), Electro- 
cardiogram (ECG), Galvanic Skin Response (GSR), and tem- 
perature, etc. Different subjects may have different physio- 
logical responses of the same emotion on the same modal- 

ity signal. Further, the importance of various physiological 
signals to emotions differs from each other. Combining the 

complementary multi-modal data would obtain better results. 
Multi-factor influence. Besides the physical stimuli, there 

are many other factors that may influence the emotion percep- 
tions. For example, personal interest and personality may di- 

rectly influence the emotion perceptions [Kehoe et al., 2012]; 
viewers’ emotions are often influenced by their recent past 

emotions [Frijda, 1986] and by their friends on social net- 

works [Yang et al., 2014]. 

Incomplete data. Due to the influence of many normal fac- 
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tors in data collection, such as electrode contact noise, and 

sensor device failure [Shu and Wang, 2017], physiological 
signals may be sometimes corrupted, which results in a com- 
mon problem - data missing, i.e. physiological data from 
some modalities are not available [Wagner et al., 2011]. 

Existing methods on PER mainly worked on the first chal- 
lenge by designing effective fusion strategies, based on the 
assumption that the signals from all modalities are always 
available, which is often unrealistic in practice. In this pa- 
per, we make the first attempt at estimating the influence of 
one psychological factor, i.e. personality, on PER from multi- 
modal physiological signals, trying to solve the incomplete 
data issue simultaneously. 

Specifically, we propose to employ the hypergraph struc- 
ture to formulate the relationship among physiological sig- 

nals and personality. Recently, hypergraph learning [Zhou et 

al., 2006] has shown superior performances in various vision 

and multimedia tasks, such as music recommenda- tion [Bu 

et al., 2010], object retrieval [Gao et al., 2012; Su et al., 

2017], social event detection [Zhao et al., 2017b] and 

clustering [Purkait et al., 2017]. However, tradition- al 
hypergraph structure treats different vertices, hyperedges, 
and modalities equally, which is obviously unreasonable. To 
this end, we propose a Vertex-weighted Multi-modal Multi- 
task Hypergraph Learning (VM2HL) for PER, which intro- 
duces an updated hypergraph structure considering the vertex 
weights, hyperedge weights, and modality weights. In our 
method, each vertex is a compound tuple (subject, stimuli). 
The personality correlation among different subjects and the 
physiological correlation among corresponding stimuli are 
formulated in a hypergraph structure. The vertex weights and 
hypergraph weights are used to define the influence of 
different samples and modalities on the learning process, re- 
spectively, while the hyperedge weights are used to generate 
the optimal representation. The semi-supervised learning is 
conducted and the estimated factors, referred as emotion rel- 
evance, are used for emotion recognition. The emotions of 
multiple subjects can be recognized simultaneously. We eval- 

uate the proposed method on the ASCERTAIN dataset [Sub- 

ramanian et al., 2016]. 

The contributions of this paper are three-fold: 

1. We propose to computationally study the influence of per- 
sonality on personalized emotion recognition from physi- 
ological signals. 

2. We present a novel hypergraph learning algorithm, i.e. 
VM2HL, to jointly model the physiological signals and 
personality by considering the weighted importance of 
vertices, hyperedges, and modalities. 

3. Extensive experiments are conducted on the ASCERTAIN 
dataset with the conclusion that the proposed VM2HL sig- 
nificantly outperforms the state-of-the-art and can easily 
handle the challenge of data incompleteness. 

2 Related Work 

Emotion recognition from physiological signals. Due to 
the complex expression nature of human emotions, many ER 
methods employ a multimodal framework by consider- ing 

multiple physiological signals [D’mello and Kory, 2015]. 

Lisetti and Nasoz [2004] employed GSR, heart rate, and tem- 
perature signals to recognize human emotions elicited by 
movie clips and mathematics questions. Muscle movements, 
heart rate, skin conductivity, and respiration changes are used 

to recognize emotions induced by music clips [Kim and An- 

dre ,́ 2008]. Koelstra et al. [2012] analyzed the mapping be- 
tween blood volume pressure, respiration rate, skin temper- 
ature, Electrooculogram (EOG) and emotions induced by 40 

music videos. Soleymani et al. [2012] constructed a mul- 
timodal dataset with synchronized face video, speech, eye- 
gaze and physiological recordings, including ECG, GSR, res- 
piration amplitude, and skin temperature. User responses are 
correlated with eye movement patterns to analyze the impact 

of emotions on visual attention and memory [Subramanian et 

al., 2014]. The mappings from Magnetoencephalogram 
(MEG), Electromyogram (EMG), EOG and ECG to emo- 

tions are studied for both music and movie clips [Abadi et al., 

2015b]. Subramanian et al. [2016] investigated binary 
emotion recognition from physiological features, including 
GSR, EEG, ECG and facial landmark trajectories (EMO), on 
their collected ASCERTAIN dataset. Besides the psycholog- 
ical signals, a playgame context is also considered to esti- 

mate the player experience or emotion [Tognetti et al., 2010; 

Martinez et al., 2013; Camilleri et al., 2017]. However, all 
these methods do not consider any psychological factor be- 
sides physiological signals and contextual interaction. In this 
paper, we employ GSR, EEG, ECG, and EMO for emotion 
recognition by considering the influence of personality. 

Among the above ER approaches, both categorical emo- 

tion states (CES) [Lisetti and Nasoz, 2004; Soleymani et al., 
2012] and dimensional emotion space (DES) [Koelstra et al., 
2012; Subramanian et al., 2014; Abadi et al., 2015b; 
Subramanian et al., 2016] are used to represent emotions. 

Similar to [Subramanian et al., 2016], we represent emotions 
using the discretized VA model. 

One close work is personalized emotion prediction of so- 
cial images by considering visual content, social context, 

temporal evolution, and location [Zhao et al., 2016]. Dif- 
ferently, our work aims to recognize personalized emotions 
from physiological signals by modelling personality. 

Personality and emotion relationship. Human personal- 
ity can be described by the big-five or five-factor model in 
terms of five dimensions - Extraversion, Neuroticism, Agree- 
ableness, Conscientiousness and Openness (ENACO) [Costa 

and MacCrae, 1992]. A comprehensive survey of personal- 

ity computing is presented in [Vinciarelli and Mohammadi, 
2014]. As for the personality and emotion relationship, Win- 

ter and Kuiper [1997] extensively examined it in social psy- 

chology. Van Lankveld et al. [2011] proposed to estimate per- 
sonality via a player’s game behaviors in a video game. Abadi 
et al. [2015a] and Subramanian et al. [2016] recognized per- 
sonality and emotion separately using physiological signals 
without considering their intrinsic correlation and influence. 

Though personality is believed to affect emotions [Kehoe et 
al., 2012], personality and emotion relationship from physio- 
logical signals has not yet been studied comprehensively in a 
computational setting, due to various problems such as inva- 
siveness of sensing equipment, subject preparation time and 
the paucity of reliable annotators [Subramanian et al., 2016]. 
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Figure 2: The framework of the proposed method for personality-aware personalized emotion recognition from physiological signals by 
jointly learning the emotion relevance, hyperedge weight, vertex weight, and modality weight. Each circle represents a compound vertex 
(subject, stimuli). The filled ones indicate training samples, while the empty ones are testing samples. 

 

Besides physiological signals, we investigate the influence of 
personality on emotions computationally. 

Multi-modal learning. We might have multi-modal da- 
ta to describe a target [Atrey et al., 2010], either from d- 
ifferent sources [D’mello and Kory, 2015] or with multiple 
features (also called multi-view learning) [Gao et al., 2012; 
Zhao et al., 2017c; 2017a]. Typically different modal data 
can represent different aspects of the target. Jointly com- 

can construct different hyperedges based on the features of 

each element of the vertex. Similar to [Costa and MacCrae, 
1992], personality is labelled using the big five model in the 

ASCERTAIN dataset [Subramanian et al., 2016], i.e. person- 
ality is represented by a 5-dimension vector. We employ Co- 
sine function to measure the pairwise personality similarity 
between two users ui and uj as follows 

< pi, pj > 

bining them together to explore the complementation may sPER (ui, uj ) = , (1) |p | · |p | 
i j 

promisingly improve the performance [Atrey et al., 2010; 
D’mello and Kory, 2015]. Besides the traditional early fu- 

sion and late fusion [Wang et al., 2009], there are many oth- 
er multi-modal fusion strategies, such as hypergraph learn- 
ing [Zhou et al., 2006], multigraph learning [Wang et al., 
2009] and multimodal deep learning [Ngiam et al., 2011]. By 
jointly exploring the different weights of vertices, hyper- 
edges, and modalities, we present VM2HL to make full use 
of personality and physiological signals for PER. 

3 The Proposed Method 

Our goal is to recognize personalized emotions from physio- 
logical signals considering personality and dealing with miss- 
ing data. We employ a hypergraph structure to formulate the 
relationship among physiological signals and personality, tak- 
ing advantage of its high-order correlation modelling. Con- 
sidering the fact that the importance of different vertices, hy- 
peredges and modalities in a hypergraph is different, we pro- 
pose a novel method, named Vertex-weighted Multi-modal 
Multi-task Hypergraph Learning (VM2HL), for PER. The 
framework is shown in Figure 2. First, given the subjects and 
stimuli that are used to evoke emotions in subjects, we 
generate the compound tuple vertex (subject, stimuli). Sec- 
ond, we construct the multi-modal hyperedges to formulate 
the personality correlation among different subjects and the 
physiological correlation among corresponding stimuli. Fi- 
nally, we obtain the PER results after the joint learning of the 
vertex-weighted multi-modal multi-task hypergraphs. 

3.1 Hypergraph Construction 

As stated above, the vertex in the proposed method is a com- 
pound one, including the subject and involved stimuli. We 

where pi is the personality vector of user ui. 
A specific emotion perceived in humans usually leads 

to corresponding changes in different physiological signals 
[D’mello and Kory, 2015]. As in [Subramanian et al., 2016], 
we extract different features from 4 kinds of physiological 
signals: ECG, GSR, EEG, and EMO, over the final 50 sec- 
onds of stimulus presentation, owing to (1) the clips are more 
emotional towards the end, and (2) some employed features 
are nonlinear functions of the input signal length. The di- 
mensions are 32, 31, 88 and 72, respectively. Please refer to 

the Table 3 in [Subramanian et al., 2016] for feature extrac- 
tion details. Similar to Eq. (1), Cosine function is used to 
measure the pairwise similarity of each modality feature ex- 
tracted from physiological signals. Note that other similarity 
or distance measures can also be used here. 

Given the pairwise similarities above, we can formulate the 
relationship among different samples in a hypergraph struc- 
ture. Each time one vertex is selected as the centroid, and one 
hyperedge is constructed to connect the centroid and its K n- 
earest neighbors in the available feature space. Please note 
that we construct personality hyperedges from both inter- 
subject and intra-subject perspectives. All the vertices from 
the same subject are connected by one hyperedge. Further, for 
each subject, we select the nearest K subjects based on per- 
sonality similarity and connect all the vertices of these sub- 
jects by constructing another hyperedge. 

Suppose the constructed hypergraphs are Gm  = 
(Vm, Em, Wm), where Vm is the vertex set, Em is the hy- 
peredge set, and Wm is the diagonal matrix of hyperedge 
weight for the mth hypergraph (m = 1, 2, · · · , M , M = 5 
in this paper, including 4 hypergraphs based on physiologi- 
cal signals and 1 hypergraph based on personality). We can 

Subjects and Stimuli Compound Vertex Generation Personalized Emotions 

…
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M 

j=1 j=1 

Nn 

dm(vi) and De (i, i) = δm(ei). 

v e v 

ne 
 

 

c=1 

||R(:, c) − Y(:, c)|| + λR 

N 1 

11 1n1 m e∈Em 

easily tackle the missing data challenge by removing the hy- 
peredges of corresponding vertices. For example, if the EEG 

where α represents the weights of different hypergraphs to 
evaluate the importance of different modality features, which 

is missing for one subject, we just simply do not construct 
hyperedges based on EEG for this subject. This still works satisfies 

ΣM αm = 1, and 

with the emotion relevance learned from ECG, GSR, EMO, Θ  = (Dv )− 
1 

U H W (De )−1HT U 
 

(Dv )− 
1 

. (7) 
 

and personality. m m 
2  

m  m m m m  m m 
2 

Given the constructed hypergraph Gm, we can obtain the ∆ = 
ΣM αm(Um − Θm) can be viewed as a vertex- 

incidence matrix Hm by computing each entry as, 
m=1 

weighted fused hypergraph Laplacian. 

H (v, e) =  
1,  if v ∈ e, 

m 0,  if v /∈ e. 
(2) 

R is the regularizer on the weights of modalities, vertices 
and hyperedges and one simple version is adopted by 

Different from traditional hypergraph learning method, which R(W, U, α) = 
Σ

(tr(WT Wm) + tr(UT Um) + tr(αT
α)), 

simply regards all the vertices equally, we assign different 
weights to the vertices to measure their importance and con- 

m m 

m=1  
(8) 

tribution to the learning process. Suppose Um is the diag- 
onal matrix of vertex weight. The vertex degree of vertex 
v ∈ Vm and the e d gΣe  degree of hyperedge e ∈ Em are 

where tr() is the trace of a matrix. 
Solution. To solve the optimization task of Eq. (4), we 

employ an alternative strategy. First, we fix W, U, α, and 
defined as dm(v) = e∈E Wm(e)Hm(v, e) and δ(e) = 
Σ

v∈V Um(v)Hm (v, e). 
m 

According to dm(v) and δm (e), 
optimize R. The objective function of Eq. (4) turns to 

we define two diagonal matrices Dm and Dm as Dm(i, i) = 
 

 
 

Σ 
2 T 

3.2 VM2HL 
Given N subjects u1, . . . , uN , and the involved stim- 
uli sij (j  =  1, · · · , ni) for ui, our objective is 
to jointly explore the correlations among all involved 
physiological signals and the personality relations a- 
mong different subjects. Suppose the compound ver- 
tices and corresponding labels of the cth emotion cate- 

where λ > 0. According to [Zhou et al., 2006], R can be 
solved by 

R =
 

I + 
1 
∆
 −1

Y. (10) 
λ 

Second, we fix R, U, α, and optimize W. Since each Wm 
is independent from each other, the objective function can be 

gory are {(u1, s1j)}n1 , · · · , {(uN , sNj)}nN  and y1c = rewritten as 

c c T c c T ne 

[y11, · · · , y1n1 
] , . . . , yNc = [yN 1, · · · , yNnN 

] (c = arg min{λ 
Σ 

yTα (U − Θ )y + ηtr(WT W )},  (11) 

1, · · · , ne), and the to-be-estimated emotion relevance val- 
ues of all stimuli related to the specified users of the cth 

c  m m m  c m m 
Wm c=1 

emotion category are r1c = [rc , · · · , rc  ]T, . . . , rNc = 
where Dv (v, v) = 

Σ 
Wm(e)Hm(v, e), η > 0, and 

c , · · · , rc 
N 

]T. We denote yc and rc as Wm(e) ≥ 0. Replacing Θm with Eq. (7), the above opti- 

yc = [yT , · · · , yT ]T, rc = [rT , · · · , rT ]T. (3) mization task is convex on Wm and can be easily solved via 

1c Nc 1c Nc off-the-shelf quadratic programming methods. 

Let Y = [y1, · · · , yne ], R = [r1, · · · , rne ]. 
The proposed VM2HL is conducted as a semi-supervised 

learning to minimize the empirical loss and the regularizer on 

the hypergraph structure as well as on the weights of vertices, 

hyperedges, and modalities simultaneously by 

arg min {Γ(R) + λΨ(R, W, U, α) + ηR(W, U, α)}, (4) 

m 

[r 

arg min{ 
R 

∆R}, (9) 

m 
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Σ M Σ 

m 

c 
, Σ 

m 

ne M T 

T 

2 
m 

= 
1 

+ c=1 m=1  − c=1  . 

M 2ηM 2 

Σ 

Σ 

R,W,U,α 

where λ and µ are two trade-off parameters, W = 
Third, we fix R, W, α, and optimize U. Since each Um is 

independent from each other, the optimization of U is similar 
to the optimization of W. 

Finally, we fix R, W, U, and optimize α. The objective 
function of Eq. (4) reduces to 

ne 

arg min{λ yTαm(Um − Θm)yc + ηM tr(αT
α)}, (12) 

{W1, · · · , WM }, U = {U1, · · · , UM } and the three com- 
ponents are defined as follows. Γ is the empirical loss 

α 

where 
ΣM 

c=1 

 
α 

 
= 1 and η > 0. Similar to [Gao et al., 

ne m=1  m 

Γ(R) = ||rc − yc||
2. (5) 

c=1 

2012], we employ the Lagrange multiplier to solve the opti- 
mization problem and can derive 

Ψ is the regularizer on the hypergraph structure 

Ψ(R, W, U, α) = 
1 Σ Σ 

α 
Σ Σ 

ne ne 

yc (Um − Θm)yc 
 

 
 

 
yc (Um − Θm)yc 

Wm(e)Um(µ)Hm(µ, e)Um(ν)Hm(ν, e)
, 

√ 
rc(µ) 

 
(6) (13) 

 

 
 r (ν)  2 

— √
Dv (ν, ν) 

δ(e) 

ne 

= 
c=1 

 
 

T 
c 

m=1 

 
 

Dv (µ, µ) 

αm(Um − Θm)rc, 

The above optimization procedure is repeated until conver- 
gence. Since each of the steps above decreases the objective 
function which has a lower bound 0, the convergence of the 
alternating optimization can be guaranteed. 

α m 

M 

r 

c=1 m=1 e∈Em µ,ν∈Vm 

2ηM 
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Table 1: Performance comparison between the proposed method and 
the state-of-the-art approaches in terms of recognition accuracy (%). 

 

4 Experiment Setup 

4.1 Dataset 

To the best of our knowledge, ASCERTAIN [Subramanian et 

al., 2016] is the only published and released dataset to date 
that connects personality and emotional states via physiolog- 
ical responses. 58 university students (21 female, mean age = 

30) were invited to watch 36 movie clips from [Abadi et al., 

2015b] , which are between 51-127s long, to evoke emotions. 
All the subjects were fluent in English and were habitual Hol- 
lywood movie watchers. The movie clips are shown to be 
uniformly distributed (9 clips per quadrant) over the VA s- 
pace. During watching the clips, several sensors were used to 
record the physiological signals. After watching each clip, the 
participators were requested to label the VA ratings reflecting 
their affective impression with a 7-point scale, i.e. -3 (very 
negative) to 3 (very positive) scale for V, and 0 (very bor- 
ing) to 6 (very exciting) scale for A. Personality measures for 
the big-five dimensions were also compiled using a big-five 

marker scale questionnaire [Perugini and Di Blas, 2002]. The 
standard deviations of ENACO are 1.0783, 0.7653, 0.7751, 
0.9176, and 0.6479, respectively. Please note that the dataset 
is incomplete with missing data. For example, the 13th, 15th, 
27th, and 34th GSR signals of the 3rd student are missing. 

4.2 Baselines 

To compare with the state-of-the-art for PER, we select the 
following methods as baselines: (1) Support Vector Machine 

with linear kernel (SVM L) [Subramanian et al., 2016] and 
with radial basis function kernel (SVM R), (2) Naive Bayes 
(NB) [Subramanian et al., 2016], (3) hypergraph learning (H- 

L) [Zhou et al., 2006], and (4) hypergraph learning with hy- 
peredge weight update (HL E) [Gao et al., 2013]. Late fusion 

for SVM and NB is implemented as in [Subramanian et al., 

2016] to deal with multi-modal physiological signals, which 
are connected in one hypergraph in HL and HL E. 

4.3 Implementation Details 

Similar to [Subramanian et al., 2016], we dichotomize the va- 
lence and arousal affective ratings based on the median values 
for binary emotion recognition, since the number of movie 
clips each subject watched and labelled is relatively small for 
fine-grained emotion recognition. We employ the recognition 

accuracy (Acc) [Subramanian et al., 2016] as the evaluation 
metric. 0 ≤ Acc ≤ 1 and a larger Acc value indicates bet- 
ter performance. 50% of stimuli and corresponding physi- 
ological signals and emotions of each subject are randomly 
selected as the training set and the rest constitute the testing 
set. The parameters of the baselines are selected by 10-fold 
cross validation on the training set. For example, the gam- 
ma and C parameters of SVM are selected via grid search, 

Table 2: Mann-Whitney-Wilcoxon test of the proposed VM2HL 

with the baselines measured by p-value (×10−3). 

 

similar to [Subramanian et al., 2016]. Unless otherwise spec- 
ified, parameter K in hyperedge generation is set to 10, and 

regularizer parameters λ = 0.1 and η = 100 are adopted in 
experiment. Empirical analysis on parameter sensitivity is al- 
so conducted, which demonstrates that the proposed VM2HL 
has a superior and stable performance with a wide range of 
parameter values. For a fair comparison, we carefully tune 
the parameters of the baselines and report the best results. 
Further, we perform 10 runs and report the average results to 
remove the influence of any randomness. 

5 Results and Analysis 

5.1 Comparison with the State-of-the-art 

First, we compare the performance of the proposed method 
with the state-of-the-art approaches for personalized emotion 
recognition. The result measured by recognition accuracy is 
shown in Table 1, where the best methods are highlighted in 
bold. The Mann-Whitney-Wilcoxon test results are given in 
Table 2. From the results, we observe that: (1) the pro- posed 
method significantly outperforms the baselines on both 
valence and arousal under 95% confidence interval; (2) the 
hypergraph learning families achieve better results than tra- 
ditional SVM and NB classifiers; (3) NB performs slightly 
better than SVM; though simple, the linear kernel of SVM is 
superior to the RBF kernel; (4) all the methods achieve above- 
chance (50%) emotion recognition performance with physio- 
logical features; (5) the performance on arousal is better than 
valence, which is probably because that the standard devia- 
tion of arousal is larger in most cases, as shown in Figure 1, 
which may lead to larger interclass difference. Specifical- ly, 
the performance gains of VM2HL over SVM L, SVM R, NB, 
HL and HL E are 26.25%, 31.35%, 22.84%, 17.19%, 

14.20% on valence, and 22.86%, 27.78%, 18.95%, 15.12%, 
12.03% on arousal, respectively. 

The better performance of the proposed method can be at- 
tributed to the following reasons. 1. The hypergraph struc- 
ture is able to explore the complex high-order relationship 
among multi-modal features, which leads to the superior per- 
formance of hypergraph learning families over other models. 
2. We take personality into account, which connects differ- 
ent subjects with similar personality values. The recognition 
process turns to a multi-task learning problem for multiple 
subjects. The latent correlations among different subjects are 
effectively explored, which can be deemed as a way to enlarge 
the training set for each subject. 3. The different importance 
of vertices, hyperedges, and modalities are jointly learned, 
which can accordingly generate a better correlation. 

5.2 On Different Physiological Signals 

Second, we compare the performance of different uni-modal 
physiological signals. The results on valence and arousal are 

 SVM L SVM R NB HL HL E VM2HL 
V 58.89 56.60 60.52 63.44 65.10 74.34 

A 64.68 62.18 66.80 69.02 70.92 79.46 

 

 SVM L SVM R NB HL HL E 
V 3.24 4.83 2.65 3.47 4.16 

A 5.31 6.46 4.15 4.13 6.25 
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 VM2HL-P VM2HL 
Valence 68.53 74.34 

Arousal 72.54 79.46 
 

 

 

 

 

 

(a) Valence 

Table 3: Personalized emotion recognition results with and without 
personality in terms of recognition accuracy (%), where “-P” indi- 
cates without personality. 
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Figure 3: Performance comparison between different single physio- 
logical signal and the fusion strategy of different methods in terms 
of recognition accuracy (%). 

 

 

reported in Figure 3(a) and Figure 3(b), respectively. Com- 
paring the results, we can observe that: (1) fusing multi- 
modal physiological signals can obtain better recognition per- 
formance than most uni-modal ones for all the methods; (2) 
generally, GSR features produce the best performance for 
both valence and arousal, while ECG and EEG features are 
less discriminative; (3) for most physiological signals, the 
performances of different methods follow the similar order to 
the above Subsection. 

5.3 On Personality 

Third, we evaluate the influence of personality on the recog- 
nition performance by removing the personality hyperedge in 
VM2HL. The comparison between with and without person- 
ality in the proposed method is shown in Table 3. It is clear 
that after removing personality, the performance decreases 
significantly. Comparing with VM2HL-P, VM2HL achieves 
8.48% and 9.54% performance gains on valence and arousal, 
respectively. This is reasonable because personality is the on- 
ly element that connects different subjects and corresponding 
physiological signals. By changing from single-task learning 
for each subject to multi-task learning for multiple subject- s, 
the latent information is extensively explored, which has a 
similar impact as increasing the number of training samples 
and thus improves the recognition performance. 

5.4 On Vertex, Hyperedge, and Modality Weights 
Fourth, we investigate the influence of optimal vertex, hyper- 

edge, and modality weights by removing the optimization of 

just one kind of weight. The results are shown in Table 4. We 
can see that all the three kinds of weights indeed contribute 
to the performance of the proposed method. The performance 
gains of VM2HL over VM2HL-V, VM2HL-E, and VM2HL- 
M are 3.88%, 1.43%, 1.95% on valence, and 3.98%, 1.91%, 
2.38% on arousal, respectively. Please note that VM2HL-M 

 
Table 4: Personalized emotion recognition results with and with- 
out optimizing vertex, hyperedge, and modality weights in terms of 
recognition accuracy (%), where “-V”, “-E”, and “-M” indicate 
without optimizing vertex weights, hyperedge weights, and modali- 
ty weights, respectively. 

 

is similar to the multi-task version of the hypergraph learn- 

ing method with hyperedge and vertex weights update [Su et 

al., 2017]. Generally, vertex weights give more contribution 
to the overall performance, following by modality weights 
and hyperedge weights. We can conclude that jointly opti- 
mizing the weights of vertices, hyperedges, and modalities 
would generate more discriminative hypergraph structure and 
produce better emotion recognition performance. 

5.5 On Hyperedge Generation 

Fifth, we evaluate the influence of the selected neighbor num- 
ber K in hyperedge generation on the performance of the pro- 
posed method. The result is shown in Figure 4(a), with K 
varying from 2 to 50. It is clear that the performance is rela- 
tively steady with a wide range. When K becomes too small 
or too large, the performance turns to be slightly worse. When 
K is too small, such as K = 2, too few vertices are connected 
in each hyperedge, which cannot fully explore the high-order 
relationship among different vertices. However, when K is 
too large, such as K = 50, too many vertices are connected 
in each hyperedge, which could also limit the discriminative 
ability of the hypergraph structure. We can conclude that both 
too small and too large K values will degenerate the represen- 
tation ability and thus degrade the performance. 

5.6 On Parameter Sensitivity 

There are two regularization parameters in the proposed 
method that control the relative importance of different reg- 
ularizers in the objective function, i.e. λ on the regularizer of 
the hypergraph structure and η on the weights of vertices, 
hyperedges, and modalities. To validate the influences of λ 
and η, we first fix η as 100 and vary λ, and then fix λ as 0.1 
and vary η, with results shown in Figure 4(b) and Figure 4(c), 
respectively. From these results, we can observe that: (1) the 
proposed method can achieve steady performances when λ 
and η vary in a large range; (2) with the increase of λ, the 
performance tends to be stable when λ ≤ 10, and then turns 
worse; (3) with the increase of η, the performance tends to be 
better and becomes stable when η ≥ 100. Too large or too 
small values would either dominate the objective function or 
have quite little influence on the results. We can conclude that 
selecting proper λ and η can indeed improve the performance 
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 VM2HL-V VM2HL-E VM2HL-M VM2HL 
Valence 71.56 73.29 72.92 74.34 

Arousal 76.42 77.97 77.61 79.46 
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Figure 4: The influence of (a) hyperedge generation parameter K, (b) regularization parameter λ, and (c) regularization parameter η on the 
emotion recognition performance of the proposed method in terms of recognition accuracy (%). 

 

of emotion recognition, which indicates the significance of 
the joint exploration of different regularizers. 

5.7 Limitation Discussion 

The tested dataset is relatively small. As the only avail- able 
dataset that connects personality and emotional states via 

physiological responses, ASCERTAIN [Subramanian et al., 

2016] only includes 58 subjects and 36 movie clips. Con- 
structing a large-scale dataset with personality and physiolog- 
ical signals, and testing the proposed method on large-scale 
data remain our future work. 

The computational efficiency of hypergraph learning 
would greatly increase when dealing with large-scale data. To 
reduce the computational cost, there are two possible solu- 
tions: data downsampling [Yao et al., 2016] and hierarchical 

hypergraph learning strategy [Wen et al., 2014]. 
Dichotomizing ordinal VA values turns out to yield split 

criterion biases. The reason behind is similar to [Subramani- 

an et al., 2016], i.e. the number of movie clips each subject 
watched and labelled is relatively small. Our method can be 
easily extended to fine-grained emotion classification if large- 
scale data is available. Like other hypergraph learning meth- 
ods, the proposed method can only be used for emotion clas- 
sification, without supporting emotion regression. As shown 

in [Yannakakis et al., 2017], the ordinal labels are a more 
suitable way to represent emotions. Currently, the proposed 
method cannot tackle the ordinal emotions. 

6 Conclusion 

In this paper, we proposed to recognize personalized emo- 
tions by jointly modelling personality and physiological sig- 
nals, which is, to the best of our knowledge, the first com- 
prehensive computational study about the influence of per- 
sonality on emotion. We presented Vertex-weighted Multi- 
modal Multi-task Hypergraph Learning as the learning mod- 
el, where (subject, stimuli) forms the vertices, and the rela- 
tionship among personality and physiological signals is for- 
mulated as hyperedges. The importance of different vertices, 
hyperedges, and modalities is effectively explored by learning 
the optimal weights. Further, the proposed method can easily 
handle the data incompleteness issue. Experimental results 
on the ASCERTAIN dataset demonstrated the superiority of 
the proposed PER method, which can generalize to new sub- 
jects if the personality or physiological signals are known. 

For further studies, we plan to combine the multimedia 
content employed to evoke emotions and the physiologi- cal 
signals for PER. In addition, we will predict emotion and 
personality simultaneously in a joint framework to fur- ther 
explore the latent correlation. Constructing a reliable large-
scale dataset with personality and physiological signals would 
greatly promote the research of PER. How to improve the 
computational efficiency of hypergraph learning to deal with 
large-scale data is also worth studying. 
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