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Abstract :  This paper focuses on introducing the new idea of Pythagorean m-polar interval valued fuzzy neutrosophic set and its 

corresponding topology. This new set serves as a hybrid model combining the ideas of Pythagorean fuzzy sets, interval valued 

neutrosophic fuzzy sets and m-polar fuzzy sets. In this article we present some basic properties of the newly framed set and hence 

form the Pythagorean m-polar interval valued fuzzy neutrosophic topology 

 

 

IndexTerms - : Pythagorean m-polar interval valued fuzzy neutrosophic set; Pythagorean m-polar interval valued fuzzy 

neutrosophic topology. 

 

INTRODUCTION 
                  In1965, the thought of fuzzy sets as an augmentation of the conventional crisp set was inaugurated by Zadeh [18], to 

overcome these deficiencies, by associating the membership function   μA : X → [0,1]. The notion of intuitionistic fuzzy set (IFS) 
was initiated by Atanassov[2,3] as a significant generalization of fuzzy set. Intuitionistic fuzzy sets are very useful in situations 

when description of a problem by a linguistic variable, given in terms of a membership function only, seems too complicated. In 

2005, the model of neutrosophic sets, which is the broad view of intuitionistic fuzzy sets, for handling with difficulties involving 

exaggeration , indeterminacy and irregularity was explored by Smarandache [13]. The main aspiration behind this article is to study 

some features of Pythagorean m-polar fuzzy neutrosophic sets and construct topology on it. Wang et al. [16] proposed another 

extension of neutrosophic set which is single valued neutrosophic. Also Wang et al. [17] introduced the notion of interval valued 

neutrosophic set which is an instance of neutrosophic set. . The rest of the paper is systemized as: Elementary notions are dealt with 

in Section 2. Section 3 presents some notions of Pythagorean m-polar fuzzy neutrosophic sets. The topological structure on our 

proposed model along with its prime attributes is presented inSection4.  

 

 

NEED OF THE STUDY. 
1. Generalizing classical topology: Pythagorean m-polar interval-valued fuzzy neutrosophic topology provides a more 

comprehensive and flexible framework for topological spaces. 

2. Modeling complex systems: This mathematical structure can be used to model complex systems with multiple attributes, 

uncertainties, and indeterminacies. 

3. Applications in various fields: Potential applications in fields like artificial intelligence, data analysis, decision-making, and 

engineering. 

4. Developing new mathematical tools: Studying this topology can lead to the development of new mathematical tools and 

techniques for solving problems in various domains. 

 

             RESEARCH METHODOLOGY 
 

Conduct theoretical analysis  including their properties and behavior , Develop computational methods and algorithms for working 

with Pythagorean m-polar interval-valued fuzzy neutrosophic topological spaces. 

 

  PRELIMINARIES 
Definition 2.1.    [18]  A collection of orderly pairs (ℏ, TF(ℏ)), ℏ being an element of the underlying universe X and TF (the affiliation, 
association or membership function) is a well defined map, that drives members of X to [0,1], is entitled as a fuzzy set (FS) F over 

X. In other words 
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𝑇(ℎ) = {

1,               𝑖𝑓 ℎ ∈ 𝐹
0,              𝑖𝑓, ℎ ∉ 𝐹

]0,1[,    𝐼𝐹 ℎ 𝑖𝑠 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑙𝑦 𝑖𝑛 𝐹
 

 
Definition 2.2.  [2,3] An intuitionistic fuzzy set (IFS) G in X is an object having the form 

                                                                       G = {ℏ, T(ℏ) ,F(ℏ) :ℏ ∈ X} 

where the membership function T(ℏ) : X → [0,1] and the non-membership function F(ℏ) : X → [0,1] for every x∈ X obey the 

constrain                                                         0 ≤ T(ℏ)+ F(ℏ) ≤ 1. 

 
Definition 2.3.    [15,16] A Pythagorean fuzzy set, shortened as PFS ,is a collection defined by 

                                                                         𝑃 = {< ℎ, 𝑇𝑝(ℎ),𝐹𝑝(ℎ) >: ℎ ∈ 𝑋 

where TP and FP are mappings from a set X to [0, 1] obeying the restriction 0 ≤ TP
2(ℏ)+ FP

2(ℏ) ≤ 1 , representing correspondingly 

the affiliation and dissociation grades of ℏ ∈ X to P. The ordered pair p =(Tp ,Fp ) is accredited as Pythagorean fuzzy number(PFN). 

The quantity 𝜑(ℎ) = √1− {𝑇2(ℎ) + 𝐹2(ℎ)   is famous as the hesitation margin. 

 
Definition 2.4.   [12,13] A neutrosophic set N on the underlying set X is defined as 

N= {< ℏ,TN(ℏ),IN(ℏ),FN(ℏ) >:ℏ ∈ X} 

where T ,I ,F : X →]−0,1+[ accompanied by the constraint −0 ≤ 𝑇𝑁(ℎ) + 𝐼𝑁(ℎ) + 𝐹𝑁(ℎ)≤ 3+. Here TN(ℏ), IN(ℏ) and FN(ℏ )are the 
degrees of membership, indeterminacy and falsity (non membership)of members of the given set, respectively. T, I and F are 

acknowledged as the neutrosophic components. 

 
Definition 2.5.  [1]A fuzzy neutrosophic set (fn-set) over X is delineated as 

    A = {< ℏ ,TA(ℏ),IA(ℏ),FA(ℏ) >:ℏ ∈ X} 

where T,I,F : X 7→ [0,1 ] in such away that 0 ≤ TA(ℏ)+ IA(ℏ)+ FA(ℏ) ≤ 3. 

 

Definition 2.6. [8] Suppose that m ∈ N. A Pythagorean m-polar fuzzy set (PmFS) P over X is regarded as by the mappings  𝑇𝑝
𝑖 :𝑋 →

[0,1] (the membership functions) and 𝐹𝑝
𝑖 : 𝑋 → [0,1]  (the non-membership functions) with the limitation that 

             
For integral values of i ranging from1to m. A PmFS may be articulated as 

                            
 
Definition 2.7. Let X ≠ φ be a crisp set. A family τ of subsets of X is called a topology on X if 

(i) φ and X itself belong to τ. 

(ii) The union of any number of members of τ is again in τ. 

(iii) The intersection of any finite number of members of τ belong to τ. 

If τ is a topology on X, then (X,τ) is known as a topological space. 

 

PYTHAGOREAN m-POLAR INTERVAL VALUED FUZZY NEUTROSOPHIC SET          
    In this section, we introduce the notion of Pythagorean m-polar interval valued fuzzy neutrosophic set along with its prime 

characteristics and illustrations. 

                                                                                                                                                                                                                    

Definition 3.1. A Pythagorean m-polar interval valued fuzzy neutrosophic set (PmIVFNS) 𝜏 over a basic set X is marked by three 

mappings  𝑇𝜏
𝑖 :𝑋 → [0,1]𝑚, 𝐼𝜏

𝑖 :𝑋 → [0,1]𝑚 and 𝐹𝜏
𝑖 : 𝑋 → [0,1]𝑚 , Where m is a natural number, ∀  i=1,2,……,m with the limitation  

that, 

                                                           0 ≤ 𝑖𝑛𝑓 (𝑇𝜏
𝑖(ℎ))

2

+ 𝑖𝑛𝑓 (𝐼𝜏
𝑖(ℎ))

2

+ 𝑖𝑛𝑓 (𝐹𝜏
𝑖(ℎ))

2

≤ 3      

0 ≤ 𝑠𝑢𝑝(𝑇𝜏
𝑖(ℎ))

2

+ 𝑠𝑢𝑝(𝐼𝜏
𝑖(ℎ))

2

+ 𝑠𝑢𝑝(𝐹𝜏
𝑖(ℎ))

2

≤ 3 

 for all h∈X. 
        A  PmIVFNS  may be expressed as  

    

  𝜏 = {(ℎ, [inf 𝑇𝜏
1(ℎ), sup 𝑇𝜏

1 (ℎ)],[𝑖𝑛𝑓𝐼𝜏
1(ℎ), 𝑠𝑢𝑝 𝐼𝜏

1(ℎ)], [𝑖𝑛𝑓𝐹𝜏
1(ℎ),𝑠𝑢𝑝𝐹𝜏

1(ℎ)],…… . .,   
 

[𝑖𝑛𝑓𝑇𝜏
𝑚(ℎ),𝑠𝑢𝑝𝑇𝜏

𝑚(ℎ)], [𝑖𝑛𝑓𝐼𝜏
𝑚(ℎ),𝑠𝑢𝑝𝐼𝜏

𝑚(ℎ)], [𝑖𝑛𝑓𝐹𝜏
𝑚(ℎ),𝑠𝑢𝑝𝐹𝜏

𝑚(ℎ)] ∶ ℎ ∈ 𝑋} 
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If cardinality of X is 𝑙, then tabular structure of 𝜏 is as in Table 1: 

                

TABLE 1.  Tabular representation of PmIVFNS 𝜏 

𝜏     

ℎ1 ([𝑖𝑛𝑓𝑇𝜏
1(ℎ1), 𝑠𝑢𝑝𝑇𝜏

1(ℎ1)], [𝑖𝑛𝑓𝐼𝜏
1(ℎ1), 

𝑠𝑢𝑝𝐼𝜏
1(ℎ1)], [𝑖𝑛𝑓𝐹𝜏

1(ℎ1), 𝑠𝑢𝑝𝐹𝜏
1(ℎ1)]) 

([𝑖𝑛𝑓𝑇𝜏
2(ℎ1), 𝑠𝑢𝑝𝑇𝜏

2(ℎ1)], [𝑖𝑛𝑓𝐼𝜏
2(ℎ1), 

𝑠𝑢𝑝𝐼𝜏
2(ℎ1)], [𝑖𝑛𝑓𝐹𝜏

2(ℎ1), 𝑠𝑢𝑝𝐹𝜏
2(ℎ1)]) 

⋯ ([𝑖𝑛𝑓𝑇𝜏
𝑚(ℎ1), 𝑠𝑢𝑝𝑇𝜏

𝑚(ℎ1)], [𝑖𝑛𝑓𝐼𝜏
𝑚(ℎ1), 

𝑠𝑢𝑝𝐼𝜏
𝑚(ℎ1)], [𝑖𝑛𝑓𝐹𝜏

𝑚(ℎ1), 𝑠𝑢𝑝𝐹𝜏
𝑚(ℎ1)]) 

ℎ2 ([𝑖𝑛𝑓𝑇𝜏
1(ℎ2), 𝑠𝑢𝑝𝑇𝜏

1(ℎ2)], [𝑖𝑛𝑓𝐼𝜏
1  (ℎ2), 

𝑠𝑢𝑝𝐼𝜏
1(ℎ2)], [𝑖𝑛𝑓𝐹𝜏

1(ℎ2), 𝑠𝑢𝑝𝐹𝜏
1 (ℎ2)]) 

([𝑖𝑛𝑓𝑇𝜏
2(ℎ2), 𝑠𝑢𝑝𝑇𝜏

2(ℎ2)], [𝑖𝑛𝑓𝐼𝜏
2(ℎ2), 

𝑠𝑢𝑝𝐼𝜏
2(ℎ2)], [𝑖𝑛𝑓𝐹𝜏

2(ℎ2), 𝑠𝑢𝑝𝐹𝜏
2(ℎ2)]) 

⋯ ([𝑖𝑛𝑓𝑇𝜏
𝑚(ℎ2), 𝑠𝑢𝑝𝑇𝜏

𝑚(ℎ2)], [𝑖𝑛𝑓𝐼𝜏
𝑚(ℎ2), 

𝑠𝑢𝑝𝐼𝜏
𝑚(ℎ2)], [𝑖𝑛𝑓𝐹𝜏

𝑚(ℎ2), 𝑠𝑢𝑝𝐹𝜏
𝑚 (ℎ2)]) 

  ⋮                          ⋮                           ⋮   ⋱                            ⋮ 
ℎ𝑖 ([𝑖𝑛𝑓𝑇𝜏

1(ℎ𝑖), 𝑠𝑢𝑝𝑇𝜏
1(ℎ𝑖)], [𝑖𝑛𝑓𝐼𝜏

1(ℎ𝑖), 
𝑠𝑢𝑝𝐼𝜏

1(ℎ𝑖)], [𝑖𝑛𝑓𝐹𝜏
1(ℎ𝑖), 𝑠𝑢𝑝𝐹𝜏

1 (ℎ𝑖)]) 
([𝑖𝑛𝑓𝑇𝜏

2(ℎ𝑖), 𝑠𝑢𝑝𝑇𝜏
2(ℎ𝑖)], [𝑖𝑛𝑓𝐼𝜏

2(ℎ𝑖), 
𝑠𝑢𝑝𝐼𝜏

2(ℎ𝑖)], [𝑖𝑛𝑓𝐹𝜏
2(ℎ𝑖), 𝑠𝑢𝑝𝐹𝜏

2(ℎ𝑖)]) 
  ⋯ ([𝑖𝑛𝑓𝑇𝜏

𝑚(ℎ𝑖), 𝑠𝑢𝑝𝑇𝜏
𝑚(ℎ𝑖)], [𝑖𝑛𝑓𝐼𝜏

𝑚(ℎ𝑖), 
𝑠𝑢𝑝𝐼𝜏

𝑚(ℎ𝑖)], [𝑖𝑛𝑓𝐹𝜏
𝑚(ℎ𝑖), 𝑠𝑢𝑝𝐹𝜏

𝑚(ℎ𝑖)]) 

The corresponding matrix format is  
 

𝜏 =

(

 
 
 
 
 

([𝑖𝑛𝑓𝑇𝜏
1(ℎ1), 𝑠𝑢𝑝𝑇𝜏

1(ℎ1)], [𝑖𝑛𝑓𝐼𝜏
1(ℎ1), ([𝑖𝑛𝑓𝑇𝜏

2(ℎ1), 𝑠𝑢𝑝𝑇𝜏
2(ℎ1)], [𝑖𝑛𝑓𝐼𝜏

2(ℎ1), ⋯ ([𝑖𝑛𝑓𝑇𝜏
𝑚(ℎ1), 𝑠𝑢𝑝𝑇𝜏

𝑚(ℎ1)], [𝑖𝑛𝑓𝐼𝜏
𝑚(ℎ1),

𝑠𝑢𝑝𝐼𝜏
1(ℎ1)], [𝑖𝑛𝑓𝐹𝜏

1(ℎ1), 𝑠𝑢𝑝𝐹𝜏
1(ℎ1)]) 𝑠𝑢𝑝𝐼𝜏

2(ℎ1)], [𝑖𝑛𝑓𝐹𝜏
2(ℎ1), 𝑠𝑢𝑝𝐹𝜏

2(ℎ1)]) ⋯ 𝑠𝑢𝑝𝐼𝜏
𝑚(ℎ1)], [𝑖𝑛𝑓𝐹𝜏

𝑚(ℎ1), 𝑠𝑢𝑝𝐹𝜏
𝑚(ℎ1)])

([𝑖𝑛𝑓𝑇𝜏
1(ℎ2), 𝑠𝑢𝑝𝑇𝜏

1(ℎ2)], [𝑖𝑛𝑓𝐼𝜏
1(ℎ2), ([𝑖𝑛𝑓𝑇𝜏

2(ℎ2), 𝑠𝑢𝑝𝑇𝜏
2(ℎ2)], [𝑖𝑛𝑓𝐼𝜏

2(ℎ2), ⋯ ([𝑖𝑛𝑓𝑇𝜏
𝑚(ℎ2), 𝑠𝑢𝑝𝑇𝜏

𝑚(ℎ2)], [𝑖𝑛𝑓𝐼𝜏
𝑚(ℎ2),

𝑠𝑢𝑝𝐼𝜏
1(ℎ2)], [𝑖𝑛𝑓𝐹𝜏

1(ℎ2), 𝑠𝑢𝑝𝐹𝜏
1(ℎ2)]) 𝑠𝑢𝑝𝐼𝜏

2(ℎ2)], [𝑖𝑛𝑓𝐹𝜏
2(ℎ2), 𝑠𝑢𝑝𝐹𝜏

2(ℎ2)]) ⋯ 𝑠𝑢𝑝𝐼𝜏
𝑚(ℎ2)], [𝑖𝑛𝑓𝐹𝜏

𝑚(ℎ2), supF𝜏
m(ℎ2)])

⋮ ⋮ ⋮ ⋮
([𝑖𝑛𝑓𝑇𝜏

1(ℎ𝑖), 𝑠𝑢𝑝𝑇𝜏
1(ℎ𝑖)], [𝑖𝑛𝑓𝐼𝜏

1(ℎ𝑖), ([𝑖𝑛𝑓𝑇𝜏
2(ℎ𝑖), 𝑠𝑢𝑝𝑇𝜏

2(ℎ𝑖)], [𝑖𝑛𝑓𝐼𝜏
2(ℎ𝑖), ⋯ ([𝑖𝑛𝑓𝑇𝜏

𝑚(ℎ𝑖), 𝑠𝑢𝑝𝑇𝜏
𝑚(ℎ𝑖)], [𝑖𝑛𝑓𝐼𝜏

𝑚(ℎ𝑖),

𝑠𝑢𝑝𝐼𝜏
1(ℎ𝑖)], [𝑖𝑛𝑓𝐹𝜏

1(ℎ𝑖), 𝑠𝑢𝑝𝐹𝜏
1(ℎ𝑖)]) 𝑠𝑢𝑝𝐼𝜏

2(ℎ𝑖)], [𝑖𝑛𝑓𝐹𝜏
2(ℎ𝑖), 𝑠𝑢𝑝𝐹𝜏

2(ℎ𝑖)]) ⋯ 𝑠𝑢𝑝𝐼𝜏
𝑚(ℎ𝑖)], [𝑖𝑛𝑓𝐹𝜏

𝑚(ℎ𝑖), 𝑠𝑢𝑝𝐹𝜏
𝑚(ℎ𝑖)) )

 
 
 
 
 

 

 

This 𝑙 × 𝑚 matrix is known as PmIVFN matrix. The assortment of each PmIVFNS characterized over universe would be designated 

by PmIVFNS(X). 

 
Example 3.2. If X={e,f} be a crisp set, then 
 

𝜏 =  

{
 

 
𝑒

([0.2,0.4], [0.6,0.3], [0.3,0.5]), ([0.6,0.8], [0.5,0.6], [0.1,0.4]), ([0.3,0.7], [0.7,0.5], [0.8,0.3])
,

𝑓

 ([0.1,0.9], [0.3,0.4], [0.5,0.7]), ([0.4,0.6], [0.9,0.3], [0.5,0.5]), ([0.6,0.2], [0.7,0.8], [0.8,0.5])}
 

 
 

         

TABLE 2.  Tabular representation of P3IVFNS  𝜏 

𝜏                                                                                                                                                                      
𝑒      ([0.2,0.4], [0.6,0.3], [0.3,0.5])            ([0.6,0.8], [0.5,0.6], [0.1,0.4])                ([0.3,0.7], [0.7,0.5], [0.8,0.3])                                                                                                                                                          
𝑓    ([0.1,0.9], [0.3,0.4], [0.5,0.7])              ([0.4,0.6], [0.9,0.3], [0.5,0.5])                ([0.6,0.2], [0.7,0.8], [0.8,0.5])                                                                                                                                                               

 
The matrix form of this set is  

 

𝜏 = (
 ([0.2,0.4], [0.6,0.3], [0.3,0.5]) ([0.6,0.8], [0.5,0.6], [0.1,0.4]) ([0.3,0.7], [0.7,0.5], [0.8,0.3])

 ([0.1,0.9], [0.3,0.4], [0.5,0.7])  ([0.4,0.6], [0.9,0.3], [0.5,0.5]) ([0.6,0.2], [0.7,0.8], [0.8,0.5])
) 

 

Definition 3.3  .   Let 𝜏1 and 𝜏2be PmIVFNS over X. 𝜏1 is acknowledged as a 𝑠𝑢𝑏𝑠𝑒𝑡 of 𝜏2, written as 𝜏1 ⊆ 𝜏2, ∀ 𝜏𝜖𝑋 and each  

   values of  i ranging from 1 to m, if  

  

    

 𝑖𝑛𝑓𝑇𝜏1
𝑖 (ℎ) ≤ 𝑖𝑛𝑓𝑇𝜏2

𝑖 (ℎ)  ,    𝑠𝑢𝑝𝑇𝜏1
𝑖 (ℎ) ≤ 𝑠𝑢𝑝𝑇𝜏2

𝑖 (ℎ) 

                                                𝑖𝑛𝑓𝐼𝜏1
𝑖 (ℎ) ≤ 𝑖𝑛𝑓𝐼𝜏2

𝑖 (ℎ)   ,     𝑠𝑢𝑝𝐼𝜏1
𝑖 (ℎ) ≤ 𝑠𝑢𝑝𝐼𝜏2

𝑖 (ℎ) 

𝑖𝑛𝑓𝐹𝜏1
𝑖 (ℎ) ≤ 𝑖𝑛𝑓𝐹𝜏2

𝑖 (ℎ)   ,    𝑠𝑢𝑝𝐹𝜏1
𝑖 (ℎ) ≤ 𝑠𝑢𝑝𝐹𝜏2

𝑖 (ℎ)                                                                                                                               

 𝜏1 & 𝜏2  are said to be equal if 𝜏1 ⊆ 𝜏2 ⊆ 𝜏1 and is written as 𝜏1 = 𝜏2    

 
 Example 3.4.     Let 

 

              𝜏1 = (

([0.4,0.5], [0.3,0.8], [0.7,0.5]) ([0.3,0.6], [0.1,0.5], [0.2,0.8]) ([0.9,0.7], [0.3,0.7], [0.3,0.6])
([0.7,0.1], [0.3,0.9], [0.6,0.4]) ([0.2,0.6], [0.1,0.8], [0.5,0.6]) ([0.3,0.5], [0.9,0.6], [0.3,0.9])

([0.2,0.5], [0.7,0.8], [0.8,0.8]) ([0.4,0.6], [0.5,0.6], [0.8,0.9]) ([0.5,0.5], [0.4,0.9], [0.2,0.9])
) and  

 

          𝜏2 = (

([0.6,0.8], [0.2,0.4], [0.5,0.3]) ([0.7,0.9], [0.0,0.2], [0.1,0.6]) ([1.0,0.8], [0.2,0.6], [0.1,0.4])

([0.9,0.5], [0.2,0.5], [0.4,0.1]) ([0.9,0.8], [0.0,0.6], [0.4,0.3]) ([0.8,1.0], [0.5,0.4], [0.1,0.7])

([1.0,0.8], [0.6,0.4], [0.5,0.1]) ([0.9,0.7], [0.3,0.5], [0.6,0.7]) ([0.9,0.6], [0.3,0.4], [0.1,0.7])
)                            

  

be PmIVFNS over some set x, then 𝜏1 ⊆ 𝜏2 
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Definition 3.5.     A  PmIVFNS  𝜏 over X is known as 𝑛𝑢𝑙𝑙 PmIVFNS if 𝑖𝑛𝑓𝑇𝜏
𝑖(ℎ) = 0 , 𝑠𝑢𝑝𝑇𝜏

𝑖(ℎ) = 0; 𝑖𝑛𝑓𝐼𝜏
𝑖(ℎ) =    1, 𝑠𝑢𝑝𝐼𝜏

𝑖(ℎ) =
1 and 𝑖𝑛𝑓𝐹𝜏

𝑖(ℎ) = 1, sup𝐹𝜏
𝑖(ℎ) = 1 , ∀ℎ ∈ 𝑋 and all acceptable values of i. It is designated by φ.  

 

Thus, 𝜑 = (

([0,0], [1,1], [1,1]) ([0,0], [1,1], [1,1]) … ([0,0], [1,1], [1,1])

([0,0], [1,1], [1,1]) ([0,0], [1,1], [1,1]) … ([0,0], [1,1], [1,1])
⋮ ⋮ ⋱ ⋮

([0,0], [1,1], [1,1]) ([0,0], [1,1], [1,1]) … ([0,0], [1,1], [1,1])

) 

 

 Definition 3.6.  A PmIVFNS  τ over X is known as  𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒  PmIVFNS  if  𝑖𝑛𝑓𝑇𝜏
𝑖(ℎ) = 1 , 𝑠𝑢𝑝𝑇𝜏

𝑖(ℎ) = 1; 𝑖𝑛𝑓𝐼𝜏
𝑖(ℎ) =

  0, 𝑠𝑢𝑝𝐼𝜏
𝑖(ℎ) = 0  and 𝑖𝑛𝑓𝐹𝜏

𝑖(ℎ) = 0, 𝑠𝑢𝑝𝐹𝜏
𝑖(ℎ) = 0 ,∀h∈X . It is denoted by 𝟆. 

 

𝜘 = (

([1,1], [0,0], [0,0]) ([1,1], [0,0], [0,0]) ⋯ ([1,1], [0,0], [0,0])
([1,1], [0,0], [0,0]) ([1,1], [0,0], [0,0]) ⋯ ([1,1], [0,0], [0,0])

⋮ ⋮ ⋱ ⋮
([1,1], [0,0], [0,0]) ([1,1], [0,0], [0,0]) … ([1,1], [0,0], [0,0])

) 

 

Definition 3.7.   The 𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 of a PmIVFNS 

                                       τ = {
ℎ

([𝑖𝑛𝑓𝑇𝜏
𝑖(ℎ),𝑠𝑢𝑝𝑇𝜏

𝑖(ℎ)],[𝑖𝑛𝑓𝐼𝜏
𝑖(ℎ),𝑠𝑢𝑝𝐼𝜏

𝑖 (ℎ)],[𝑖𝑛𝑓𝐹𝜏
𝑖(ℎ),𝑠𝑢𝑝𝐹𝜏

𝑖(ℎ)])
: ℎ ∈ 𝑋, 𝑖 = 1, . . . ,𝑚} 

over X is defined as 

                                    𝜏𝑐 = {
ℎ

([𝑖𝑛𝑓𝐹𝜏
𝑖(ℎ),𝑠𝑢𝑝𝐹𝜏

𝑖(ℎ)],1−[𝑖𝑛𝑓𝐼𝜏
𝐼(ℎ),𝑠𝑢𝑝𝐼𝜏

𝑖(ℎ)],[𝑖𝑛𝑓𝑇𝜏
𝑖(ℎ),𝑠𝑢𝑝𝑇𝜏

𝑖(ℎ)])
: ℎ ∈ 𝑋, 𝑖 = 1, . . . . ,𝑚}. 

 

Example 3.8.      The complement of the PmIVFNS  𝜏 given in example 3.2 is 
 

𝜏𝑐 = (
 ([0.3,0.5], [0.4,0.7], [0.2,0.4]) ([0.1,0.4], [0.5,0.4], [0.6,0.8]) ([0.8,0.3], [0.3,0.5], [0.3,0.7])

([0.5,0.7], [0.7,0.6], [0.1,0.9])  ([0.5,0.5], [0.1,0.7], [0.4,0.6]) ([0.8,0.5], [0.3,0.2], [0.6,0.2])
) 

 

Definition 3.9. The union of any PmIVFNSs 𝜏1 and 𝜏2 expressed over the same universe X is represented as  
 

𝜏1 ∪𝑚 𝜏2  

=

{
 
 

 
 

ℎ

([𝑚𝑎𝑥 (𝑖𝑛𝑓𝑇𝜏1
𝑖 (ℎ), 𝑖𝑛𝑓𝑇𝜏𝑖2(ℎ)),𝑚𝑎𝑥 (𝑠𝑢𝑝𝑇𝜏1

𝑖 (ℎ),𝑠𝑢𝑝𝑇𝜏2
𝑖 (ℎ)) ], [𝑚𝑖𝑛 (𝑖𝑛𝑓𝐼𝜏1

𝑖 (ℎ), 𝑖𝑛𝑓𝐼𝜏𝑖2(ℎ)),𝑚𝑖𝑛 (𝑠𝑢𝑝𝐼𝜏1
𝑖 (ℎ),𝑠𝑢𝑝𝐼𝜏2

𝑖 (ℎ))],

[𝑚𝑖𝑛 (𝑖𝑛𝑓𝐹𝜏1
𝑖 (ℎ), 𝑖𝑛𝑓𝐹𝜏2

𝑖 (ℎ)),𝑚𝑖𝑛 (𝑠𝑢𝑝𝐹𝜏1
𝑖 (ℎ),𝑠𝑢𝑝𝐹𝜏2

𝑖 (ℎ)) ]) }
 
 

 
 

   ,

ℎ ∈ 𝑋, 𝑖 = 1, . . . . , 𝑚 

 

Definition 3.10. The intersection of any PmIVFNSs 𝜏1and 𝜏2 expressed over the same universe X is represented as                        

 𝜏1 ∩𝑚 𝜏2 =

{
 

 
ℎ

([min (𝑖𝑛𝑓𝑇𝜏1
𝑖 (ℎ),𝑖𝑛𝑓𝑇_𝜏2

𝑖 (ℎ)),min (𝑠𝑢𝑝𝑇𝜏1
𝑖 (ℎ),𝑠𝑢𝑝𝑇𝜏2

𝑖 (ℎ)) ],[max (𝑖𝑛𝑓𝐼𝜏1
𝑖 (ℎ),𝑖𝑛𝑓𝐼𝜏2

𝑖 (ℎ)),max (𝑠𝑢𝑝𝐼𝜏1
𝑖 (ℎ),𝑠𝑢𝑝𝐼𝜏2

𝑖 (ℎ))],

[max(𝑖𝑛𝑓𝐹𝜏1
𝑖 (ℎ),𝑖𝑛𝑓𝐹𝜏2

𝑖 (ℎ)),max(𝑠𝑢𝑝𝐹𝜏1
𝑖 (ℎ),𝑠𝑢𝑝𝐹𝜏2

𝑖 (ℎ))] }
 

 

, ℎ ∈ 𝑋, 𝑖 =

1, . . . . , 𝑚 

Example 3.11.  If 

 

   𝜏1 = (

([0.5,0.2], [0.2,0.3], [0.7,0.8]) ([0.1,0.5], [0.9,1.0], [0.8,0.2]) ([0.3,0.6], [0.4,0.2], [0.1,0.3])

([0.6,0.1], [0.0,0.3], [0.4,0.7]) ([0.9,0.1], [0.3,0.7], [0.5,1.0]) ([0.2,0.3], [0.8,0.6], [0.2,0.9])

([0.8,0.2], [0.6,0.3], [0.5,0.1]) ([0.6,0.6], [0.2,0.1], [1.0,0.7]) ([0.5,0.2], [0.9,0.7], [0.3,0.8])
)   

and 

 

𝜏2 = (

([0.4,0.7], [0.9,0.2], [0.8,0.0]) ([0.5,0.8], [0.2,0.6], [0.7,0.7]) ([0.0,0.6], [0.5,0.9],0.9,0.8])
([0.6,0.3], [0.1,0.9], [0.8,0.2]) ([0.7,0.2], [0.4,0.9], [0.9,0.2]) ([0.4,0.8], [0.6,0.4], [0.9,1.0])

([0.4,0.5], [0.2,0.6], [0.5,0.5]) ([0.5,0.2], [0.1,0.8], [0.4,0.4]) ([0.6,0.3], [0.8,0.2], [0.9,0.4])

) 

 

are two PmIVFNS defined over the same universe of discourse X, then  

 

𝜏1 ∪𝑚 𝜏2 = (

([0.5,0.7], [0.2,0.2], [0.7,0.0]) ([0.5,0.8], [0.2,0.6], [0.7,0.2]) ([0.0,0.6], [0.4,0.2], [0.1,0.3])

([0.6,0.3], [0.0,0.3], [0.4,0.2]) ([0.9,0.2], [0.3,0.7], [0.5,0.2]) ([0.4,0.8], [0.6,0.4], [0.2,0.9])

([0.8,0.5], [0.2,0.3], [0.5,0.1]) ([0.6,0.6], [0.1,0.1], [0.4,0.4]) ([0.6,0.3], [0.9,0.7], [0.9,0.8])

)  and 

𝜏1 ∩𝑚 𝜏2 = (

([0.4,0.2], [0.9,0.3], [0.8,0.8]) ([0.1,0.5], [0.9,1.0], [0.8,0.7]) ([0.0,0.6], [0.5,0.9], [0.9,0.8])
([0.6,0.1], [0.1,0.9], [0.8,0.7]) ([0.7,0.1], [0.4,0.9], [0.9,1.0]) ([0.2,0.3], [0.8,0.6], [0.9,1.0])

([0.4,0.2], [0.6,0.6], [0.5,0.5]) ([0.5,0.2], [0.2,0.8], [1.0,0.7]) ([0.5,0.2], [0.9,0.7], [0.9,0.8])
) 
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Proposition 3.12.  If 𝜏, 𝜏1, 𝜏2, 𝜏3 are PmIVFNS over X, then 

1. 𝜑 ∪𝑚 𝜏 = 𝜏 

2. 𝜑 ∩𝑚 𝜏 = 𝜑 

3. 𝜘 ∪𝑚 𝜏 = 𝜘 

4. 𝜘 ∩𝑚 𝜏 = 𝜘 

5. 𝜏 ∪𝑚 𝜏 = 𝜏 
6. 𝜏 ∩𝑚 𝜏 = 𝜏 
7. 𝜏1 ∪𝑚 𝜏2 = 𝜏2 ∪𝑚 𝜏1 

8. 𝜏1 ∩𝑚 𝜏2 = 𝜏2 ∩𝑚  𝜏1 
9. 𝜏1  ∪𝑚 (𝜏2 ∪𝑚 𝜏3) = (𝜏1 ∪𝑚 𝜏2) ∪𝑚 𝜏3 
10. 𝜏1 ∩𝑚 (𝜏2 ∩𝑚 𝜏3 ) = (𝜏1 ∩𝑚 𝜏2 ) ∩𝑚 𝜏3 
11. 𝜏1 ∪𝑚 (𝜏2 ∩𝑚 𝜏3 ) = (𝜏1 ∪𝑚 𝜏2 ) ∩𝑚 (𝜏1 ∪𝑚 𝜏3) 

12. 𝜏1 ∩𝑚 (𝜏2 ∪𝑚 𝜏3  ) = (𝜏1 ∩𝑚 𝜏2) ∪𝑚 (𝜏1 ∩𝑚 𝜏3) 

Proof.  Here, we prove only (11).We may assume without losing generality, that 𝑚𝑎𝑥 (𝑖𝑛𝑓𝑇𝜏1
𝑖 (ℎ), 𝑖𝑛𝑓𝑇𝜏

𝑖
2
(ℎ)) =

𝑖𝑛𝑓𝑇𝜏1
𝑖 (ℎ) ,𝑚𝑎 𝑥 (𝑠𝑢𝑝𝑇𝜏1

𝑖 (ℎ),𝑠𝑢𝑝𝑇𝜏2
𝑖 (ℎ)) = 𝑠𝑢𝑝𝑇𝜏1

𝑖 (ℎ); max (𝑖𝑛𝑓𝐼𝜏1
𝑖 (ℎ), 𝑖𝑛𝑓𝐼𝜏2

𝑖 (ℎ)) = 𝑖𝑛𝑓𝐼𝜏1
𝑖 (ℎ),max (𝑠𝑢𝑝𝐼𝜏1

𝑖 (ℎ),𝑠𝑢𝑝𝐼𝜏2
𝑖 (ℎ)) =

𝑠𝑢𝑝𝐼𝜏1
𝑖 (ℎ); 𝑚𝑎𝑥(𝑖𝑛𝑓𝐹𝜏1

𝑖  (ℎ), 𝑖𝑛𝑓𝐹𝜏2
𝑖  (ℎ)) = 𝑖𝑛𝑓𝐹𝜏1

𝑖  (ℎ),𝑚𝑎𝑥(𝑠𝑢𝑝𝐹𝜏1
𝑖  (ℎ), 𝑠𝑢𝑝𝐹𝜏2

𝑖  (ℎ)) = 𝑠𝑢𝑝𝐹𝜏1
𝑖 (ℎ).  

Then ,∀ℎ ∈ 𝑋 and i=1, . . . .,m  

 

 𝜏2 ∪𝑚 𝜏3 =

{
 
 

 
 

ℎ

([𝑚𝑖𝑛(𝑖𝑛𝑓𝑇𝜏2
𝑖 (ℎ),𝑖𝑛𝑓𝑇𝜏3

𝑖 (ℎ)),𝑚𝑖𝑛(𝑠𝑢𝑝𝑇𝜏2
𝑖 (ℎ),𝑠𝑢𝑝𝑇𝜏3

𝑖 (ℎ))],[𝑚𝑎𝑥(𝑖𝑛𝑓𝐼𝜏2
𝑖 (ℎ),𝑖𝑛𝑓𝐼𝜏3

𝑖 (ℎ)),𝑚𝑎𝑥(𝑠𝑢𝑝𝐼𝜏2
𝑖 (ℎ),𝑠𝑢𝑝𝐼𝜏3

𝑖  (ℎ))],

[max(𝑖𝑛𝑓𝐹𝜏2
𝑖 (ℎ),𝑖𝑛𝑓𝐹𝜏3

𝑖 (ℎ)),max(𝑠𝑢𝑝𝐹𝜏2
𝑖 (ℎ),𝑠𝑢𝑝𝐹𝜏3

𝑖 (ℎ))) }
 
 

 
 

 

 

= {
ℎ

([𝑖𝑛𝑓𝑇𝜏2
𝑖 (ℎ), 𝑠𝑢𝑝𝑇𝜏2

𝑖 (ℎ)], [𝑖𝑛𝑓𝐼𝜏2
𝑖 (ℎ), 𝑠𝑢𝑝𝐼𝜏2

𝑖 (ℎ)], [𝑖𝑛𝑓𝐹𝜏2
𝑖 (ℎ),𝑠𝑢𝑝𝐹𝜏2

𝑖 (ℎ)])
} 

 

∴ 𝜏1 ∪𝑚 (𝜏2 ∩𝑚 𝜏3) = {
ℎ

([𝑖𝑛𝑓𝑇𝜏1
𝑖 (ℎ),𝑠𝑢𝑝𝑇𝜏1

𝑖 (ℎ)], [𝑖𝑛𝑓𝐼𝜏1
𝑖 (ℎ), 𝑠𝑢𝑝𝐼𝜏1

𝑖 (ℎ)], [𝑖𝑛𝑓𝐹𝜏1
𝑖 (ℎ),𝑠𝑢𝑝𝐹𝜏1

𝑖 (ℎ)])
} ∪𝑚  

{
ℎ

([𝑖𝑛𝑓𝑇𝜏2
𝑖 (ℎ),𝑠𝑢𝑝𝑇𝜏2

𝑖 (ℎ)], [𝑖𝑛𝑓𝐼𝜏2
𝑖 (ℎ),𝑠𝑢𝑝𝐼𝜏2

𝑖 (ℎ)], [𝑖𝑛𝑓𝐹𝜏2
𝑖 (ℎ), 𝑠𝑢𝑝𝐹𝜏2

𝑖 (ℎ)])
} 

 

=

{
  
 

  
 

ℎ

([max (𝑖𝑛𝑓𝑇𝜏1
𝑖 (ℎ), 𝑖𝑛𝑓𝑇𝜏2

𝑖 (ℎ)) ,max (𝑠𝑢𝑝𝑇𝜏1
𝑖 (ℎ), 𝑠𝑢𝑝𝑇𝜏2

𝑖 (ℎ))] , [min(𝑖𝑛𝑓𝐼𝜏1
𝑖 (ℎ), 𝑖𝑛𝑓𝐼𝜏2

𝑖 (ℎ)) ,min (𝑠𝑢𝑝𝐼𝜏1
𝑖 (ℎ), 𝑠𝑢𝑝𝐼𝜏2

𝑖 (ℎ))] ,

[min (𝑖𝑛𝑓𝐹𝜏1
𝑖 (ℎ), 𝑖𝑛𝑓𝐹𝜏2

𝑖 (ℎ)) ,min (𝑠𝑢𝑝𝐹𝜏1
𝑖 (ℎ), 𝑠𝑢𝑝𝐹𝜏2

𝑖 (ℎ))] ) }
  
 

  
 

 

 

= {
ℎ

([𝑖𝑛𝑓𝑇𝜏1
𝑖 (ℎ),𝑠𝑢𝑝𝑇𝜏1

𝑖 (ℎ)],[𝑖𝑛𝑓𝐼𝜏1
𝑖 (ℎ),𝑠𝑢𝑝𝐼𝜏1

𝑖 (ℎ)],[𝑖𝑛𝑓𝐹𝜏1
𝑖 (ℎ),𝑠𝑢𝑝𝐹𝜏1

𝑖 (ℎ)])
}       and 

𝜏1 ∪𝑚 𝜏2 =

{
 
 

 
 

ℎ

([max (𝑖𝑛𝑓𝑇𝜏1
𝑖 (ℎ), 𝑖𝑛𝑓𝑇𝜏2

𝑖 (ℎ)),max (𝑠𝑢𝑝𝑇𝜏1
𝑖 (ℎ), 𝑠𝑢𝑝𝑇𝜏2

𝑖 (ℎ))], [min (𝑖𝑛𝑓𝐼𝜏1
𝑖 (ℎ), 𝑖𝑛𝑓𝐼𝜏2

𝑖 (ℎ)) ,

min (𝑠𝑢𝑝𝐼𝜏1
𝑖 (ℎ), 𝑠𝑢𝑝𝐼𝜏2

𝑖 (ℎ))], [min (𝑖𝑛𝑓𝐼𝜏1
𝑖 (ℎ), 𝑖𝑛𝑓𝐼𝜏2

𝑖 (ℎ)),min (𝑠𝑢𝑝𝐼𝜏1
𝑖 (ℎ),𝑠𝑢𝑝𝐼𝜏2

𝑖 (ℎ))]) }
 
 

 
 

 

 

= {
ℎ

([𝑖𝑛𝑓𝑇𝜏1
𝑖 (ℎ),𝑠𝑢𝑝𝑇𝜏1

𝑖 (ℎ)], [𝑖𝑛𝑓𝐼𝜏1
𝑖 (ℎ), 𝑠𝑢𝑝𝐼𝜏1

𝑖 (ℎ)], [𝑖𝑛𝑓𝐹𝜏1
𝑖 (ℎ),𝑠𝑢𝑝𝐹𝜏1

𝑖 (ℎ)])
} 

 

𝜏1 ∪𝑚 𝜏3 =

{
 
 

 
 

ℎ

([max (𝑖𝑛𝑓𝑇𝜏1
𝑖 (ℎ), 𝑖𝑛𝑓𝑇𝜏3

𝑖 (ℎ)),max (𝑠𝑢𝑝𝑇𝜏1
𝑖 (ℎ),𝑠𝑢𝑝𝑇𝜏3

𝑖 (ℎ))], [min (𝑖𝑛𝑓𝐼𝜏1
𝑖 (ℎ), 𝑖𝑛𝑓𝐼𝜏3

𝑖 (ℎ))

min (𝑠𝑢𝑝𝐼𝜏1
𝑖 (ℎ), 𝑠𝑢𝑝𝐼𝜏3

𝑖 (ℎ))], [min (𝑖𝑛𝑓𝐼𝜏1
𝑖 (ℎ), 𝑖𝑛𝑓𝐼𝜏3

𝑖 (ℎ)),min (𝑠𝑢𝑝𝐼𝜏1
𝑖 (ℎ),𝑠𝑢𝑝𝐼𝜏3

𝑖 (ℎ))]) }
 
 

 
 

 

 

= {
ℎ

([𝑖𝑛𝑓𝑇𝜏3
𝑖 (ℎ),𝑠𝑢𝑝𝑇𝜏3

𝑖 (ℎ)], [𝑖𝑛𝑓𝐼𝜏3
𝑖 (ℎ), 𝑠𝑢𝑝𝐼𝜏3

𝑖 (ℎ)], [𝑖𝑛𝑓𝐹𝜏3
𝑖 (ℎ),𝑠𝑢𝑝𝐹𝜏3

𝑖 (ℎ)])
} 
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 (𝜏1 ∪𝑚 𝜏2) ∩𝑚 (𝜏1 ∪𝑚 𝜏3) =   

{
 
 

 
 

ℎ

([min (𝑖𝑛𝑓𝑇𝜏1
𝑖 (ℎ), 𝑖𝑛𝑓𝑇𝜏3

𝑖 (ℎ)),min (𝑠𝑢𝑝𝑇𝜏1
𝑖 (ℎ), 𝑠𝑢𝑝𝑇𝜏3

𝑖 (ℎ))], [𝑚𝑎𝑥 (𝑖𝑛𝑓𝐼𝜏1
𝑖 (ℎ), 𝑖𝑛𝑓𝐼𝜏3

𝑖 (ℎ)) ,

𝑚𝑎𝑥(𝑠𝑢𝑝𝐼𝜏1
𝑖 (ℎ), 𝑠𝑢𝑝𝐼𝜏3

𝑖 (ℎ))], [𝑚𝑎𝑥(𝑖𝑛𝑓𝐼𝜏1
𝑖 (ℎ), 𝑖𝑛𝑓𝐼𝜏3

𝑖 (ℎ)),𝑚𝑎𝑥(𝑠𝑢𝑝𝐼𝜏1
𝑖 (ℎ),𝑠𝑢𝑝𝐼𝜏3

𝑖 (ℎ))])}
 
 

 
 

 

 

= {
ℎ

([𝑖𝑛𝑓𝑇𝜏1
𝑖 (ℎ),𝑠𝑢𝑝𝑇𝜏1

𝑖 (ℎ)], [𝑖𝑛𝑓𝐼𝜏1
𝑖 (ℎ), 𝑠𝑢𝑝𝐼𝜏1

𝑖 (ℎ)], [𝑖𝑛𝑓𝐹𝜏1
𝑖 (ℎ),𝑠𝑢𝑝𝐹𝜏1

𝑖 (ℎ)])
} 

 

Corollary 3.13.  (1)  𝜑 ∪𝑚 𝜘 = 𝜘     (2)  𝜑 ∩𝑚 𝜘 = 𝜑 

 

Proposition 3.14.   If 𝜏1 and 𝜏2 are 𝑃𝑚𝐼𝑉𝐹𝑁𝑆𝑠 over X, then 

1. 𝜏1 ∩𝑚 𝜏2 ⊆ 𝜏1 ⊆ 𝜏1 ∪𝑚 𝜏2 

2. 𝜏1 ∩𝑚 𝜏2 ⊆ 𝜏2 ⊆ 𝜏1 ∪𝑚 𝜏2 

Proof. The results are easy consequences of properties of max and min. 

 

Proposition 3.15.   Let 𝜏1, 𝜏2  𝑏𝑒 𝑃𝑚𝐼𝑉𝐹𝑁𝑆𝑠 𝑜𝑣𝑒𝑟 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒 𝑠𝑒𝑡 𝑋, then De Morgan laws hold i.e. 

1. (𝜏1 ∪𝑚 𝜏2)
𝑐 = 𝜏1

𝑐 ∩𝑚 𝜏2
𝑐 

2. (𝜏1 ∩𝑚 𝜏2)
𝑐 = 𝜏1

𝑐 ∩𝑚 𝜏2
𝑐    

Proof.    Here , we demonstrate only (1). The verification of (2) perhaps provided in the same way. We may assume , without     

losing the generality, that max (𝑖𝑛𝑓𝑇𝜏1
𝑖 (ℎ), 𝑖𝑛𝑓𝑇𝜏2

𝑖 (ℎ)) = 𝑖𝑛𝑓𝑇𝜏1
𝑖 (ℎ) , max (𝑠𝑢𝑝𝑇𝜏1

𝑖 (ℎ), 𝑠𝑢𝑝𝑇𝜏2
𝑖 (ℎ)) = 𝑠𝑢𝑝𝑇𝜏1

𝑖 (ℎ) ; 

max (𝑖𝑛𝑓𝐼𝜏1
𝑖 (ℎ), 𝑖𝑛𝑓𝐼𝜏2

𝑖 (ℎ)) = 𝑖𝑛𝑓𝐼𝜏1
𝑖 (ℎ), max (𝑠𝑢𝑝𝐼𝜏1

𝑖 (ℎ),𝑠𝑢𝑝𝐼𝜏2
𝑖 (ℎ)) = 𝑠𝑢𝑝𝐼𝜏1

𝑖 (ℎ) and max (𝑖𝑛𝑓𝐹𝜏1
𝑖 (ℎ), 𝑖𝑛𝑓𝐹𝜏2

𝑖 (ℎ)) =

𝑖𝑛𝑓𝐹𝜏1
𝑖 (ℎ),max (𝑠𝑢𝑝𝐹𝜏1

𝑖 (ℎ),𝑠𝑢𝑝𝐹𝜏2
𝑖 (ℎ)) = 𝑠𝑢𝑝𝐹𝜏1

𝑖 (ℎ).  

Then ∀ h ∈ X and i=1,2, . . . . , m. 

 

(𝜏1 ∪𝑚 𝜏2 )
𝑐 = {

ℎ

([max (infTτ1
i (h), infTτ2

i (h)) ,max (supTτ1
i (h), supTτ2

i (h))] ,[𝑚𝑖 𝑛 (𝑖𝑛𝑓𝐼𝜏1
𝑖 (ℎ), 𝑖𝑛𝑓𝐼𝜏2

𝑖 (ℎ)) ,

min (𝑠𝑢𝑝𝐼𝜏1
𝑖 (ℎ),𝑠𝑢𝑝𝐼𝜏2

𝑖 (ℎ))], [min (𝑖𝑛𝑓𝐼𝜏1
𝑖 (ℎ), 𝑖𝑛𝑓𝐼𝜏2

𝑖 (ℎ)),min (𝑠𝑢𝑝𝐼𝜏1
𝑖 (ℎ), 𝑠𝑢𝑝𝐼𝜏2

𝑖 (ℎ))])

} 

 

= {
ℎ

([𝑖𝑛𝑓𝑇𝜏1
𝑖 (ℎ), 𝑠𝑢𝑝𝑇𝜏1

𝑖 (ℎ)], [𝑖𝑛𝑓𝐼𝜏1
𝑖 (ℎ), 𝑠𝑢𝑝𝐼𝜏1

𝑖 (ℎ)], [𝑖𝑛𝑓𝐹𝜏1
𝑖 (ℎ),𝑠𝑢𝑝𝐹𝜏1

𝑖 (ℎ)])
} 

 

= {
ℎ

([𝑖𝑛𝑓𝐹𝜏1
𝑖 (ℎ), 𝑠𝑢𝑝𝐹𝜏1

𝑖 (ℎ)], {1 − [𝑖𝑛𝑓𝐼𝜏1
𝑖 (ℎ), 𝑠𝑢𝑝𝐼𝜏1

𝑖 (ℎ)]}, [[𝑖𝑛𝑓𝑇𝜏1
𝑖 (ℎ),𝑠𝑢𝑝𝑇𝜏1

𝑖 (ℎ)])
} 

 

𝜏1
𝑐 ∩𝑚 𝜏2

𝑐 = {
ℎ

([𝑖𝑛𝑓𝑇𝜏1
𝑖 (ℎ),𝑠𝑢𝑝𝑇𝜏1

𝑖 (ℎ)], [𝑖𝑛𝑓𝐼𝜏1
𝑖 (ℎ),𝑠𝑢𝑝𝐼𝜏1

𝑖 (ℎ)], [𝑖𝑛𝑓𝐹𝜏1
𝑖 (ℎ), 𝑠𝑢𝑝𝐹𝜏1

𝑖 (ℎ)]
}

𝑐

∩𝑚 

                                                                                              {
ℎ

([𝑖𝑛𝑓𝑇𝜏2
𝑖 (ℎ),𝑠𝑢𝑝𝑇𝜏2

𝑖 (ℎ)], [𝑖𝑛𝑓𝐼𝜏2
𝑖 (ℎ),𝑠𝑢𝑝𝐼𝜏2

𝑖 (ℎ)], [𝑖𝑛𝑓𝐹𝜏2
𝑖 (ℎ),𝑠𝑢𝑝𝐹𝜏2

𝑖 (ℎ)])
} 

 

= {
ℎ

([𝑖𝑛𝑓𝐹𝜏1
𝑖 (ℎ),𝑠𝑢𝑝𝐹𝜏1

𝑖 (ℎ)], {1 − [𝑖𝑛𝑓𝐼𝜏1
𝑖 (ℎ),𝑠𝑢𝑝𝐼𝜏1

𝑖 (ℎ)]}, [𝑖𝑛𝑓𝑇𝜏1
𝑖 (ℎ), 𝑠𝑢𝑝𝑇𝜏1

𝑖 (ℎ)])
} ∩𝑚 

                                                      {
ℎ

([𝑖𝑛𝑓𝐹𝜏2
𝑖 (ℎ), 𝑠𝑢𝑝𝐹𝜏2

𝑖 (ℎ)], {1 − [𝑖𝑛𝑓𝐼𝜏2
𝑖 (ℎ),𝑠𝑢𝑝𝐼𝜏2

𝑖 (ℎ)]}, [[𝑖𝑛𝑓𝑇𝜏2
𝑖 (ℎ), 𝑠𝑢𝑝𝑇𝜏2

𝑖 (ℎ)])
} 

 

=

{
  
 

  
 

ℎ

([min(𝑖𝑛𝑓𝐹𝜏1
𝑖 (ℎ), 𝑖𝑛𝑓𝐹𝜏2

𝑖 (ℎ)) , min (𝑠𝑢𝑝𝐹𝜏1
𝑖 (ℎ), 𝑠𝑢𝑝𝐹𝜏2

𝑖 (ℎ))] , {1 − [min (𝑖𝑛𝑓𝐼𝜏1
𝑖 (ℎ), 𝑖𝑛𝑓𝐼𝜏2

𝑖 (ℎ)) ,

𝑚𝑖𝑛 (𝑠𝑢𝑝𝐼𝜏1
𝑖 (ℎ),𝑠𝑢𝑝𝐼𝜏2

𝑖 (ℎ))]}, [max(𝑖𝑛𝑓𝑇𝜏1
𝑖 (ℎ), 𝑖𝑛𝑓𝑇𝜏2

𝑖 (ℎ)) ,max (𝑠𝑢𝑝𝑇𝜏1
𝑖 (ℎ), 𝑠𝑢𝑝𝑇𝜏2

𝑖 (ℎ))]) }
  
 

  
 

 

 

= {
ℎ

([𝑖𝑛𝑓𝐹𝜏1
𝑖 (ℎ),𝑠𝑢𝑝𝐹𝜏1

𝑖 (ℎ)], {1 − [𝑖𝑛𝑓𝐼𝜏1
𝑖 (ℎ),𝑠𝑢𝑝𝐼𝜏1

𝑖 (ℎ)]}, [𝑖𝑛𝑓𝑇𝜏1
𝑖 (ℎ), 𝑠𝑢𝑝𝑇𝜏1

𝑖 (ℎ)])
} 
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Remark 3.16.    Let 𝜏 is a 𝑃𝑚𝐹𝑁𝑆 over universe set X. Then  

1. 𝜏 ∪𝑚 𝜏
𝑐 ≠ 𝜘 

2. 𝜏 ∩𝑚 𝜏
𝑐 ≠ 𝜑 

Proposition  3.17.    

1. 𝜑𝑐 = 𝜘 

2. 𝜘𝑐 = 𝜑 

  Proof.     Straight forward. 

         

Definition 3.18.  The difference of two PmIVFNS  𝜏1 and  𝜏2 expressed over the same universe X is represented as  

𝜏1\𝜏2 =

{
 
 

 
 

ℎ

[𝑚𝑖𝑛 (𝑖𝑛𝑓𝑇𝜏1
𝑖 (ℎ), 𝑖𝑛𝑓𝐹𝜏2

𝑖 (ℎ)) ,𝑚𝑖𝑛 (𝑠𝑢𝑝𝑇𝜏1
𝑖 (ℎ),𝑠𝑢𝑝𝐹𝜏2

𝑖 (ℎ))] , [𝑚𝑖 𝑛 (𝑖𝑛𝑓𝐼𝜏1
𝑖 (ℎ), 𝑖𝑛𝑓𝐼𝜏2

𝑖 (ℎ)) ,

min (𝑠𝑢𝑝𝐼𝜏1
𝑖 (ℎ), 𝑠𝑢𝑝𝐼𝜏2

𝑖 (ℎ))], [max (𝑖𝑛𝑓𝐹𝜏1
𝑖 (ℎ), 𝑖𝑛𝑓𝑇𝜏2

𝑖 (ℎ)),max (𝑠𝑢𝑝𝐹𝜏1
𝑖 (ℎ),𝑠𝑢𝑝𝑇𝜏2

𝑖 (ℎ))]) }
 
 

 
 

 

    H∈ 𝑋, 𝑖 = 1,2, . . . . . ,𝑚. 
 

 Example 3.19.  For 𝜏1 𝑎𝑛𝑑 𝜏2 given in Example 3.11,we have  

 

𝜏1\𝜏2 = (

([0.5,0.0], [0.2,0.2], [0.7,0.8]) ([0.1,0.5], [0.2,0.6], [0.8,0.8]) ([0.3,0.6], [0.4,0.2], [0.1,0.6])
([0.6,0.1], [0.0,0.3], [0.6,0.7]) ([0.9,0.1], [0.3,0.7], [0.7,1.0]) ([0.2,0.3], [0.6,0.4], [0.4,0.9])

([0.5,0.2], [0.2,0.3], [0.5,0.5]) ([0.4,0.4], [0.1,0.1], [1.0,0.7]) ([0.5,0.2], [0.8,0.2], [0.6,0.8])

) 

 

Definition 3.20.  The 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 of two 𝑃𝑚𝐼𝑉𝐹𝑁𝑆𝑠 𝜏1 𝑎𝑛𝑑 𝜏2 is set of elements which are either in 𝜏1  𝑜𝑟 𝑖𝑛 𝜏2 but  
not in both i.e. 

𝜏1∆𝜏2 = (𝜏1\𝜏2) ∪𝑚 (𝜏2\𝜏1) 
 
Example 3.22.  Let 

 

𝜏1 = (

([0.5,0.2], [0.2,0.3], [0.7,0.8]) ([0.1,0.5], [0.9,1.0], [0.8,0.2]) ([0.3,0.6], [0.4,0.2], [0.1,0.3])
([0.6,0.1], [0.0,0.3], [0.4,0.7]) ([0.9,0.1], [0.3,0.7], [0.5,1.0]) ([0.2,0.3], [0.8,0.6], [0.2,0.9])

([0.8,0.2], [0.6,0.3], [0.5,0.1]) ([0.6,0.6], [0.2,0.1], [1.0,0.7]) ([0.5,0.2], [0.9,0.7], [0.3,0.8])
) 

and 

 

𝜏2 = (

([0.4,0.7], [0.9,0.2], [0.8,0.0]) ([0.5,0.8], [0.2,0.6], [0.7,0.7]) ([0.0,0.6], [0.5,0.9], [0.9,0.8])

([0.6,0.3], [0.1,0.9], [0.8,0.2]) ([0.7,0.2], [0.4,0.9], [0.9,0.2]) ([0.4,0.8], [0.6,0.4], [0.9,1.0])

  ([0.4,0.5], [0.2,0.6], [0.5,0.5]) ([0.5,0.2], [0.1,0.8], [0.4,0.4]) ([0.6,0.3], [0.8,0.2], [0.9,0.4])
) 

So that 

 

𝜏1\𝜏2 = (

([0.5,0.0], [0.2,0.2], [0.7,0.8]) ([0.1,0.5], [0.2,0.6], [0.8,0.8]) ([0.3,0.6], [0.4,0.2], [0.1,0.6])

([0.6,0.1], [0.0,0.3], [0.6,0.7]) ([0.9,0.1], [0.3,0.7], [0.7,1.0]) ([0.2,0.3], [0.6,0.4], [0.4,0.9])

([0.5,0.2], [0.2,0.3], [0.5,0.5]) ([0.4,0.4], [0.1,0.1], [1.0,0.7]) ([0.5,0.2], [0.8,0.2], [0.6,0.8])
) 

and 

 

𝜏2\𝜏1 = (

([0.4,0.7], [0.2,0.2], [0.8,0.2]) ([0.5,0.2], [0.2,0.6], [0.7,0.7]) ([0.0,0.3], [0.4,0.2], [0.9,0.8])

([0.4,0.3], [0.0,0.3], [0.8,0.2]) ([0.5,0.2], [0.3,0.7], [0.9,0.2]) ([0.2,0.8], [0.6,0.4], [0.9,1.0])

([0.4,0.1], [0.2,0.3], [0.8,0.5]) ([0.5,0.2], [0.1,0.1], [0.6,0.6]) ([0.3,0.3], [0.8,0.2], [0.9,0.4])
) 

 

∴ (𝜏1\𝜏2) ∪𝑚 (𝜏2\𝜏1) = (

([0.5,0.7], [0.2,0.2], [0.7,0.2]) ([0.5,0.5], [0.2,0.6], [0.7,0.7]) ([0.3,0.6], [0.4,0.2], [0.1,0.6])

([0.6,0.3], [0.0,0.3], [0.6,0.2]) ([0.9,0.2], [0.3,0.7], [0.7,0.2]) ([0.2,0.8], [0.6,0.4], [0.4,0.9])

([0.5,0.2], [0.2,0.3], [0.5,0.5]) ([0.5,0.4], [0.1,0.1], [0.6,0.6]) ([0.5,0.3], [0.8,0.2], [0.6,0.4])
)   

                     

                                                       = 𝜏1∆𝜏2 
 

Definition 3.22.  The sum  of two 𝑃𝑚𝐼𝑉𝐹𝑁𝑆𝑠 𝜏1 𝑎𝑛𝑑 𝜏2 chosen from same universe X is represented as  
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𝜏1⊕ 𝜏2

=

{
 
 
 
 

 
 
 
 

ℎ

[√(𝑖𝑛𝑓𝑇𝜏1
𝑖 (ℎ))

2

+ (𝑖𝑛𝑓𝑇𝜏2
𝑖 (ℎ))

2

− (inf 𝑇𝜏1
𝑖 (ℎ)𝑖𝑛𝑓𝑇𝜏2

𝑖 (ℎ))
2

, (𝑠𝑢𝑝𝑇𝜏1
𝑖 (ℎ))

2

+ (𝑠𝑢𝑝𝑇𝜏2
𝑖 (ℎ))

2

− (𝑠𝑢𝑝 𝑇𝜏1
𝑖 (ℎ)𝑠𝑢𝑝𝑇𝜏2

𝑖  (ℎ))
2

],
 

[(𝑖𝑛𝑓𝐼𝜏1
𝑖 (ℎ)𝑖𝑛𝑓𝐼𝜏2

𝑖 (ℎ)) , (𝑠𝑢𝑝𝐼𝜏1
𝑖 (ℎ)𝑠𝑢𝑝𝐼𝜏2

𝑖 (ℎ))] , [(𝑖𝑛𝑓𝐹𝜏1
𝑖 (ℎ)𝑖𝑛𝑓𝐹𝜏2

𝑖 (ℎ)) , (𝑠𝑢𝑝𝐹𝜏1
𝑖 (ℎ)𝑠𝑢𝑝𝐹𝜏2

𝑖 (ℎ))] }
 
 
 
 

 
 
 
 

 

Where  ℎ ∈ 𝑋   and i=1,2, . . . , m. 

 

Example 3.23.   For 𝜏1 𝑎𝑛𝑑 𝜏2 given Example 3.11, we have  
 

𝜏1⊕ 𝜏2

= (

([0.62,0.67], [0.18,0.6], [0.56,0.0]) ([0.35,0.98], [0.18,0.6], [0.56,0.14]) ([0.3,0.83], [0.20,0.18], [0.09,0.24])

([0.83,0.19], [0.0,0.27], [0.32,0.14]) ([0.99,0.14], [0.12,0.63], [0.45,0.2]) ([0.35,0.88], [0.48,0.24], [0.18,0.9])

([0.86,0.44], [0.12,0.18], [0.25,0.05]) ([0.76,0.63], [0.02,0.08], [0.4,0.28]) ([0.76,0.29], [0.72,0.14], [0.27,0.32])
) 

 

Definition 3.24.  The  product  of two 𝑃𝑚𝐼𝑉𝐹𝑁𝑆𝑠  𝜏1  𝑎𝑛𝑑 𝜏2 take off the same universe X is explained as  

𝜏1⊗ 𝜏2

=

{
 
 
 

 
 
 

ℎ

([(𝑖𝑛𝑓𝑇𝜏1
𝑖 (ℎ)𝑖𝑛𝑓𝑇𝜏2

𝑖 (ℎ)) , (𝑠𝑢𝑝𝑇𝜏1
𝑖 (ℎ)𝑠𝑢𝑝𝑇𝜏2

𝑖 (ℎ))] , [(𝑖𝑛𝑓𝐼𝜏1
𝑖 (ℎ)𝑖𝑛𝑓𝐼𝜏2

𝑖 (ℎ)) , (𝑠𝑢𝑝𝐼𝜏1
𝑖 (ℎ)𝑠𝑢𝑝𝐼𝜏2

𝑖 (ℎ))] ,

√[((𝑖𝑛𝑓𝐹𝜏1
𝑖 (ℎ))

2

+ (𝑖𝑛𝑓𝐹𝜏2
𝑖 (ℎ))

2

−(𝑖𝑛𝑓𝐹𝜏1
𝑖 (ℎ)𝑖𝑛𝑓𝐹𝜏2

𝑖 (ℎ))
2

, (𝑠𝑢𝑝𝐹𝜏1
𝑖 (ℎ))

2

+ (𝑠𝑢𝑝𝐹𝜏2
𝑖 (ℎ))

2

− (𝑠𝑢𝑝𝐹𝜏1
𝑖 (ℎ)𝑠𝑢𝑝𝐹𝜏2

𝑖 (ℎ))
2

])
}
 
 
 

 
 
 

 

For  ℎ ∈ 𝑋 𝑎𝑛𝑑  i=1,2, . . . , m. 

 
Example 3.25.    For  𝜏1 𝑎𝑛𝑑 𝜏2 given in example 3.11, we have  

 

𝜏1⊗ 𝜏2 = (

([0.2,0.14], [0.18,0.6], [0.9,0.8]) ([0.5,0.4], [0.18,0.6], [0.9,0.71]) ([0.0,0.36], [0.2,0.18], [0.9,0.82])
([0.36,0.3]. [0.0,0.27], [0.84,0.71]) ([0.63,0.2], [0.12,0.63], [0.93,1.0]) ([0.8,0.24], [0.48,0.24], [0.9,1.0])

([0.32,0.1], [0.12,0.18], [0.66,0.51]) ([0.3,0.12], [0.2,0.8], [1.0,0.76]) ([0.3,0.6], [0.72,0.14], [0.91,0.84])

) 

 

PYTHAGOREAN m-POLAR INTERVAL VALUED FUZZY NEUTROSOPHIC TOPOLOGY 
 

             In this section, we present Pythagorean m-polar interval valued  fuzzy neutrosophic topology on Pythagorean m-polar 

interval valued  fuzzy neutrosophic set and elongate numerous characteristics of crisp topology towards Pythagorean m-polar 

interval valued  fuzzy neutrosophic topology. Separation axioms in PmIVFNSs  are also discussed. 

 

Definition 4.1. Let PmIVFNS(X) be the collection of all PmIVFN-subsets of the absolute PmIVFNS  XA.  For S,T ⊆ A ,a 

subcollection  ℶ𝑝𝑖𝑛  of PmFNS(X) is known as Pythagorean m-polar interval valued fuzzy neutrosophic  topology  (PmIVFNT) on 

X if the following needs are satisfied: 

(i)  (∅,𝑋𝐴) ∈ ℶ𝑝𝑖𝑛 ,                                 

(ii)  𝐴, 𝐵 ∈  ℶ𝑝𝑖𝑛  𝑡ℎ𝑒𝑛 𝐴 ∩ 𝐵 ∈ ℶ𝑝𝑖𝑛 

(iii) 𝐴𝑖 ∈ ℶ𝑝𝑖𝑛, ∀𝑖 ∈ 𝐼, 𝑡ℎ𝑒𝑛 ∪𝑖∈𝐼 𝐴𝑖 ∈ ℶ𝑝𝑖𝑛. 

 The doublet (𝑋, ℶ𝑝𝑖𝑛) or simply 𝜏𝑝𝑖𝑛 , where X is a non – empty PmIVFNS and ℶ𝑝𝑖𝑛 is a Pythagorean m-polar interval 

valued fuzzy neutrosophic  topology on X , is known as  Pythagorean m-polar interval valued fuzzy neutrosophic 
topological space (PmIVFNS). 
 
Example 4.2.  Let X= {ℏ1,ℏ2} be a universal P3IVFNS with S and T be as shown in table 4 and table5 below: 
                                                            
                                                                  Table 4. P3IVFNS(S) 

 

S  

 

ℏ1 ([0.2,1.0],[0.7,0.2],[0.6,0.4]) ([0.3,0.1],[0.8,0.7],[0.6,0.1]) ([0.5,0.3],[0.6,0.7],[0.3,0.4]) 

ℏ2 ([0.2,0.7],[0.6,0.1],[0.5,0.6]) ([0.2,0.4],[0.7,0.1],[0.2,0.5]) ([0.1,0.3],[0.6,0.4],[0.8,0.3]) 
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                                                                 Table 5. P3IVFNS (T) 
 

T 
¯ 

 

ℏ1 ([0.2,0.6],[0.5,0.2],[0.5,0.4]) ([0.1,0.5],[0.6,0.3],[0.7,0.4]) ([0.3,0.5],[0.6,0.1],[0.3,0.6]) 

ℏ2 ([0.1,0.7],[0.6,0.1],[0.6,0.3]) ([0.5,0.7],[0.9,0.1],[0.7,0.2]) ([0.3,0.7],[0.6,0.4],[0.5,0.6]) 

 
Then 𝜏𝑝𝑖𝑛5 =  {∅ ,S ,T , 𝑋𝐴} is a P3IVFNT on X. 

 
Definition 4.3.  The members of  ℶ𝑝𝑖𝑛 are called Pythagorean m-polar interval valued fuzzy neutrosophic open sets (PmIVFN-open 

sets). The complements of Pythagorean m-polar interval valued fuzzy neutrosophic open sets are called Pythagorean m-polar 

interval valued  fuzzy  neutrosophic closed sets (PmIVFN-closed sets) and PmIVFN- open set as well as PmIVFN-closed set is 

called Pythagorean m-polar interval valued  fuzzy neutrosophic  clopen sets (PmIVFN- clopen sets). 

 

Example 4.4.  For the P3IVFNTS  ℶ𝑝𝑖𝑛5   given in Example 4.2, we have ∅ , S ,T , 𝑋𝐴 are P3IVFN-open sets because they are 

members of  ℶ𝑝𝑖𝑛5, (𝑋𝐴)
𝑐 = ∅ ∈ ℶ𝑝𝑖𝑛    is a P3IVFN- closed set and ∅ , XA  are P3IVFN−clopen sets as  ∅𝑐 = 𝑋𝐴 − 𝜑 = 𝑋𝐴 and  

𝑋𝐴
𝑐 = 𝑋𝐴 − 𝑋𝐴 = 0. 

 
Example 4.5.   Consider the P3IVFNSs X , S and T given in Example4.2 and 

 

                                                            Table 6. P3IVFNS (U) 

 

U 
 

 

ℏ1 ([0.2,0.4],[0.4,0.6],[0.5,0.2]) ([0.6,0.2],[0.1,0.5],[0.6,0.3]) ([0.3,0.5],[0.6,0.1],[0.3,0.7]) 

ℏ2 ([0.8,0.1],[0.6,0.2],[0.3,0.6]) ([0.1,0.6],[0.8,0.4],[0.6,0.2]) ([0.5,0.6],[0.1,0.8],[0.5.0.2]) 

 
We have , 

ℶ𝑝𝑖𝑛1 = {∅,𝑋𝐴} 

    ℶ𝑝𝑖𝑛2 = {∅, 𝑆, 𝑋𝐴} 

    ℶ𝑝𝑖𝑛3 = {∅, 𝑇, 𝑋𝐴} 

     ℶ𝑝𝑖𝑛4 = {∅,𝑈,𝑋𝐴} 

         ℶ𝑝𝑖𝑛5 = {∅, 𝑆, 𝑇, 𝑋𝐴} 

          ℶ𝑝𝑖𝑛6 = {∅, 𝑇,𝑈,𝑋𝐴} 

          ℶ𝑝𝑖𝑛7 = {∅, 𝑆,𝑈,𝑋𝐴} 

               ℶ𝑝𝑖𝑛8 = {∅, 𝑆, 𝑇,𝑈,𝑋𝐴} 

 
are Pythagorean 3-polar interval valued fuzzy neutrosophic topologies over X. Here, both ∅ & XA are P3IVFN- open set as well as 

P3IVFN- closed set so it is a P3IVFN- clopen set. 

 

Theorem 4.6.    Let   (𝑋 , 𝜏𝑁) be an PmIVFN  topological space. Then  
 

(i) 0𝑁 , 1𝑁   are PmIVFN – closed sets. 

(ii) Arbitrary intersection of PmIVFN – closed sets is PmIVFN – closed set.  

(iii)  Finite union of PmIVFN – closed sets is PmIVFN – closed set.  

 

Proof:       (i)  since  0𝑁 , 1𝑁 ∈ 𝜏𝑁 , 0𝑁
𝑐 = 1𝑁  𝑎𝑛𝑑 1𝑁

𝑐 = 0𝑁  therefore 0𝑁
𝑐  𝑎𝑛𝑑 1𝑁

𝑐  are PmIVFN – closed sets.  

                   (ii)  Let  {𝐴𝑖: 𝑖  ∈ 𝐼 } be an arbitrary family of PmIVFN – closed sets in (𝑋 , 𝜏𝑁) and let     
𝐴 = ⋂ {𝐴𝑖𝑖∈𝐼 }. Now,  

𝐴𝑐 = (⋂ 𝐴𝑖
𝑖∈𝐼

)
𝑐

=⋃(𝐴𝑖)
𝑐

𝑖∈𝐼

 

 

and  𝐴𝑐 ∈ 𝜏𝑁 for each 𝑖  ∈ 𝐼 , hence ⋃ (𝐴𝑖)
𝑐 ∈ 𝜏𝑁𝑖∈𝐼   therefore  𝐴 𝑐  ∈ 𝜏𝑁  .  

Thus 𝐴  is an PmIVFN– closed set.  

                    (iii)    Let   {𝐴 𝑘 : 𝑘  = 1,2, … … … 𝑛 𝑛 } be a family of  PmIVFN – closed set in  

(𝑋 , 𝜏𝑁)  and let G=⋃ 𝐴𝐾
𝑛
𝐾=1 .Now, 

𝐺𝑐 = (⋃𝐴𝐾

𝑛

𝐾=1

)

𝑐

=⋂(𝐴𝐾)
𝑐

𝑛

𝐾=1
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 and (𝐴𝐾)
𝑐 ∈ 𝜏𝑁 for  K =1,2,.........n.    So,  ⋂ 𝐴𝐾

𝑐 ∈ 𝜏𝑁.
𝑛
𝐾=1  

Hence,  𝐺𝑐 ∈ 𝜏𝑁. Thus G is PmIVFN – Closed set. 

 

Definition 4.7.  Let (X, ℶ𝑝𝑖𝑛1) and (X, ℶ𝑝𝑖𝑛2) be two PmIVFNTSs on X. ℶ𝑝𝑖𝑛2 is contained in ℶ𝑝𝑖𝑛1  (i.e)  

ℶ𝑝𝑖𝑛2 ⊆ ℶ𝑝𝑖𝑛1  if 𝑘 ∈ ℶ𝑝𝑖𝑛2 for every 𝑘 ∈ ℶ𝑝𝑖𝑛1. In such case, ℶ𝑝𝑖𝑛2 is known as Pythagorean m−polar interval valued fuzzy 

neutrosophic coarser or weaker (PmIVFN- coarser/weaker) than ℶ𝑝𝑖𝑛2 and ℶ𝑝𝑖𝑛1 is called Pythagorean m−polar interval valued 

fuzzy neutrosophic finer or stronger (PmIVFN-finer/stronger) than ℶ𝑝𝑖𝑛2. ℶ𝑝𝑖𝑛1 and ℶ𝑝𝑖𝑛2   in such a case are known as comparable. 

In Example 4.5, ℶ𝑝𝑖𝑛2 is PmIVFN-Coarser than ℶ𝑝𝑖𝑛5   and ℶ𝑝𝑖𝑛5  is PmIVFN-stronger than ℶ𝑝𝑖𝑛2. Hence ℶ𝑝𝑖𝑛2  and ℶ𝑝𝑖𝑛5  are 

comparable. 

 

Definition 4.8. The PmIVFNT ℶ𝑝𝑖𝑛(𝑖𝑛𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒) = {∅,XA} is known as indiscrete Pythagorean 

m-polar interval valued fuzzy neutrosophic topology (indiscrete-PmIVFNT)& ℶ𝑝𝑖𝑛(𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒)=P(𝑋𝐴) (powersetof XA) is known as 

discrete Pythagorean m-polar interval valued fuzzy neutrosophic topology (discrete-PmIVFNT) over X.  

 

Remark 4.9. On X, the smallest PmIVFNT is ℶ𝑝𝑖𝑛(𝑖𝑛𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒) whereas the largest PmIVFNT is 

ℶ𝑝𝑖𝑛(discrete). 

 

Definition 4.10.  Suppose that (X,ℶ𝑝𝑖𝑛𝑋 ) be a PmIVFNTS. A few Y ⊆ X and PmIVFN-open sets are 𝑆𝑛
∗ = 𝑆𝑛 ∩ 𝑌𝐴 of PmIVFNT 

ℶ𝑝𝑖𝑛𝑌  on Y where Sn are PmIVFN-open sets of ℶ𝑝𝑖𝑛𝑋  & YA   is absolute PmIVFNS on Y then ℶ𝑝𝑖𝑛𝑌  is reserved as the Pythagorean 

m-polar interval valued fuzzy neutrosophic subspace 

(PmIVFN- subspace) of ℶ𝑝𝑖𝑛𝑋 . It can be written as: 

 

                                           ℶ𝑝𝑖𝑛𝑌 = {𝑆𝑛
∗: 𝑆𝑛

∗ = 𝑆𝑛 ∩ 𝑌𝐴, 𝑆𝑛 ∈ ℶ𝑝𝑖𝑛𝑋} 

 

Example 4.11.  Let ℶ𝑝𝑖𝑛𝑋  = {∅,S,T,XA}, then ℶ𝑝𝑖𝑛𝑋  is a P3IVFNT on X. ℶ𝑝𝑖𝑛𝑋  is a P3IVFNS on  

Y= {S} ⊆X is  

                                                                 Table 7. P3IVFNS (𝑌𝐴) 

 

YA 
 

 

ℏ1 ([1.0,1.0],[0.0,0.0],[0.0,0.0]) ([1.0,1.0],[0.0,0.0],[0.0,0.0]) ([1.0,1.0],[0.0,0.0],[0.0,0.0]) 

Since 

inf(𝑌𝐴 ∩ ∅) , sup (𝑌𝐴 ∩ ∅) = ∅ 

                 inf (𝑌𝐴 ∩ 𝑆), sup (𝑌𝐴 ∩ 𝑆) = 𝑖𝑛𝑓𝑆, 𝑠𝑢𝑝𝑆 

                 inf(𝑌𝐴 ∩ 𝑇) , sup(𝑌𝐴 ∩ 𝑇) = 𝑖𝑛𝑓𝑇, 𝑠𝑢𝑝𝑇 

                          inf (𝑌𝐴 ∩ 𝑋𝐴), sup (𝑌𝐴 ∩ 𝑋𝐴) = 𝑖𝑛𝑓𝑌𝐴, 𝑠𝑢𝑝𝑌𝐴 

 

So, ℶ𝑝𝑖𝑛𝑌  = {∅,S,T,𝑌𝐴} is a Pythagorean 3-polar interval valued fuzzy neutrosophic subtopology (P3IVFN-subtopology)of ℶ𝑝𝑖𝑛𝑋  

(i.e ℶ𝑝𝑖𝑛𝑌 ⊆ ℶ𝑝𝑖𝑛𝑋). 

  

Remark 4.12.  (1) A PmIVFN- subtopology i.e. ℶ𝑝𝑖𝑛𝑍  of a PmIVFN-subtopology ℶ𝑝𝑖𝑛𝑌  of a 

PmIVFNTS  ℶ𝑝𝑖𝑛𝑋  is also a PmIVFN-subtopology of ℶ𝑝𝑖𝑛𝑋 . 

                          (2) Every PmIVFN-subspace of a discrete-PmIVFNTS is always discrete-PmIVFNTS. Similarly, every PmIVFN-

subspace of indiscrete-PmIVFNTS is also an indiscrete-PmIVFNTS. 

 

Definition 4.13.   Let (X,ℶ𝑝𝑖𝑛) be a PmIVFNTS and V ⊆ PmIVFNS(X). The Pythagorean m- 

polar interval valued fuzzy neutrosophic interior (PmIVFN-interior) 𝑉𝑖 of V is PmIVFNS which is the union of all PmIVFNS-open 

subsets(i.e that are contained in V) of X. 

 

Theorem 4.14.  Let (𝑋 , 𝜏𝑁) be a PmIVFN topological space and 𝐴 , 𝐵  ∈ PmIVFN𝑠 (𝑋 ) then the following properties holds:   

(i)  𝐼 𝑛 𝑡 (𝐴 ) ⊆ 𝐴    

(ii) 𝐴  ⊆ 𝐵  ⇒  𝐼 𝑛 𝑡 (𝐴 ) ⊆  𝐼 𝑛 𝑡 (𝐵 )   
(iii)  𝐼 𝑛 𝑡 (𝐴 ) ∈ 𝜏 𝑁    

(iv) 𝐴  ∈ 𝜏 𝑁  𝑖 𝑓 𝑓   𝐼 𝑛 𝑡 (𝐴 ) = 𝐴    

(v)  𝐼 𝑛 𝑡 ( 𝐼 𝑛 𝑡 (𝐴 )) =  𝐼 𝑛 𝑡 (𝐴 )    
(vi)  𝐼 𝑛 𝑡 (0𝑁 ) = 0𝑁 ,  𝐼 𝑛 𝑡 (1𝑁 ) = 1𝑁    

Proof:   

(i) Straight forward.  

(ii) 𝐴  ⊆ 𝐵  ⇒ All of the PmIVFN open sets in 𝐴  that are also in 𝐵 . Both PmIVFN open sets included in 𝐴  also 

included in 𝐵 .   𝑖 𝑒 . , {𝐾  ∈ 𝜏 𝑁 : 𝐾  ⊆ 𝐴 } ⊆ {𝐺  ∈ 𝜏 𝑁 : 𝐺  ⊆ 𝐵 }.  𝑖 𝑒 . ,∪ {𝐾  ∈ 𝜏 𝑁 : 𝐾  ⊆ 𝐴 } ⊆∪ {𝐺  ∈ 𝜏 𝑁 : 𝐺  ⊆ 𝐵 }.  𝑖 𝑒 . 
,   𝐼 𝑛 𝑡 (𝐴 ) ⊆   𝐼 𝑛 𝑡 (𝐵 ). 
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(iii)   𝐼 𝑛 𝑡 (𝐴 ) =∪ {𝐾  ∈ 𝜏 𝑁 : 𝐾  ⊆ 𝐴 }. It is clear that  ∪ {𝐾  ∈ 𝜏 𝑁 : 𝐾  ⊆ 𝐴 } ∈ 𝜏 𝑁 . So, PmIVFN  𝐼 𝑛 𝑡 (𝐴 ) ∈ 𝜏 𝑁 .  

(iv) Let 𝐴  ∈ 𝜏 𝑁 , then by(i),  𝐼 𝑛 𝑡 (𝐴 ) ⊆ 𝐴 . Now since 𝐴  ∈ 𝜏 𝑁  and  𝐼 𝑛 𝑡 (𝐴 ) ⊆ 𝐴 . Therefore 𝐴  ⊆∪ {𝐺  ∈ 𝜏 𝑁 : 𝐺  ⊆ 

𝐴 } =  𝐼 𝑛 𝑡 (𝐴 ),  𝐴  ⊆  𝐼 𝑛 𝑡 (𝐴 ). Thus  𝐼 𝑛 𝑡 (𝐴 ) = 𝐴 . Conversely, let  𝐼 𝑛 𝑡 (𝐴 ) = 𝐴 . Since by (iii),  𝐼 𝑛 𝑡 (𝐴 ) ∈ 𝜏 𝑁 . 
Therefore 𝐴  ∈ 𝜏 𝑁 .  

 
(v) By (iii),  𝐼 𝑛 𝑡 (𝐴 ) ∈ 𝜏 𝑁 . Therefore by (iv),  𝐼 𝑛 𝑡 ( 𝐼 𝑛 𝑡 (𝐴 )) =  𝐼 𝑛 𝑡 (𝐴 ).  
 

(vi) We know that 0𝑁 , 1𝑁  ∈ 𝜏 𝑁 , by (iv),  𝐼 𝑛 𝑡 (0𝑁 ) = 0𝑁 ,  𝐼 𝑛 𝑡 (1𝑁 ) = 1𝑁 .  
 

Definition 4.15.   Let (X, ℶ𝑝𝑖𝑛) be a PmIVFNTS and V ⊆ PmIVFN(X). Then the Pythagorean m-polar interval valued fuzzy 

neutrosophic closure (PmIVFN-closure) 𝑉̇ of V is the PmIVFNS which is intersection of all PmIVFN-closed supersets(i.e that  
contain V) of V. 

     

 Theorem 4.16.  Let (𝑋, 𝜏𝑁) be a PmIVFNTS and 𝐴, 𝐵 ∈ PmIVFNT𝑠 (𝑋) then possess the following properties:   

(i) 𝐴 ⊆  𝐶𝑙(𝐴)   

(ii) 𝐴 ⊆ 𝐵 ⇒  𝐶𝑙(𝐴) ⊆  𝐶𝑙(𝐵)   

(iii) ( 𝐶𝑙(𝐴))𝑐 ∈ 𝜏𝑁   

(iv) 𝐴𝑐 ∈ 𝜏𝑁 𝑖𝑓𝑓  𝐶𝑙(𝐴) = 𝐴   

(v)  𝐶𝑙( 𝐶𝑙(𝐴)) =  𝐶𝑙(𝐴)    

(vi)  𝐶𝑙(0𝑁) = 0𝑁,  𝐶𝑙(1𝑁) = 1𝑁  

Proof:  

                             Straight forward.  

 

Theorem 4.17 Let (𝑋, 𝜏𝑁) be a PmIVFN topological space and 𝐴, 𝐵 ∈ PmIVFNT𝑠 (𝑋) then hold the following properties:   

(i)  𝐼𝑛𝑡(𝐴 ∩ 𝐵) =  𝐼𝑛𝑡(𝐴) ∩  𝐼𝑛𝑡(𝐵)   

(ii)  𝐼𝑛𝑡(𝐴 ∪ 𝐵) ⊇  𝐼𝑛𝑡(𝐴) ∪  𝐼𝑛𝑡(𝐵)   

(iii)  𝐶𝑙(𝐴 ∪ 𝐵) =  𝐶𝑙(𝐴) ∪  𝐼𝑛𝑡(𝐵)   

(iv)  𝐶𝑙(𝐴 ∩ 𝐵) ⊆  𝐶𝑙(𝐴) ∩  𝐼𝑛𝑡(𝐵)  

(v) ( 𝐼𝑛𝑡(𝐴))𝑐 =  𝐶𝑙 (𝐴𝑐)  

(vi) ( 𝐶𝑙(𝐴))𝑐 =  𝐼𝑛𝑡(𝐴𝑐)  

Proof.     (i)         By Theorem 4.14(i),   𝐼𝑛𝑡 (𝐴) ⊆ 𝐴  and  𝐼𝑛𝑡(𝐵) ⊆ 𝐵. Thus   𝐼𝑛𝑡(𝐴) ∩  𝐼𝑛𝑡(𝐵) ⊆ 𝐴 ∩ 𝐵.   

Hence  𝐼𝑛𝑡(𝐴) ∩  𝐼𝑛𝑡(𝐵) ⊆  𝐼𝑛𝑡(𝐴 ∩ 𝐵) -----------(1)  

                      Again since 𝐴 ∩ 𝐵 ⊆ 𝐴 , by Theorem 4.14(ii).  𝐼𝑛𝑡(𝐴 ∩ 𝐵) ⊆  𝐼𝑛𝑡(𝐴) .  

               Similarly ,  𝐼𝑛𝑡(𝐴 ∩ 𝐵) ⊆  𝐼𝑛𝑡(𝐵).   

                      Hence  𝐼𝑛𝑡(𝐴 ∩ 𝐵) ⊆  𝐼𝑛𝑡(𝐴) ∩  𝐼𝑛𝑡(𝐵) --------(2)  
                  from (1) and (2) we get,  

                            𝐼𝑛𝑡(𝐴 ∩ 𝐵) =  𝐼𝑛𝑡(𝐴) ∩  𝐼𝑛𝑡(𝐵).  

(ii) Since 𝐴 ⊆ 𝐴 ∪ 𝐵.  𝐼𝑛𝑡(𝐴) ⊆ 𝐼𝑛𝑡(𝐴 ∪ 𝐵) by Theorem 4.14(ii).  

Similarly  𝐼𝑛𝑡(𝐵) ⊆  𝐼𝑛𝑡(𝐴 ∪ 𝐵). Hence  𝐼𝑛𝑡(𝐴) ∪  𝐼𝑛𝑡(𝐵) ⊆  𝐼𝑛𝑡(𝐴 ∪ 𝐵).  
 

(iii) By Theorem 4.16(i), 𝐴 ⊆  𝐶𝑙(𝐴) and 𝐵 ⊆  𝐶𝑙(𝐵) . Thus 𝐴 ∪ 𝐵 ⊆  𝐶𝑙(𝐴) ∪ P 𝐶𝑙(𝐵),  𝐶𝑙(𝐴 ∪ 𝐵) ⊆  𝐶𝑙(𝐴) ∪  𝐶𝑙(𝐵)-

----------(1) 

Again since 𝐴 ⊆ 𝐴 ∪ 𝐵 , by Theorem 4.16(ii).  𝐶𝑙(𝐴) ⊆  𝐶𝑙(𝐴 ∪ 𝐵) .                            

                             Similarly  𝐶𝑙(𝐵) ⊆ 𝐶𝑙(𝐴 ∪ 𝐵) 

                             Hence  𝐶𝑙(𝐴) ∪  𝐶𝑙(𝐵) ⊆  𝐶𝑙(𝐴 ∪ 𝐵)------(2)  

 from (1) and (2) we get  𝐶𝑙(𝐴) ∪  𝐶𝑙(𝐵) =  𝐶𝑙(𝐴 ∪ 𝐵).  
 

                               Since 𝐴 ∩ 𝐵 ⊆ 𝐴 ,  𝐶𝑙(𝐴 ∩ 𝐵) ⊆  𝐶𝑙(𝐴) by Theorem 4.16(ii), Similarly,  𝐶𝑙(𝐴 ∩ 𝐵) ⊆  𝐶𝑙(𝐵). Hence  𝐶𝑙(𝐴 ∩ 𝐵)  

 ⊆  𝐶𝑙(𝐴) ∩  𝐶𝑙(𝐵).    

 

(iv) {  𝐼𝑛𝑡(𝐴)}𝑐 = [∪ {𝐺 ∈ 𝜏𝑁: 𝐺 ⊆ 𝐴}]𝑐 =∩ {𝐺 ∈ 𝜏𝑁𝑐 : 𝐴𝑐 ⊆ 𝐺},      

                                 {  𝐼𝑛𝑡(𝐴)}𝑐 =  𝐶𝑙(𝐴)𝑐.  
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(v) {  𝐶𝑙(𝐴)}𝑐 = [∩ {𝐺 ∈ 𝜏𝑁𝑐 : 𝐴𝑐 ⊆ 𝐺}]𝑐 =∪ {𝐺 ∈ 𝜏𝑁: 𝐺 ⊆ 𝐴},  

                                 {  𝐶𝑙(𝐴)}𝑐 =  𝐼𝑛𝑡(𝐴)𝑐.  
       In theorem 4.17((ii) and (iv)), the equality does not hold. 
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