© 2025 IJNRD | Volume 10, Issue 2 February 2025 | ISSN: 2456-4184 | INRD.ORG

IJNRD.ORG ISSN : 2456-4184

>+ INTERNATIONAL JOURNAL OF NOVEL RESEARCH

F -

~ S0 AND DEVELOPMENT (IJNRD) | IJNRD.ORG
NRD An International Open Access, Peer-reviewed, Refereed Journal

PYTHAGOREAN M-POLAR INTERVAL
VALUED FUZZY NEUTROSOPHIC
TOPOLOGY

Pavithra K!, Nirmala Irudayam F2
PG student®, Assistant Professor?
Department of mathematics
Nirmala college for women
Coimbatore
India

Abstract : This paper focuses on introducing the new idea of Pythagorean m-polar interval valued fuzzy neutrosophic set and its
corresponding topology. This new set serves as a hybrid model combining the ideas of Pythagorean fuzzy sets, interval valued
neutrosophic fuzzy sets and m-polar fuzzy sets. In this article we present some basic properties of the newly framed set and hence
form the Pythagorean m-polar interval valued fuzzy neutrosophic topology

IndexTerms - : Pythagorean m-polar interval valued fuzzy neutrosophic set; Pythagorean m-polar interval valued fuzzy
neutrosophic topology.

INTRODUCTION

In1965, the thought of fuzzy sets as an augmentation of the conventional crisp set was inaugurated by Zadeh [18], to
overcome these deficiencies, by associating the membership function p, : X — [0,1]. The notion of intuitionistic fuzzy set (IFS)
was initiated by Atanassov[2,3] as a significant generalization of fuzzy set. Intuitionistic fuzzy sets are very useful in situations
when description of a problem by a linguistic variable, given in terms of a membership function only, seems too complicated. In
2005, the model of neutrosophic sets, which is the broad view of intuitionistic fuzzy sets, for handling with difficulties involving
exaggeration , indeterminacy and irregularity was explored by Smarandache [13]. The main aspiration behind this article is to study
some features of Pythagorean m-polar fuzzy neutrosophic sets and construct topology on it. Wang et al. [16] proposed another
extension of neutrosophic set which is single valued neutrosophic. Also Wang et al. [17] introduced the notion of interval valued
neutrosophic set which is an instance of neutrosophic set. . The rest of the paper is systemized as: Elementary notions are dealt with
in Section 2. Section 3 presents some notions of Pythagorean m-polar fuzzy neutrosophic sets. The topological structure on our
proposed model along with its prime attributes is presented inSection4.

NEED OF THE STUDY.

1. Generalizing classical topology: Pythagorean m-polar interval-valued fuzzy neutrosophic topology provides a more
comprehensive and flexible framework for topological spaces.

2. Modeling complex systems: This mathematical structure can be used to model complex systems with multiple attributes,
uncertainties, and indeterminacies.

3. Applications in various fields: Potential applications in fields like artificial intelligence, data analysis, decision-making, and
engineering.

4. Developing new mathematical tools: Studying this topology can lead to the development of new mathematical tools and
techniques for solving problems in various domains.

RESEARCH METHODOLOGY

Conduct theoretical analysis including their properties and behavior , Develop computational methods and algorithms for working
with Pythagorean m-polar interval-valued fuzzy neutrosophic topological spaces.

PRELIMINARIES
Definition2.1. [18] A collection of orderly pairs (%, Te(%)), / being an element of the underlying universe X and Te (the affiliation,
association or membership function) is a well defined map, that drives members of X to [0,1], is entitled as a fuzzy set (FS) F over
X. In other words
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Definition 2.2. [2,3] An intuitionistic fuzzy set (IFS) G in X is an object having the form

G={h T() ,FHh) :heX}
where the membership function T(#%) : X — [0,1] and the non-membership function F(%) : X — [0,1] for every xe X obey the
constrain 0<TH)*+FH)<1.

Definition 2.3. [15,16] A Pythagorean fuzzy set, shortened as PFS ,is a collection defined by

P ={<h,T,(h),F,(h) >:heX
where Tp and Fp are mappings from a set X to [0, 1] obeying the restriction 0 < Tp?()+ Fp?(h) < 1 , representing correspondingly
the affiliation and dissociation grades of # € X to P. The ordered pair p =(T,,F,) is accredited as Pythagorean fuzzy number(PFN).
The quantity ¢ (k) = /1 — {T2(h) + F2(h) is famous as the hesitation margin.

Definition 2.4. [12,13] A neutrosophic set N on the underlying set X is defined as

N= {< #,Tn(), In(R),Fn(h) >:7 € X}

where T ,I ,F : X —]70,1*[ accompanied by the constraint 0 < Ty (h) + Iy (h) + Fy(h)< 3*. Here Tn(%), In(%) and Fn(% )are the
degrees of membership, indeterminacy and falsity (non membership)of members of the given set, respectively. T, | and F are
acknowledged as the neutrosophic components.

Definition 2.5. [1]A fuzzy neutrosophic set (fn-set) over X is delineated as
A ={<h ,Ta(h),In(h),Fa(h) >:h € X}
where T,I,F : X 7— [0,1 ] in such away that 0 < Ta(A)+ la(%)+ Fa(h) < 3.

Definition 2.6. [8] Suppose that m € N. A Pythagorean m-polar fuzzy set (PmFS) P over X is regarded as by the mappings Tpi:X -
[0,1] (the membership functions) and F,,":X — [0,1] (the non-membership functions) with the limitation that

0= (1p'(m) + (Efmw) <1
For integral values of i ranging from1to m. A PmFS may be articulated as
P= {-:;;J. ({?i},"[m.f-:;,”mn.--- .{1:;4"-'|:n;|.f»:;-,""m,-;l)} he _\:}

Definition 2.7. Let X # ¢ be a crisp set. A family 7 of subsets of X is called a topology on X if
(i) ¢ and X itself belong to .

(ii)  The union of any number of members of  is again in z.
(iii)  The intersection of any finite number of members of z belong to .

If 7 is a topology on X, then (X,7) is known as a topological space.

PYTHAGOREAN m-POLAR INTERVAL VALUED FUZZY NEUTROSOPHIC SET
In this section, we introduce the notion of Pythagorean m-polar interval valued fuzzy neutrosophic set along with its prime
characteristics and illustrations.

Definition 3.1. A Pythagorean m-polar interval valued fuzzy neutrosophic set (PmIVFNS) t over a basic set X is marked by three
mappings T :X - [0,1]™, I&:X — [0,1]™ and E}: X - [0,1]™ , Where m is a natural number, V i=1,2.......,m with the limitation
that,

0 < inf (T;’(h))2 + inf (1;’(h))2 +inf (F;‘(h))2 <3

. 2 a 2 | 2
0<sup (TT‘ (h)) + sup (IT‘ (h)) + sup (FT’ (h)) <3
for all heX.
A PmIVENS may be expressed as

T = {(h, [infTt(h),sup T} (R)][infIL(h), sup IX(R)], [infF}(h),supEL(h)], e eesy

linf T, (h), supT;™ ()], [inf I (h), sup 7" (W), [inf F;™ (h), supF™ (h)] + h € X}

IJNRD2502028

International Journal Of Novel Research And Development (www.ijnrd.org)



http://www.ijrti.org/

If cardinality of X is [, then tabular structure of 7 is as in Table 1:

TABLE 1. Tabular representation of PmIVFNS 7
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T

hy | (infTe(h), supTy (hy)), [inf Iz (hy),
suplz ()], [inf B (hy), supF (h)])

(linf T2 (hy), supT¢ (ho)], [inf I7 (ha),
supl (hy)], [inf F? (hy), supF? (h,)])

([inf T7" (), supT;™ (hy)], [inf 17" (hy),
suply" (hy)], [inf " (hy), supE™ (hy)])

hy | (infT¢ (hy), supTy (ho) 1L [inf Iz (hy),

([inf T (hy), supT# (hy)], [inf IZ (hy),

([inf Tz (ha), supTe" (ho)], [inf I3 (h),

suplz (hp)], [inf F (hy), supFz (hy)])

supl (hp)], [inf F? (hy), supF? (ho)])

suply (hp)l, [inf B™ (hy), supE™ (h2)])

hy | @ T, supTE(hl, Tinf T (ho,
supl? ()], [inf F2 (e, supF? (ho)])

([infT(hy), SuPTTZ.(hz)], [inf I (hy),
suplz (h)], [inf F? (hy), supF? (h)])

([inf T¢" (hy), supTe™ (hy)], [inf I (hy),
suply" (h)], [inf B (hy), supFE™ (hy)])

The corresponding matrix format is

(Linf TA(hy), supT(hy)], [inf 2 (hy),
suplt (h)], [inf B2 (hy), supF (hy)])

U ([inf TE(hy), supTE(h)], [inf I2 (hy),

T = suplt(hy)], [inf E: (hy), supF (hy)])

(Linf T (h), supTi(h)], [inf 12 (hy),
supl(hy)], [inf F(hy), supFE (h)])

([infT?(ha), supT¢ (hy)], [inf IZ (ha),
supl? (hy)], [inf B2 (hy), supF? (hy)])

supl? (h)], [inf Fcz.(hz)' supF? (h2)])

(Linf T2 (hy), supTZ(h)], [inf 12 (hy),
supl2(hy)], [inf F? (hy), supF? (hy)])

([inf T2 (hy), supTZ(hy)], [inf IZ (hy),

(linf 77" (), supTy" ()], inf 17" (hy),
suplf" (ha)), [inf " (hy), supE" (ha)))

(linf T (ha), supT" (ha)], Linf I ha), |
supl (hy)], linf E" (hy), supFP* (hy)]) |

(inf T (hy), supT™(h)], [inf I (hy),
supl?(hy)], [inf B (hy), supF™ (hy))

This [ x m matrix is known as PmIVVFEN matrix. The assortment of each PmIVENS characterized over universe would be designated

by PmIVFNS(X).

Example 3.2. If X={e,f} be a crisp set, then

e

f

{(([0204 [0.6,0.3],[0.3,0.5]), ([0.6,0.8],[0.5,0.6], [0.1,0.4]), ([0.3,0.7], [0.7,0.5], [0803)1
l )

([0.1,0.9],[0.3,0.4],[0.5,0.7]), ([0.4,0.6], [0.9,0.3],[0.5,0.5]), ([0.6,0.2],[0.7,0.8],[0.8,0.5])

TABLE 2. Tabular representation of P3IVFNS ¢

T

e ([0.2,0.4],[0.6,0.3],[0.3,0.5])

([0.6,0.8],[0.5,0.6],[0.1,0.4])

([0.3,0.7],[0.7,0.5],[0.8,0.3])

£ ([0.1,0.9],[0.3,0.4],[0.5,0.7])

([0.4,0.6],[0.9,0.3],[0.5,0.5])

([0.6,0.2],[0.7,0.8],[0.8,0.5])

The matrix form of this set is

_ < ([0.2,0.4],[0.6,0.3],[0.3,0.5])  ([0.6,0.8],[0.5,0.6],[0.1,0.4]) ([0.3,0.7],[0.7,0.5], [0.8,0.3]))

([0.1,0.9],[0.3,0.4],[0.5,0.7])

Definition 3.3 .
values of iranging from 1 to m, if

infTE (h) <infT.(h) , sup

infF. (h) < infFL(h) , sup

T;,(h) < supTi,(h)
infli (R) < inflIi, (h)

Fi, () < supF ()

T, & T, are said to be equal if r; € 7, € 1, and is written as 7, = 1,

Example 3.4. Let

([0.7,0.1], [0.3,0.9], [0.6,0.4])

([0.4,0.5],[0.3,0.8],[0.7,0.5])
([0.2,0.5],[0.7,0.8],[0.8,0.8])

([0.9,0.5],[0.2,0.5],[0.4,0.1])

([0.6,0.8],[0.2,0.4],[0.5,0.3])
=
([1.0,0.8],[0.6,0.4],[0.5,0.1])

be PmIVFNS over some set x, then 7, € 7,

([0.4,0.6],[0.9,0.3],[0.5,0.5])  ([0.6,0.2],[0.7,0.8],[0.8,0.5])

Let 7, and t,be PmIVFNS over X. 7, is acknowledged as a subset of t,, written as t,; < t,, V teX and each

supl} (h) < suplf,(h)

([0.2,0.6],[0.1,0.8],[0.5,0.6])  ([0.3,0.5],[0.9,0.6],[0.3,0.9])

([0.3,0.6],[0.1,0.5],[0.2,0.8]) ([0.9,0.7],[0.3,0.7],[0.3,0.6])
and
([0.4,0.6],[0.5,0.6],[0.8,0.9]) ([0.5,0.5],[0.4,0.9],[0.2,0.9])

([0.9,0.8],[0.0,0.6],[0.4,0.3])  ([0.8,1.0],[0.5,0.4],[0.1,0.7])

([0.7,0.9],[0.0,0.2],[0.1,0.6])  ([1.0,0.8],[0.2,0.6],[0.1,0.4])
([0.9,0.7],[0.3,0.5],[0.6,0.7])  ([0.9,0.6],[0.3,0.4],[0.1,0.7])
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Definition 3.5. A PmIVFNS 7 over X is known as null PmIVFENS if inf T (h) = 0, supT}(h) = 0; infli(h) = 1,supli(h) =
1and infF!(h) = 1,supF!(h) = 1,Vh € X and all acceptable values of i. It is designated by ¢.

(1001 [LILILAD (OOL[LILILA] - ([00}[L1L[11]
(0.0 LAL[L1D (00LILILILAD . ([00L[L1][L1D

(0,01 [LAL[L1D  ([0,01,[L1][L1D) .. ([0,0][1,1],[1,1])

Thus, ¢ =

Definition 3.6. A PmIVFNS 1 over X is known as absolute PmIVFNS if infT}!(h) = 1,supTi(h) = 1;infli(h) =
0,supli(h) = 0 and infE!(h) = 0,supE!(h) = 0 ,YheX. It is denoted by ».

([LAL[0,0L,[0.0]) ([11],[0,01,[0,0) - ([1,1],[0,0], [0,0])
- [ @1L0L 100D (L1L[00L[00D - (11],[0,0],[0,0]
([111,[0,01,[0,0) ([11],[0,0],[0,0]) ... ([11],[0,0],[0,0])

Definition 3.7. The complement of a PmIVFNS

T= { h theX,i=1 m}
([inf TE(R), sup T [inf IE(R) sup IE (W], [inf FE(h),sup FE(W)]) © ’ v

over X is defined as
h

C —
= {([ianTi(h),supFTi(h)],l—[L'an%(h),supI.}'(h)],[L'nfTTi(h),supT.,;i(h)])

theX,i= 1,....,m}.

Example 3.8.  The complement of the PmIVENS 7 given in example 3.2 is

. (([0.3,0.5],[0.4,0.7],[0.2,0.4]) ([0.1,0.4],[0.5,0.4],[0.6,0.8]) ([0.8,0.3],[0.3,0.5],[0.3,0.7])
_<([0.5,0.7],[0.7,0.6],[0.1,0.9]) ([0.5,0.5],[0.1,0.7],[0.4,0.6]) ([0.8,0.5],[0.3,0.2],[0.6,0.2]))

Definition 3.9. The union of any PmIVFNSs 7, and t, expressed over the same universe X is represented as

)
N

m T2

————~C

\
: i
([max(infTi (h), infTE, (h)), max(supTf, (R), supT{, (D) |, [min(infIL, (h), inf I}, (h)), min(supli, (R), supLi, ()], | °

[min(infFL (R),inf FE (h)), min(supFL (h), supF,(R) 1) )
heX,i=1,....m

Definition 3.10. The intersection of any PmIVFNSs 7, and 7, expressed over the same universe X is represented as
T Ny T2 =

h .
{ (Imin(in Tz, (h),infT_t5 (h)) min(supTf, (h),supTe, (W) ] [max(infLz, (h)inflz, (h) max(suplz, () suplz, (h))), } hexi=

[max(ianTi1 (h),ianTi2 (h)),max(supFTi1 (h),supFTi2 (h))]

1,.....m
Example 3.11. If

(f0.5,0.2],10.2,0.3],[0.7,0.8]) ([0.1,0.5],[0.9,1.0],[0.8,0.2]) ([0.3,0.6],[0.4,0.2],[0.1,0.3])
7, = | ([0.6,0.1],[0.0,0.3],[0.4,0.7]) ([0.9,0.1],[0.3,0.7],[0.5,1.0]) ([0.2,0.3],[0.8,0.6],[0.2,0.9])
([0.8,0.2],[0.6,0.3],[0.5,0.1])  ([0.6,0.6],[0.2,0.1],[1.0,0.7]) ([0.5,0.2],[0.9,0.7],[0.3,0.8])

and

([0.6,0.3],[0.1,0.9],[0.8,0.2]) ([0.7,0.2],[0.4,0.9],[0.9,0.2]) ([0.4,0.8],[0.6,0.4],[0.9,1.0])

([0.4,0.7],[0.9,0.2],[0.8,0.0]) ([0.5,0.8],[0.2,0.6],[0.7,0.7])  ([0.0,0.6],[0.5,0.9],0.9,0.8])
T, =
([0.4,0.5],[0.2,0.6],[0.5,0.5])  ([0.5,0.2],[0.1,0.8],[0.4,0.4]) ([0.6,0.3],[0.8,0.2],[0.9,0.4])

are two PmIVFNS defined over the same universe of discourse X, then

([0.5,0.7],[0.2,0.2],[0.7,0.0])  ([0.5,0.8],[0.2,0.6],[0.7,0.2]) ([0.0,0.6],[0.4,0.2],[0.1,0.3])
7, U, 7, = | ([0.6,0.3],[0.0,0.3],[0.4,0.2]) ([0.9,0.2],[0.3,0.7],[0.5,0.2]) ([0.4,0.8],[0.6,0.4],[0.2,0.9])) and
([0.8,0.5],[0.2,0.3],[0.5,0.1])  ([0.6,0.6],[0.1,0.1],[0.4,0.4]) ([0.6,0.3],[0.9,0.7],[0.9,0.8])
([0.4,0.2],[0.9,0.3],[0.8,0.8]) ([0.1,0.5],[0.9,1.0],[0.8,0.7]) ([0.0,0.6],[0.5,0.9],[0.9,0.8])
7, N, 7, = | ([0.6,0.1],[0.1,0.9],[0.8,0.7]) ([0.7,0.1],[0.4,0.9],[0.9,1.0]) ([0.2,0.3],[0.8,0.6],[0.9,1.0])
(([0.4,0.2], [0.6,0.6],[0.5,0.5]) ([0.5,0.2],[0.2,0.8],[1.0,0.7]) ([0.5,0.2],[0.9,0.7], [0.9,0.8])>
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Proposition 3.12. If 7,1, T,, 73 are PmIVENS over X, then
1. pu,7=71

2. pN,T=¢@
3. U, Tt=x
4. N 1=x
5 1tU,T1=T1
6. TNpT=1
7. TUpT,=17,U, 17,
8 TN, =17,N, T,

9. 1, U, (1,U,, 13) = (1, Uy T2) Uy, T3
10. 7, N, (T, Ny, T3 ) = (7 Ny ‘rz)n T3
11, 7, Uy, (1, Ny, T3 ) = (70 Uy, T2 ) Ny, (T1 YUy, T3)
12. 7y Ny (T, Uy T3 ) = (T4 Ny T3) Uy (T3 Ny, T3)

Proof.  Here, we prove only (11).We may assume without losing generality, that max (infTT"1 (h),inf T}Z(h)) =
infTk (h) ,max (supTTi1 (h), supT}, (h)) = supTi (R); max (infl} (h),infI},(h)) = infIL (h), max(suplf (h),supll,(h)) =
supli, (h); max(infFl, (h), infFi, (R)) = inf Ff, (h),max(supF, (h), supFi, (h)) = supF, (h).

Then ,Vh e Xandi=1,....m

T Uy T3 =
(

\
| |
! : ¥
I ([mm me‘ (h), meT3(h)) mm(supT‘ (h),supT} (h))],[max(infl%z (h),ianTi3 (h)),max(supl}'2 (h),supl}'3 (h))], |
k [max(mfFTl2 (h),LanT‘3 (h)),max(supFTi2 (h),supFTi3 (h))) }

h
- {([inf L(R), supTE, (W] [inf I, (h), suplk, ()], [inf FL (h),Supr"z(h)])}

h

{( [inf T, (W), supTé, (W], [inf Iz, (), suplz, (W], [inf K, (h), supFs, (h)])} N
h

([inf T, (R), supTy, (W], [inf Iz, (h), suply, (W], [inf F, (h), supF,(W)])

2Ty Uy (T, Ny T3) =

( )
| |
-1 h }
l([max infTt (h),inf T, (h)) max (supTrll(h) supTE (h))] [mln (mf]é1 (h), mfI}z(h)) min (supl%l(h) suplt, (h) ] |
k [mm (mfFTL1 (h), Lan',‘2 (h)) ,min (supFT‘1 (h), supFTL2 (h))] ) J

h
= : 4 . . . . and
{([inf ¢, (W,supTy, (W] [inf 1k, (W),supit, (W] [infFf, (h),supFE, (h)])}

y

([max(me;l(h),LnfT,lz(h)),max(supT;l(h),sup (h))] mm(mfl,ll(h) inflt,(h)
l min(supli (h), supl?, (h))], [min(inflt, (h),infI, (h)), min(suplt, (h),supli, (h))])

h
- {([inf T¢ (W), supT{, (W], [inf I, (W), supl;, (W], [inf F, (h), supF (h)])}

( )
G UnTs = 1 i \
1Em =3 l( max(infT} (h),inf Tk (h)), max(supT/, (h),supTk (h))], [min(inf],il(h),ianTi3(h))J

min(suply, (h), supl;, ()], [min(infI;, (h), infIt, (), min(supli, (h), supli,(W)])

h
{([inf T (W), supTE (W], [inf It (R), suply, (W], [inf K (h), supF, (h)])}
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([min(inf T, (h), inf T, (h)), min(supTE, (h), supT, ()], [max (inf1i, (h), inf 11, () ),

( |
(T1 Up T2) Ny (T4 Upy T3) = { h }
| I
\ max (supli, (h), suplt, (h))], [max(inf 1}, (h), inf I, (h)), max(supli, (h), suplt,(h))]) )

h
- \{([infTr‘;(h).suzDTT"1 (W], [infIE, (h), supli, (W], [inf EL (R), supF, (h)])}
Corollary 3.13. (1) U, x=x (2) oN % =¢

Proposition 3.14. If ; and 7, are PmIVENS over X, then
1. 7,Np1,€1,S1U,T,
2. 1, Np1,C1,C1,U,T,

Proof. The results are easy consequences of properties of max and min.

Proposition 3.15. Let t,,7, be PmIVENS, over universe set X, then De Morgan laws hold i.e.
1L (mUnT) =1 Ny 75
2. (4 Ny 7)) =T{ Np T35

Proof. Here, we demonstrate only (1). The verification of (2) perhaps provided in the same way. We may assume , without
losing the generality, that max (infTTil(h),infTTi2 (h)) = infT/ (h), max (supTTil(h),SupTTi2 (h)) = supT{ (h) ;
max (l’rz]‘ITil(h),infl,i2 (h)) =infl} (h), max(supl} (h),supl,(h)) = supli (h) and max (ianTil(h),ianTi2 (h)) =
infF} (h), max (supFTil(h),supFTi2 (h)) = supF. (h).

ThenvheXandi=1,2,....,m.
h

(T U, 7,)¢ = ([max (infTTi1 (h), infT, (h)) ,max (supTTi1 (h),supT}, (h))] J[min (ianT"1 (h),infI}, (h)),
min(supl;, (h), supli, ()], [min(infI;, (h),inf I}, (R)), min(supl;, (h), supl;, (h))])

h
- {([inf T, (), supTy, (W], [inf 1}, (h), suplf, (W], [inf F, (h).SUPF}l(h)])}

h
B {([iangl(h),sungl(h)]. {1 —[infIE, (R), supIi, (W |} [[inf T (R), supT, (h)])}

h c
{([inf T (W), supTy, (W], [inf Iz, (W), suplz, (W], [infE, (R), SuPFT"l(h)]} kK

T Ny T3 =

h
{([inf T, (), supT, (W], [inf IE, (W), suplf, (W), [inf F, (h).supF}z(h)])}

h
- {([ian;; (h),supFL (W], {1 = [infIL, (h),supli (W]}, [inf T (R), supT}, (h)])} fim
h

([infEL (R, supFL (W], {1 = [inf 1L, (R, suply, (W]}, [[inf T (B), supT, (h)])}

(

. )
. : |
| ([min infF} (h),infF} (h)), min (supFTi1 (h),supFT"z(h))],{l — [min (inflril(h),inflriz(h)), |

(
min (supl,i1 (h),supl?, (h))]}, [max (infTT"1 (h),infT}, (h)) , max (supTT"1 (h), supT}, (h))]) J

h
{([inf F, (W), supF (W]{1 = [inf I, (h), suplz, (W1}, [inf T, (h), supTz, (h)])}
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Remark 3.16.
1. TU,t°#x
2. TNRTC# @

Proposition 3.17.

1. ¢¢==x
2. u¢=9¢
Proof.  Straight forward.

Let 7 isa PmFNS over universe set X. Then

Definition 3.18. The difference of two PmIVENS 1, and t, expressed over the same universe X is represented as

h

I
T,\1, = {

He X,i=1,2,

[mln infTt (h),infF, (h)) min (supTi (h), supFE, (h))] [min(infli (h),infIt,(h) ),
l mln(sup (W), suplt, (h))], [max(infF} (h),inf T}

Example 3.19. For 7, and 1, given in Example 3.11,we have

' (h)), max(supF}

|

, (W), supT,(MW)]) J

([0.6,0.1],[0.0,0.3],[0.6,0.7])  ([0.9,0.1],[0.3,0.7],[0.7,1.0]) ([0.2,0.3],[0.6,0.4], [0.4,0.9])

(([0.5,0.0],[0.2,0.2],[0.7,0.8]) ([0.1,0.5],0.2,0.6],[0.8,0.8]) ([0.3,0.6],[0.4,0.2], [0.1,0.6])>
T\T, =

([0.5,0.2],[0.2,0.3],[0.5,0.5])  ([0.4,0.4],[0.1,0.1],[1.0,0.7]) ([0.5,0.2],[0.8,0.2], [0.6,0.8])

Definition 3.20. The symmetric dif ference of two PmIVFNS, 7, and T, is set of elements which are either in 7, or in 7, but

not in both i.e.

7,47, = (1;\72) Uy, (T2\11)

Example 3.22. Let

([0.6,0.1],[0.0,0.3],[0.4,0.7])

([0.5,0.2],[0.2,0.3],[0.7,0.8])
([0.8,0.2],[0.6,0.3],[0.5,0.1])

and
([0.4,0.7],10.9,0.2],[0.8,0.0])
([0.6,0.3],[0.1,0.9],[0.8,0.2])
([0.4,0.5],[0.2,0.6],[0.5,0.5])
So that
([0.5,0.0],0.2,0.2],[0.7,0.8])
T:\T2 ([0.6,0.1],10.0,0.3],[0.6,0.7])
([0.5,0.2],10.2,0.3],[0.5,0.5])
and

([0.4,0.3],0.0,0.3],[0.8,0.2])

([0.4,0.7],10.2,0.2],[0.8,0.2])
T\ =
([0.4,0.1],10.2,0.3],[0.8,0.5])

([0.5,0.7],[0.2,0.2],[0.7,0.2])

2 (1y\T2) U (13\1y) = <([0.6,0.3], [0.0,0.3],[0.6,0.2])
([0.5,0.2],[0.2,0.3],[0.5,0.5])

= TlATZ

([0.9,0.1],[0.3,0.7],[0.5,1.0])  ([0.2,0.3],[0.8,0.6],[0.2,0.9])

([0.1,0.5],[0.9,1.0],[0.8,0.2])  ([0.3,0.6],[0.4,0.2], [0.1,0.3])>

([0.6,0.6],[0.2,0.1],[1.0,0.7])  ([0.5,0.2],[0.9,0.7],0.3,0.8])

([0.7,0.2],[0.4,0.9],[0.9,0.2])  ([0.4,0.8],[0.6,0.4],[0.9,1.0])

([0.5,0.8],[0.2,0.6],[0.7,0.7])  ([0.0,0.6],[0.5,0.9], [0.9,0.8]))

([0.5,0.2],[0.1,0.8],[0.4,0.4]) ([0.6,0.3],[0.8,0.2],[0.9,0.4])

([0.1,0.5],[0.2,0.6],[0.8,0.8])
([0.9,0.1],[0.3,0.7],[0.7,1.0])
([0.4,0.4],[0.1,0.1], [1.0,0.7])

([0.5,0.2], [0.2,0.6],[0.7,0.7])
([0.5,0.2],[0.3,0.7],[0.9,0.2])
([0.5,0.2],[0.1,0.1], [0.6,0.6])

([0.2,0.3],[0.6,0.4], [0.4,0.9])

([0.3,0.6],[0.4,0.2], [0.1,0.6])
([0.5,0.21,[0.8,0.2], [0.6,0.8]))

([0.2,0.8],[0.6,0.4],[0.9,1.0])

([0.0,0.3],[0.4,0.2],[0.9,0.8])
([0.3,0.3],[0.8,0.2],[0.9,0.4])

([0.9,0.2],[0.3,0.7],[0.7,0.2])  ([0.2,0.8],[0.6,0.4],[0.4,0.9])

([0.5,0.5],[0.2,0.6],[0.7,0.7])  ([0.3,0.6],[0.4,0.2], [0.1,0.6])>

([0.5,0.4],[0.1,0.1],[0.6,0.6])  ([0.5,0.3],[0.8,0.2],[0.6,0.4])

Definition 3.22. The sum of two PmIVFNS, 7, and 1, chosen from same universe X is represented as
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T, D1y

h

[\/(infTTi1 (h))2 + (infTTi2 (h))2 — (inf T (h)infTTiz(h))2 , (supTTi1 (h))2 + (supTTiz(h))2 - (sup T} (WsupT, (h))z],

|(inf1t, (wyinfre, (), (suplt, (Wysupls, ()] [ (inf B (inf EL (B, (supFL (W) supFL, (h))]
Where h€ X andi=1,2,...,m.

Example 3.23. For t; and t, given Example 3.11, we have

T, P,
([0.62,0.67],[0.18,0.6],[0.56,0.0])  ([0.35,0.98],[0.18,0.6],[0.56,0.14])  ([0.3,0.83],[0.20,0.18],[0.09,0.24])
= ([0.83,0.19],[0.0,0.27],[0.32,0.14])  ([0.99,0.14],[0.12,0.63],[0.45,0.2]) ([0.35,0.88],[0.48,0.24],[0.18,0.9])

([0.86,0.44],[0.12,0.18],[0.25,0.05])  ([0.76,0.63],[0.02,0.08],[0.4,0.28]) ([0.76,0.29],[0.72,0.14],[0.27,0.32])

Definition 3.24. The product of two PmIVFNS, t, and t, take off the same universe X is explained as
T, 1,

h
((infri (Wi T, (), (supTs, (Wsupts, W), [(inf1i, (WinfIL, (1)), (supti, (ysuplt, ()],
J((nrrs )+ (im0 = (img s, (g, () (5Bl () + (supBl, () = (s, supkL ) |

For h € Xand i=1,2,...,m.

Example 3.25. For 7, and 1, given in example 3.11, we have

([0.2,0.14],[0.18,0.6],[0.9,0.8]) ([0.5,0.4],[0.18,0.6],[0.9,0.71])  ([0.0,0.36],[0.2,0.18],[0.9,0.82])
7, ®1, = ([0.36,0.3].[0.0,0.27],[0.84,0.71])  ([0.63,0.2],[0.12,0.63],[0.93,1.0])  ([0.8,0.24],[0.48,0.24],[0.9,1.0])
([0.32,0.1],[0.12,0.18], [0.66,0.51])  ([0.3,0.12],[0.2,0.8],[1.0,0.76])  ([0.3,0.6],[0.72,0.14],[0.91,0.84])

PYTHAGOREAN m-POLAR INTERVAL VALUED FUZZY NEUTROSOPHIC TOPOLOGY

In this section, we present Pythagorean m-polar interval valued fuzzy neutrosophic topology on Pythagorean m-polar
interval valued fuzzy neutrosophic set and elongate numerous characteristics of crisp topology towards Pythagorean m-polar
interval valued fuzzy neutrosophic topology. Separation axioms in PmIVFNSs are also discussed.

Definition 4.1. Let PmIVFNS(X) be the collection of all PmIVFN-subsets of the absolute PmIVFNS Xa. For ST € A ja
subcollection 1,,;,, of PMFNS(X) is known as Pythagorean m-polar interval valued fuzzy neutrosophic topology (PmIVENT) on

X if the following needs are satisfied:
(i) (@,.X4) € Jpins
(i) AB € 2, thenANB € 2,,;,
(iii) A; € 2,5, VIE I then Ui A; € 2.

The doublet (X,2,;,) or simply 7,;, , Where X is a non — empty PmIVFNS and 2, is a Pythagorean m-polar interval

valued fuzzy neutrosophic topology on X , is known as Pythagorean m-polar interval valued fuzzy neutrosophic
topological space (PmIVFNS).

Example 4.2. Let X= {#1,/2} be a universal P3IVFNS with S and T be as shown in table 4 and table5 below:

Table 4. P3IVENS(S)

S
At ([0.2,1.0],[0.7,0.2],[0.6,0.4]) ([0.3,0.1],[0.8,0.7],[0.6,0.1]) ([0.5,0.31,[0.6,0.7],[0.3,0.4])

hy  ([0.2,0.7],[0.6,0.1],[0.5,0.6]) ([0.2.0.4],[0.7,0.11,[0.2,0.5]) ([0.1,0.3],[0.6,0.4],[0.8.0.3])
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Table 5. P3IVENS (T)

T

ho o ([0.2,0.6],[0.5,0.21,[0.5,0.4]) ([0.1,0.51.[0.6,0.31,[0.7.0.4]) ([0.3,0.51,[0.6,0.11,[0.3,0.6])

hy  ([0.1,0.7],[0.6,0.11,[0.6,0.3]) ([0.5,0.71,[0.9,0.11,[0.7.0.2]) ([0.3,0.71,[0.6,0.41,[0.5,0.6])

Then 7pins = {@,S,T, X4} is a P3IVFNT on X.

Definition 4.3. The members of 2,,;, are called Pythagorean m-polar interval valued fuzzy neutrosophic open sets (PmIVFN-open
sets). The complements of Pythagorean m-polar interval valued fuzzy neutrosophic open sets are called Pythagorean m-polar
interval valued fuzzy neutrosophic closed sets (PmIVFN-closed sets) and PmIVFN- open set as well as PmIVFN-closed set is
called Pythagorean m-polar interval valued fuzzy neutrosophic clopen sets (PmIVFN- clopen sets).

Example 4.4. For the P3IVFNTS 2,5 given in Example 4.2, we have @ , S, T, X, are P3IVFN-open sets because they are
members of 1,5, (X,)¢ =0 € 2,;,, isaP3IVFN- closed set and @ , X, are P3IVFN—clopen sets as @ = X, — ¢ = X, and
X:{‘ e XA - XA e 0.

Example 4.5. Consider the P3IVFNSs X, S and T given in Example4.2 and

Table 6. P3IVENS (U)

U

h ([0.2,0.4],[0.4,0.61,[0.5,0.2]) ([0.6,0.2],[0.1,0.51,[0.6,0.3]) ([0.3,0.51,[0.6,0.11,[0.3,0.7])

hy  ([0.8,0.1],[0.6,0.21,[0.3,0.6]) ([0.1,0.61.[0.8.0.41,[0.6,0.2]) ([0.5,0.61,[0.1,0.81,[0.5.0.2])

We have ,
innl = {0, X4}
DpinZ = {er S, XA}
3pin3 = {Q), T, XA}
:Ipinél- = {Q), UfXA}
D'pinS 3 {®r ST, XA}
3'pinﬁ = {®' T,U, XA}
3pin7 = {(Z)r S: U! XA}
D’pinB S {(Z)' S: Tr U' XA}

are Pythagorean 3-polar interval valued fuzzy neutrosophic topologies over X. Here, both @ & X, are P3IVFN- open set as well as
P3IVFN- closed set so it is a P3IVFN- clopen set.

Theorem 4.6. Let (X, ty)bean PmIVFN topological space. Then

(1) On, In are PmIVFN — closed sets.
(i) Arbitrary intersection of PmIVFN — closed sets is PmIVFN — closed set.
(iii) Finite union of PmIVFN — closed sets is PmIVFN — closed set.

Proof: (i) since Oy,1y E Ty, 05 = 1y and 1§ = 0, therefore 05 and 1§ are PmIVFN — closed sets.
(i1) Let {A;:i € I} be an arbitrary family of PmIVFN — closed sets in (X, 7) and let

A = Nie{A;}. Now, c
o) Yo

and A° € Ty foreach i €1, hence U;;(4;)€ € Ty therefore Ac €1y .
Thus A is an PmIVFN- closed set.

(i) Let {Ak:k=1.2,......... nn} be a family of PmIVFN — closed set in
(X, Ty) and let G=U%-1 Ax.Now,
n ¢ n
G = (U AK> - [Nwo
K=1 K=1
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and (Ag)° € Ty for K=1,2,......... n. So, NE=1 A% € Ty.
Hence, G° € ty. Thus G is PmIVFN — Closed set.

Definition 4.7. Let (X, 2,;,;) and (X, 3,;,,) be two PmIVFNTSs on X. 2., is contained in J,;,; (i.¢)

Jpinz € pin1 if k €2, for every k € 2,,,;. In such case, 2,;,, is known as Pythagorean m—polar interval valued fuzzy
neutrosophic coarser or weaker (PmIVFN- coarser/weaker) than 1,,,, and 1,,,, is called Pythagorean m—polar interval valued
Jfuzzy neutrosophic finer or stronger (PmIVFN-finer/stronger) than 3,;,,. 2,1 and 3y, in such a case are known as comparable.
In Example 4.5, 3,,,, is PmIVFN-Coarser than 2,5 and 3,5 is PmIVFN-stronger than 3,;,,. Hence 2,;,, and 1,5 are
comparable.

Definition 4.8. The PmIVFNT 2,,;,, (indiscrete) = {®,X.} is known as indiscrete Pythagorean
m-polar interval valued fuzzy neutrosophic topology (indiscrete-PmIVFNT)& 2, (discrete)=P(X,) (powersetof X) is known as
discrete Pythagorean m-polar interval valued fuzzy neutrosophic topology (discrete-PmIVFNT) over X.

Remark 4.9. On X, the smallest PmIVFNT is 1,,;,, (indiscrete) whereas the largest PmIVFNT is
Jpin(discrete).

Definition 4.10. Suppose that (X,2;,,x) be a PmIVFNTS. A few Y € X and PmIVFN-open sets are S; = S, N ¥, of PmIVFNT
Jpiny ON'Y where S, are PmIVFN-open sets of 3,y & Y, is absolute PmIVFNS on Y then 2,y is reserved as the Pythagorean

m-polar interval valued fuzzy neutrosophic subspace
(PmIVFN- subspace) of 2,,;,,x . It can be written as:

3pinY - {S; Srt = Sn n YA' Sn € DpinX}
Example 4.11. Let J,;,x = {@,S, T, X,}, then 3,5 is a P3IVFNT on X. 2,,;,,x is a P3IVFNS on

Y= {S} SXis
Table 7. P3IVFNS ()

Ya

h ([1.0,1.0],{0.0,0.0],[0.0,0.0]) ([1.0,1.0],[0.0,0.0],[0.0,0.0]) ([1.0,1.0],[0.0,0.0],[0.0,0.0])

Since
inf(Y, N @),sup(Y, N @) =@
inf(Y, N S),sup(¥, N S) = infS, supS
inf(Y, nT),sup(Y, NT) = infT,supT
inf(Y, N X,),sup(Y, N X,) = infY,, supY,

S0, Apiny = 10,5, T.Y,} is a Pythagorean 3-polar interval valued fuzzy neutrosophic subtopology (P3IVFN-subtopology)of 3,;,x
(i-e DpinY c jpinx)'

Remark 4.12. (1) A PmIVFN- subtopology i.e. 3,;,7 of a PmIVFN-subtopology 3,,;,,y of a
PmIVENTS 2,,;,x is also a PmIVFN-subtopology of J,;,,x .

(2) Every PmIVFN-subspace of a discrete-PmIVFNTS is always discrete-PmIVENTS. Similarly, every PmIVFN-
subspace of indiscrete-PmIVFNTS is also an indiscrete-PmIVFNTS.

Definition 4.13. Let (X,2,,;,) be a PmIVFNTS and V & PmIVFNS(X). The Pythagorean m-
polar interval valued fuzzy neutrosophic interior (PmIVFN-interior) V; of Vis PmIVENS which is the union of all PmIVFNS-open
subsets(i.e that are contained in V) of X.

Theorem 4.14. Let (X, 7,) be a PmIVFEN topological space and A, B € PmIVFNs (X ) then the following properties holds:
(1) Int(A)c A
(i) ACSB=Int(A)S Int(B)
(iii) Int(A)eETnN
(iv) Aetniff Int(A)=A
(v) Int(Int(A))=Int(4)
(vi) Int(Ov)=0n, Int(In)=1n
Proof:
(1) Straight forward.
(i) A S B = All of the PmIVFN open sets in A that are also in B . Both PmIVFN open sets included in A also
includedinB. ie.,{K €Etn:K CSA}S{G €Tn:G EB}. ie. ,U{KETN:KCA}CU{G ETN:G SB}. ie.
, Int(A)S Int(B).
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(iii) Int(A)=U{K €tn:K CA}.Itisclearthat U{K €tn: K CA} € 1n.So,PmIVFN Int(A)€Etn.
(iv) Let A € Tn,thenby(i), Int(A)S A.Nowsince A €Etnv and Int(A) S A. Therefore A CU {G €ETtn: G S
A}=1Int(A), A S Int(A) Thus Int(A)=A. Conversely, let Int(A)=A. Since by (iii), Int(A) € Tn.
Therefore A € Tn.

(V) By (iii), Int(A) € Tn. Therefore by (iv), Int(Int(A))= Int(A).
(vi) We know that On, In €T n, by (iv), INt(Onv)=0n, INnt(In)=1n.
Definition 4.15.  Let (X, 2,;,) be a PmIVENTS and V € PmIVEN(X). Then the Pythagorean m-polar interval valued fuzzy

neutrosophic closure (PmIVFN-closure) V of V is the PmIVFNS which is intersection of all PmIVFN-closed supersets(i.e that
contain V) of V.

Theorem 4.16. Let (X, 7y) be aPmIVFNTS and 4, B € PmIVFNTs (X) then possess the following properties:
@) Ac Cl4)

i) ASB= Cl(A)S CIB)
(i)  (CLA))E

(iv)  Acewiff ClA)=A
(v) CI( Cl(A)) = Cl(A)

(vi) Cl(On) = 0w, CI(1n) = 1w

Proof:
Straight forward.
Theorem 4.17 Let (X, 7v) be a PmIVFN topological space and 4, B € PmIVFNTSs (X) then hold the following properties:
(i) Int(A N B) = Int(A) N Int(B)
(ii) Int(AU B) 2 Int(A) U Int(B)

(i)  CI(AU B)= CI(A) U Int(B)
(iv)  CIANB)<S Cl(A)N Int(B)
v) (Int(A))== CL(A°)
(vi)  (CLA))-= Int(A?)

Proof. (i) By Theorem 4.14(i), Int (A) € A and Int(B) € B. Thus Int(A) N Int(B) € A N B.
Hence Int(A) N Int(B) S Int(A N B) ----------- (1)
Again since A N B € A, by Theorem 4.14(ii). Int(A N B) S Int(A) .
Similarly, Int(A N B) € Int(B).
Hence Int(4 N B) € Int(A) N Int(B) -------- (2)
from (1) and (2) we get,
Int(A N B) = Int(A) N Int(B).
(i) Since A € A U B. Int(A) S Int(A U B) by Theorem 4.14(ii).
Similarly Int(B) € Int(A U B). Hence Int(4) U Int(B) € Int(A U B).

(iii) By Theorem 4.16(i), A € Cl(A)and B < Cl(B). Thus AU B € CI(A) UP CI(B), CI(AUB) < CI(A) U CI(B)-
Again since A € A U B, by Theorem 4.16(ii). CI(A) € CI(A U B).
Similarly CI(B) € Cl(AU B)

Hence Cl(A) U Cl(B) € CI(A U B)------ 2
from (1) and (2) we get Cl(A) U CI(B) = CIl(A U B).

SinceANBCS A, CI(AN B) S Cl(A) by Theorem 4.16(ii), Similarly, CI(A N B) © CI(B). Hence Cl(A N B)
c Cl(A) N CUB).

(v)  { Int(A)}=[U{G € tv: G € A}¢=N {G € tnc: A<C G},
{ Int(A)}= Cl(A)-.
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)  { CUA)I=[N {G € tn: AcC G}]c=U {G € Tv: G € A},

{ Cl(A)}= Int(A)-.

In theorem 4.17((ii) and (iv)), the equality does not hold
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