

A NOVEL FORM OF HEPTAGONAL NEUTROSOPHIC b- OPEN SETS

¹ Sriranjani .K, ² NirmalaIrudayam.F

¹ PG Student, ² Assistant Professor ¹ Department of Mathematics, ¹Nirmala College For Women, Coimbatore, India

Abstract: The aim of this paper is to discover and present the notion of heptagonal neutrosophic b-open sets in heptagonal neutrosophic topological spaces. We have also putforth a few of its characteristics by introducing and discussing the idea of heptagonal neutrosophic b-interior and heptagonal neutrosophic b- closure operators. We also define b-open sets using neutrosophic membership functions and their properties such as union, intersection and complementation.

IndexTerms: Heptagonal Neutrosophic Topology, Heptagonal Neutrosophic b-open Set, Heptagonal Neutrosophic b-Interior and Heptagonal Neutrosophic b-Closure

INTRODUCTION

Neutrosophic topological spaces have applications in various fields such as decision-making, computer science, and engineering, where the presence of indeterminate, vague, or uncertain information is prevalent. They provide a powerful tool for modeling and analyzing complex systems where classical topological spaces may not be sufficient. Subsequently after Zadeh's introduction of the fuzzy set in the year 1965 with the membership function, the aforesaid fields are developed in various phases with many real life situations. The investigator focused their research in the above fields towards applications in practical problems with the help of intuitionistic fuzzy numbers with membership and non-membership values which was developed by Atanassov.K.T in 1986. There was a new finding between membership and non-membership values called indeterminacy and combined three values named as neutrosophic numbers which was introduced by Smarandache in 2005.

NEED OF THE STUDY.

While neutrosophic sets have been widely studied and applied in various fields, the existing literature primarily focuses on traditional neutrosophic models, such as triangular and cubic neutrosophic sets. However, there is a noticeable lack of in-depth exploration into higher-dimensional neutrosophic structures, particularly the heptagonal neutrosophic sets. The introduction of a heptagonal structure offers the potential for richer representations of uncertainty, indeterminacy, and vagueness, which are critical in applications requiring more nuanced decision-making models. This study aims to fill the gap by investigating the properties, operations, and applications of heptagonal neutrosophic sets, contributing to the development of more advanced and flexible tools for handling complex, real-world problems.

RESEARCH METHODOLOGY

The methodology employed in this study involves a combination of theoretical analysis, construction of new models, and exploration of mathematical properties of heptagonal neutrosophic b-open sets within the context of topology.

2. Preliminaries

2.1 Heptagonal neutrosophic topology:

q'', r'', s'', t'', u'', v''; η > where $\mu, \gamma, \eta \in [0, 1]$. The truth membership function $\rho : R \to [0, \mu]$, the indeterminacy membership function $\sigma: R \to [\gamma, 1]$, the falsity membership function $\omega: R \to [\eta, 1]$. Using ranking technique of heptagonal neutrosophic number is changed as,

$$\rho(x) = \frac{(p + q + r + s + t + u + v)}{7}$$

$$\sigma(x) = \frac{(p ' + q ' + r ' + s ' + t ' + u ' + v ')}{7}$$

$$\omega(x) = \frac{(p '' + q '' + r '' + s '' + t '' + u '' + v '')}{7}$$

2.2 Definition for Neutrosophic topology

Let $\tau \subseteq N(X)$, then τ is called a neutrosophic topology on X if

- i. X and \emptyset belong to τ ,
- ii. The union of any number of neutrosophic sets in τ belongs to τ ,
- iii. The intersection of any two neutrosophic sets in τ belongs to τ . The pair (X, τ) is called a neutrosophic topological space over

Moreover, the members of τ are said to be neutrosophic open sets in X. If $A^c \in \tau$ then $A \in N(X)$ is said to be neutrosophic closed set in X.

2.3 Definition:

A subset A of a space X is said to be:

- 1. Semi-open if $A \subseteq Cl(Int(A))$
- Pre open if $A \subseteq Int(Cl(A))$
- b-open if $A < Int(Cl(A)) \cup Cl(Int(A))$

2.4 Definition for b-open set:

The closure and the interior of A of X are denoted by Cl(A) and Int(A), respectively. A subset A of X is said to be b-open if $A < Int(Cl(A)) \cup Cl(Int(A))$ 3.HN b-open sets

Definition 3.1:Let A_{HN} be a HNS of a HNTS X. Then A_{HN} is said to be a Heptagonal Neutrosophic b-open [written HN-BO] set of X if there exists a heptagonal neutrosophic open set HNO such that A_{HN}⊆HNCl (HNO)UHNInt(HNO).

Theorem 3.2: A subset A_{HN} in a HNTS X is a HN-b open set iff $A_{HN} \subseteq HNCl$ (HNInt $(A_{HN}) \cup HNInt$ (HNCl (A_{HN}))

Proof:

Necessity: Let A_{HN} be a HN-b-open set in X. Then $A_{HN} \subseteq HNCl$ (HNO) UHNInt(HNO) for some heptagonal neutrosophic open set HNO But HNO \subseteq HNInt (A_{HN})UHNCl(A_{HN}) thus HNCl (HNO) \subseteq HNCl (HNInt (A_{HN}))UHNInt(HNCl(A_{HN})). Hence $A_{HN} \subseteq HNC1$ (HNO)UHNInt(HNO).

 $A_{HN} \subseteq HNCl \frac{(HNI)}{(HNI)} (A_{HN}) UHN\frac{Int(HNCl(A_{HN}))}{(HNCl(A_{HN}))}$

Sufficiency: Let $A_{HN} \subseteq HNCl$ (HNInt (A_{HN})) UHNInt(HNCl(A_{HN})).

Since HNO = HNInt (A_{HN}) U HNCl (A_{HN}) , we have HNO $\subseteq A_{HN} \subseteq$ HNCl (HNO)U HNInt(HNO) Hence A_{HN} is a HN-b-open set.

Theorem 3.3: Let (X, τ) be a HNTS. Then union of two HN-b-open sets is again a HN-b-open set in the HNTS X.

Proof: Let A_{HN} and B_{HN} are HN-b open sets in X.

Then $A_{HN} \subseteq HNCl$ (HNInt (A_{HN})) U HNInt(HNCl (A_{HN})) and $B_{HN} \subseteq HNCl$ (HNInt (B_{HN})) U HNInt(HNCl (B_{HN}))

Therefore $A_{HN} \cup B_{HN} \subseteq [HNCl(HNInt(A_{HN})) \cup HNInt(HNCl(A_{HN}))] \cup [HNInt(HNCl(A_{HN}))] \cup [H$ $[HNCl(HNInt(B_{HN}))]$

 $A_{HN} UB_{HN} = HNCl[(HNInt(A_{HN})UHNInt(B_{HN})) \cup HNInt(HNCl(A_{HN}UHNCl(B_{HN}))]$

 \subseteq HNCl[HNInt(A_{HN}UB_{HN})]U HNInt[HNCl(A_{HN}UB_{HN})]

[By Theorem 3.2],

Hence A_{HN}UB_{HN} is a HN-b- open set in X.

Theorem 3.4: Let (X, τ) be a HNTS. Then union of a finite collection of HN-b-open sets is again a HN-b-open set in the HNTS X.

 $(B_{HN}))$

HNInt(HNC1

Proof: For each $i \in \Delta$, (A_{HN}) is a HN-b- open sets in X. Then by theorem 3.2, (A_{HN}) $i \subseteq HNCl(HNInt((A_{HN})i))UHNInt(HNCl((A_{HN})i))$. $Thus, U_i \in \triangle(A_{HN}) \\ i \subseteq U_i \in \triangle \\ HNCl(HNInt((A_{HN})i)) \subseteq HNCl(U_i \in \triangle \\ HNInt((A_{HN})i)). \\ Hence U_i \in \triangle(A_{HN}) \\ i \subseteq HNCl(HNInt(U_i \in \triangle(A_{HN})i)). \\ HNCl(U_i \in \triangle(A_{HN})i) \subseteq HNCl(U_i \in \triangle(A_{HN})i)). \\ HNCl(U_i \in \triangle$ Therefore, the union of a finite collection of HN-b- open sets is again a HN- b-open set in the HNTS X.

Remark 3.5 The intersection of any two HN-b-open sets need not be a HN-b-open sets.

Theorem 3.6 Let A_{HN} be a HNBO set in the HNTS X and suppose $A_{HN} \subseteq B_{HN} \subseteq HNCl$ $(A_{HN}) \cup HNInt(A_{HN})$. Then B_{HN} is HNBO set in X.

Proof: There exists a heptagonal neutrosophic open set HNO such that HNO⊆A_{HN}⊆HNCl (HNO)∪HNInt(HNO).

Since, $A_{HN} \subseteq B_{HN}$, $HNO \subseteq B_{HN}$.

But HNCl (A_{HN}) UHNInt (A_{HN}) \subseteq HNCl (HNO) UHNInt(HNO).

And thus $B_{HN} \subseteq HNCl$ (HNO) UHNInt(HNO). Hence $HNO \subseteq B_{HN} \subseteq HNCl$ (HNO) UHNInt(HNO).

And B_{HN} is HNBO set in X.

Theorem 3.7: Every heptagonal neutrosophic open set in the HNTS X is a HNBO set in X.

Proof: Let A be a heptagonal neutrosophic open set in HNTS X. Then $A_{HN} = HNInt (A_{HN})$.

Also HNInt $(A_{HN}) \subseteq HNCl (HNInt (A_{HN})) \cup HNInt (HNCl(A_{HN}))$

This implies that $A_{HN} \subseteq HNCl$ (HNInt (A_{HN})) UHNInt(HNCl (A_{HN})). Hence by Theorem 3.2, A_{HN} is a HNBO set in X.

4. Heptagonal neutrosophic b-interior in Heptagonal neutrosophic topological spaces

In this section, we introduce the heptagonal neutrosophic b-interior operator and their properties in the heptagonal neutrosophic topological space.

Definition 4.1: Let (X, τ) be a HNTS. Then for a heptagonal neutrosophic subset A_{HN} of X, the heptagonal neutrosophic binterior of A_{HN} [HN-BInt (A_{HN}) for short] is the union of all heptagonal neutrosophic b-open sets of X contained in AHN. HN-BInt $(A_{HN}) = \bigcup \{ B_{HN} : B_{HN} \text{ is a HNBO set in } X \text{ and } B_{HN} \subseteq A_{HN} \}.$

Proposition 4.2: Let (X, τ) be a HNTS.

Then for any heptagonal neutrosophic subsets A_{HN} and B_{HN} of a HNTS X we have

- (i) HN- $BInt(A_{HN}) \subseteq A_{HN}$
- (ii) A_{HN} is HNBO set in X iff HN-BInt $(A_{HN}) = A_{HN}$
- (iii) $HN-BInt(HN-BInt(A_{HN})) = HN-BInt(A_{HN})$
- (iv) If $A_{HN} \subseteq B_{HN}$ then HN-BInt $(A_{HN}) \subseteq HN$ -BInt (B_{HN})
- $HN-BInt(A_{HN} \cap B_{HN}) = HN-BInt(A_{HN}) \cap HN-BInt(B_{HN})$ (v)
- $HN-BInt(A_{HN}) \cup HN-BInt(B_{HN}) \subseteq HN-BInt(A_{HN} \cup B_{HN})$ (vi)

Proof:

(i) Follows from Definition 4.1.

HN-BInt (Ahn) = U{ Bhn : Bhn is a HNBO set in X and Bhn⊆ Ahn}. HN-BInt (Ahn) ⊆ Ahn

- (ii) Let Ahnbe a HNBO set in X. Then Ahn⊆HN-BInt(Ahn).
 - By using (i) we get Ahn = BInt(Ahn). Conversely assume that Ahn = HN-BInt(Ahn). By using Definition 4.1, Ahn is NBO set in X.Thus (ii) is proved.
- (iii) $HN-BInt(HN-BInt(A_{HN})) = HN-BInt(A_{HN})$

By using (ii)HN-BInt(HNBInt(A_{HN}))=HN-BInt(A_{HN}).

This proves (iii). Since Ahn⊆Bhn, by

using (i), HN-BInt(Ahn) ⊆ Ahn⊆Bhn. That is HN-BInt(Ahn)⊆ Bhn. Thus (iii) is proved.

- (iv) By (iii), HN-BInt(HN-SInt(AhN)) \subseteq HN-BInt(BhN). Thus HN-BInt(AhN) \subseteq HN-SInt(BhN). Thus (iv) is proved.
- (v) Since Ahn ∩ Bhn⊆Ahn and Ahn∩Bhn⊆Bhn, by using (iv), HN-BInt (Ahn ∩ Bhn)⊆HN-BInt (Ahn) and HN-BInt(Ahn∩Bhn)⊆HN-BInt(B_{HN}). This implies that

 $HN-BInt(Ahn \cap Bhn) \subseteq HN-BInt(Ahn) \cap HN-BInt(Bhn) ---(1). \ By(i), \ HN-BInt(Ahn) \subseteq Ahn \ and \ HN-BInt(Bhn) \subseteq Bhn.$ This implies that

 $HN-BInt(Ahn) \cap HN-BInt(Bhn) \subseteq Ahn \cap Bhn.$

Now by (iv), HN-BInt $((HN-SInt(Ahn))\cap HN-SInt(Bhn)) \subseteq HN-BInt(Ahn)\cap Bhn)$. By (1), HN-BInt(HN-SInt $(Ahn))\cap HN-BInt(Ahn)\cap Bhn$ $BInt(HN-SInt(Bhn)) \subseteq HN-BInt(Ahn \cap Bhn)$. By (iii), $HN-BInt(Ahn \cap HN-BInt(Bhn) \subseteq HN-BInt(Ahn \cap Bhn)$ (2).

From (1) and (2), HN-BInt (A_{HN} \cap B_{HN}) = HN-BInt(A_{HN}) \cap HN-BInt(B_{HN}).

Thus (v) is proved.

(vi) Since Ahn ⊆ Ahn ∪ Bhn and Bhn ⊆ Ahn ∪ Bhn, by (iv), HN-BInt (Ahn) ⊆ HN-BInt (Ahn ∪ Bhn) and HN-BInt (Bhn) ⊆ HN-BInt (Ahn U Bhn). This implies that,

HN-BInt (Ahn) U HN-BInt (Bhn) ⊆HN-BInt (AhnU Bhn). Thus (vi) is proved.

5. Heptagonal neutrosophic b-closure in heptagonal neutrosophic topological spaces

In this section, we introduce the heptagonal neutrosophic b-closure operator and its properties in the heptagonal neutrosophic topological space.

Definition 5.1: Let (X_i) be a HNTS. Then for a heptagonal neutrosophic subset A_{HN} of X, the heptagonal neutrosophic b-closure of A_{HN} [HN-BCl (A_{HN}) for short] is the intersection of all heptagonal neutrosophic b-closed sets of X contained in A_{HN}. HN-BCl $(A_{HN}) = \bigcup \{ K_{HN} : K_{HN} \text{ is a HNBC set in } X \text{ and } A_{HN} \subseteq K_{HN} \}.$

Proposition 5.2: Let (X, τ) be a HNTS.

Then for any heptagonal neutrosophic subsets A_{HN} and B_{HN} of a HNTS X we have

- (i) $A_{HN} \subseteq HN\text{-BCl}(A_{HN})$
- (ii) A_{HN} is HNBC set in X iff HN-BCl (A_{HN}) = A_{HN}
- $HN-BCl(HN-BCl(A_{HN})) = HN-BCl(A_{HN})$ (iii)
- (iv) If $A_{HN} \subseteq B_{HN}$ then HN-BCl $(A_{HN}) \subseteq HN$ -BCl (B_{HN})
- (v) $HN-BCl(A_{HN} \cap B_{HN}) \subseteq HN-BCl(A_{HN}) \cap HN-BCl(B_{HN})$
- $HN-BCl(A_{HN}) \cup HN-BCl(B_{HN}) = HN-BCl(A_{HN} \cup B_{HN})$ (vi)

Proof:

- (i) Follows from Definition 5.1.
- (ii) Let A_{HN} be a HNBC set in X. Then A_{HN} contains HN-BCl(A_{HN}). Now by using (i), we get $A_{HN} = HN$ -BCl(A_{HN}). Conversely assume that $A_{HN} = HN-BCl(A_{HN})$. By using Definition 5.1, A_{HN} is a HNBC set in X. Thus (ii) is proved.
- (iii) By using (ii), $HN-BCl(HN-BCl(A_{HN})) = HN-BCl(A_{HN})$. This (iii) is proved.
- (iv) Since A_{HN}⊆B_{HN}, by using (i), B_{HN}⊆HN-BCl(B_{HN}) implies A_{HN}⊆HN-BCl(B_{HN}). But HN-BCl(A_{HN}) is the smallest closed set containing A_{HN},

hence $HN-BCl(A_{HN}) \subseteq HN-BCl(B_{HN})$. Thus (iv) is proved.

(v) Since $A_{HN} \cap B_{HN} \subseteq A_{HN}$ and $A_{HN} \cap B_{HN} \subseteq B_{HN}$, by using (iv), HN-BCl $(A_{HN} \cap B_{HN}) \subseteq HN$ -BCl (A_{HN}) and HN- $BCl(A_{HN} \cap B_{HN}) \subseteq HN-BCl(B_{HN}).$

This implies that $HN-BCl(A_{HN} \cap B_{HN}) \subseteq HN-BCl(A_{HN}) \cap HN-BCl(B_{HN})$. Thus (v) is proved

(vi) Since $A_{HN} \subseteq A_{HN} \cup B_{HN}$ and $B_{HN} \subseteq A_{HN} \cup B_{HN}$, by (iv), HN-BCl $(A_{HN}) \subseteq HN$ -BCl $(A_{HN} \cup B_{HN})$ and

 $HN-BCl(B_{HN}) \subseteq HN-BCl(A_{HN}UB_{HN}).$

This implies that,

 $HN-BCl(A_{HN}) \cup HN-BCl(B_{HN}) \subseteq HN-BCl(A_{HN} \cup B_{HN}) ----- (1)$

By(i), $A_{HN} \subseteq HN\text{-BCl}(A_{HN})$ and $B_{HN} \subseteq HN\text{-BCl}(B_{HN})$.

This implies that $A_{HN} \cup B_{HN} \subseteq HN-BCl(A_{HN}) \cup HN-BCl(B_{HN})$.

Now by (iv), $HN-BCl(A_{HN} \cup B_{HN}) \subseteq HN-BCl$ ($(HN-BCl(A_{HN}) \cup HN-BCl(B_{HN}))$). By (1), $HN-BCl(A_{HN} \cup B_{HN}) \subseteq HN-BCl(HN-BCl(B_{HN}))$ $BCl(A_{HN})UHN-BCl(HN-BCl(B_{HN})).$

By (iii), HN-BCl($A_{HN}UB_{HN}$) \subseteq HN-BCl(A_{HN})UHN-BCl(B_{HN})----- (2).

From (1) and (2), HN-BCl $(A_{HN}U B_{HN}) = HN-BCl(A_{HN})UHN-BCl(B_{HN})$.

Thus (vi) is proved.

Proposition 5.4: Let (X, τ) be a HNTS. Then for any heptagonal neutrosophic subsets Ahnof a HNTS X, we have

- (i) $(HN-BInt(A_{HN}))' = HN-BCl(A'_{HN})$
- (ii) $(HN-BCl(A_{HN}))' = HN-BInt(A'_{HN})$

Proof:

By definition 4.1, HN-BInt $(A_{HN}) = \bigcup \{B_{HN} : B_{HN} \text{ is a HNBO set in } X \text{ and } B_{HN} \subseteq A_{HN} \}$ Taking the complement on (i) both sides.

 $(HN-BInt(Ahn))' = \bigcap \{ B'hn : B'hn is a HNBC set in X and A'hn \subseteq B'hn \}$

Now, replace B'HN with KHN, we get

 $(HN-BInt(Ahn))' = \bigcap \{Khn : Khnis a HNBC set in X and A'hn \subseteq Khn\} By definition 5.1,$

 $(HN-BInt(A_{HN}))' = HN-BCl(A'_{HN})$. Thus (i) is proved.

(ii) From (i) for the HNS A'HN

We write, (HN-BInt(A'hn))' = HN-BCl(Ahn)

Taking the complement on both sides we get

HN-**B**Int(A'HN) = (HN-**B**Cl(AHN))'. Thus (ii) is proved.

6. Conclusion

The notion of heptagonal neutrosophic b-open sets and their characterization were presented and examined in this paper. It can also be expanded upon in the areas of quotient, continuous, and contra-continuous mappings. It is possible to investigate the set's homeomorphism, connectedness, and compactness in further detail.

References

- 338-353. 1. Zadeh. (1965). Fuzzy Information and control, 8(3), sets. https://doi.org/10.1016/S0019-9958(65)90241-X
- K. (1986), Intuitionistic systems 20, 87-96. 2. Atanassov Fuzzy sets and fuzzv sets. https://doi.org/10.1016/S0165-0114(86)80034-3.
- Coker, D. (1997). An introduction to intuitionistic fuzzy topological 3. spaces. Fuzzy sets and systems, 88(1), 81-89. https://doi.org/10.1016/S0165-0114(96)00076-0.
- Smarandache, F. (1999), A Unifying Field in Logics: Neutrosophic Logic. Neutrosophic Set, Neutrosophic Probability. 4. American Research Press, ISBN 978-1-59973-080-6, Rehoboth, NM.
- 5. Smarandache, F. (2010), Neutrosophic Set - A Generalization of Intuitionistic Fuzzy sets, Journal of defence Sources Management, 1, 107-116.
- Salama, A. A., & Alblowi, S. A. (2012). Generalized neutrosophic set and generalized neutrosophic topological spaces. 6. 2(7).https://doi.org/10.5923/j.computer.20120207.01.
- Salama, A. A., Smarandache, F., Kromov, V., (2014). Neutrosophic Closed Set and Neutrosophic Continuous Functions, Neutrosophic Sets 7. and Systems, 4, 4-8. https://doi.org/10.5281/zenodo.571492.
- Salama, A. A. (2015). Basic Structure of Some Classes of Neutrosophic Crisp Nearly Open Sets & Possible Application to **GIS** Topology, Neutrosophic Sets and Systems, 7, 18-22. https://doi.org/10.5281/zenodo.571234
- AL-Nafee, B. A., Smarandache, F. and Salama, A. A. (2020) New Types of Neutrosophic Crisp Closed Sets, Neutrosophic Sets and Systems, 36, 175-183. https://doi.org/10.5281/zenodo.4065428.
 - 10. Iswarya, P., &Bageerathi, K. (2016). On neutrosophic semi-open sets in neutrosophic topological spaces. 37, https://doi.org/10.14445/22315373/IJMTT-V37P529