

ON FUZZY NEUTROSOPHIC SEMI-OPEN(CLOSED) SETS IN FUZZY NEUTROSOPHIC TOPOLOGICAL SPACES

¹E. Poongothai, ²E. Padmavathi

^{1&2}Department of Mathematics, Shanmuga Industries Arts and Science college, Tiruvannamalai-606603, Tamilnadu, India.

Abstract: In this paper is to define the fuzzy neutrosophic semi—open sets (closed sets) in fuzzy neutrosophic topological spaces. Also, we discuss some of its characterizations of fuzzy neutrosophic semi—open sets (closed sets) and fuzzy neutrosophic semi—interior(closure) are studied. Several examples are given to illustrate the concepts.

Keywords: Fuzzy neutrosophic semi—open set, fuzzy neutrosophic semi—closed set, fuzzy neutrosophic semi—interior, fuzzy neutrosophic semi—closure.

1.INTRODUCTION

The concept of fuzzy sets was first introduced by Lofti A. Zadeh [11] in 1965, in which he proposed that the traditional notion of set, in which an element is either a member or not a member, should be generalized to allow for degree of membership. This led to the development of fuzzy set theory, which has since been applied to a wide range of fields, including control theory, image processing, and artificial intelligence.

Neutrosophic sets were first introduced by Florentin Smarandache [7] in 1955, which is a generalization of the concepts of fuzzy sets and intuitionistic fuzzy sets. Neutrosophic sets allow for consideration of indeterminacy, neutrality, and inconsistency in a given space. In 2017, Veereswari [10] introduced fuzzy neutrosophic topological spaces. This concept is the solution and representation of the problems with various fields. In this paper, we introduce the concept of fuzzy neutrosophic semi-open (semi-closed) and fuzzy neutrosophic semi-interior(semi-closure) are introduced and several characterizations with examples are studied in fuzzy neutrosophic topological spaces.

2.PRELIMINARIES

Throughout the present paper, X denote the fuzzy neutrosophic topological spaces. Let A_N be a fuzzy neutrosophic set on X. The fuzzy neutrosophic interior and closure of A_N is denoted by $fn(A_N)^+$, $fn(A_N)^-$ respectively. A fuzzy neutrosophic set A_N is defined to be fuzzy neutrosophic open set (fnOS) if $A_N \leq fn(((A_N)^-)^+)^-$. The complement of a fuzzy neutrosophic open set is called fuzzy neutrosophic closed set (fnCS).

Definition 2.1 [3]:

A fuzzy neutrosophic set A on the universe of discourse X is defined as $A = \langle x, T_A(x), I_A(x), F_A(x) \rangle$, $x \in X$ where $T, I, F: X \to [0,1]$ and $0 \le T_A(x) + I_A(x) + F_A(x) \le 3$.

With the condition $0 \le T_{A^*}(x) + I_{A^*}(x) + F_{A^*}(x) \le 2$.

Definition 2.2 [3]:

A fuzzy neutrosophic set A is a subset of a fuzzy neutrosophic set B (i.e.,) $A \subseteq B$ for all x if $T_A(x) \le T_B(x)$, $I_A(x) \le I_B(x)$, $I_A(x) \ge I_B(x)$, $I_A(x) \ge I_B(x)$.

Definition 2.3 [3]:

Let X be a non-empty set, and $A = \langle x, T_A(x), I_A(x), F_A(x) \rangle$, $B = \langle x, T_B(x), I_B(x), F_B(x) \rangle$ be two fuzzy neutrosophic sets. Then

 $A \cup B = \langle x, \max(T_A(x), T_B(x)), \max(I_A(x), I_B(x)), \min(F_A(x), F_B(x)) \rangle$ $A \cap B = \langle x, \min(T_A(x), T_B(x)), \min(I_A(x), I_B(x)), \max(F_A(x), F_B(x)) \rangle$

Definition 2.4 [3]:

The difference between two fuzzy neutrosophic sets A and B is defined as $A \setminus B(x) = \langle x, \min(T_A(x), F_B(x)), \min(I_A(x), 1 - I_B(x)), \max(F_A(x), T_B(x)) \rangle$ **Definition 2.5** [3]:

A fuzzy neutrosophic set A over the universe X is said to be null or empty fuzzy neutrosophic set if $T_A(x) = 0$, $I_A(x) = 0$, $I_A(x)$

Definition 2.6 [3]:

A fuzzy neutrosophic set A over the universe X is said to be absolute (universe) fuzzy neutrosophic set if $T_A(x) = 1$, $I_A(x) = 1$, $I_A(x) = 0$ for all $x \in X$. It is denoted by 1_N .

Definition 2.7 [3]:

The complement of a fuzzy neutrosophic set A is denoted by A^C and is defined as $A^C = \langle x, T_{A^C}(x), I_{A^C}(x), F_{A^C}(x) \rangle$ where $T_{A^C}(x) = F_A(x), I_{A^C}(x) = 1 - I_A(x), F_{A^C}(x) = T_A(x)$ The complement of fuzzy neutrosophic set A can also be defined as $A^C = 1_N - A$.

Definition 2.8 [8]:

A fuzzy neutrosophic topology on a non-empty set X is a τ of fuzzy neutrosophic sets in X

 $(i)0_N, 1_N \in \tau$

 $(ii)A_1 \cap A_2 \in \tau \ for \ any \ A_1, A_2 \in \tau$

(iii) $\cup A_i \in$

 τ for any arbitrary family $\{A_i: i \in J\} \in \tau$

Satisfying the following axioms.

In this case the pair (X, τ) is called fuzzy neutrosophic topological space and any Fuzzy neutrosophic set in τ is known as fuzzy neutrosophic open set in X.

Definition 2.9 [8]:

The complement A^{C} of a fuzzy neutrosophic set A in a fuzzy neutrosophic topological space (X, τ) is called fuzzy neutrosophic closed set in X.

Definition 2.10 [8]:

Let (X, τ_N) be a fuzzy neutrosophic topological space and $A = \langle x, T_A(x), I_A(x), F_A(x) \rangle$ be a fuzzy neutrosophic set in X. Then the closure and interior of A are defined by

 $int(A) = \bigcup \{G: G \text{ is a fuzzy neutrosophic open set in } X \text{ and } G \subseteq A\}$ $cl(A) = \bigcap \{G: G \text{ is a fuzzy neutrosophic closed set in } X \text{ and } A \subseteq G\}$

3. Fuzzy neutrosophic semi-open sets (closed sets) in fuzzy neutrosophic topological spaces.

In this section, we introduce the concept of fuzzy neutrosophic semi-open set (closed set) and also discussed their characterizations.

Definition 3.1:

Let A_N be a fuzzy neutrosophic set of a fuzzy neutrosophic topological space (X, τ_N) . Then A_N is said to be fuzzy neutrosophic semi-open set in (X, τ_N) if there exists a fuzzy neutrosophic open set such that $fn0 \le A_N \le fncl(fn0)$.

The following theorem is the characterization of fuzzy neutrosophic semi—open set in fuzzy neutrosophic topological space.

Theorem 3.2

A fuzzy neutrosophic set A_N in a fuzzy neutrosophic topological space (X, τ_N) is fuzzy neutrosophic semi-open set if only if $A_N \leq ((A_N)^+)^-$.

Proof:

Sufficiency: Let $A_N \leq ((A_N)^+)^-$. Then for $fn0 = (A_N)^+$, we have $fn0 \leq A_N \leq fncl\ (fn0)$. Necessity: Let A_N be a fuzzy neutrosophic semi-open set in (X, τ_N) . Then $fn0 \leq A_N \leq fncl\ (fn0)$ for some fuzzy neutrosophic semi-open set A_N . But $fn0 = (A_N)^+$ and thus $fncl\ (fn0) \leq ((A_N)^+)^-$. Hence $A_N \leq fncl\ (fn0) \leq ((A_N)^+)^-$.

Theorem 3.3:

Let (X, τ_N) be a fuzzy neutrosophic topological space. Then the union of two fuzzy neutrosophic semi-open set is a fuzzy neutrosophic semi-open set in the fuzzy neutrosophic topological space (X, τ_N) .

Proof:

Let A_N and B_N are fuzzy neutrosophic semi-open sets in (X, τ_N) . Then $A_N \leq ((A_N)^+)^-$ and $B_N \leq ((B_N)^+)^-$. Therefore $A_N \vee B_N \leq ((A_N)^+)^- \vee ((B_N)^+)^- = ((A_N)^+ \vee (B_N)^+)^- \leq ((A_N \vee B_N)^+)^-$. By proposition 3.11. hence $A_N \vee B_N$ is fuzzy neutrosophic semi-open set in (X, τ_N) .

Theorem 3.4:

Let (X, τ_N) be a fuzzy neutrosophic topological space. If $\{A_{N_i}\}_{i \in \Delta}$ is a collection of fuzzy neutrosophic semi-open sets in a fuzzy neutrosophic topological space (X, τ_N) . Then $\bigvee_{i \in \Delta} A_{N_i}$ is fuzzy neutrosophic semi-open set in (X, τ_N) .

Proof:

For each $i \in \Delta$, we have a fuzzy neutrosophic semi-open set fnO_i such that $fnO_i \leq A_{N_i} \leq fncl\ (fnO_i)$.

Then $\bigvee_{i \in \triangle} fnO_i \leq \bigvee_{i \in \triangle} A_{N_i} \leq \bigvee_{i \in \triangle} fncl(fnO_i) \leq fncl(\bigvee_{i \in \triangle} fnO_i)$. Hence let $fnO = \bigvee_{i \in \triangle} fnO_i$.

Remark 3.5

The intersection of any two fuzzy neutrosophic semi-open sets need not be a fuzzy neutrosophic semi-open set in (X, τ_N) as shown by the following example.

Example 3.6:

Let $X = \{a, b, c\}$ and

 $A_N = \{\langle a, 0.5, 0.3, 0.4 \rangle, \langle b, 0.5, 0.2, 0.6 \rangle, \langle c, 0.4, 0.1, 0.4 \rangle\}$

 $B_N = \{\langle a, 0.6, 0.1, 0.5 \rangle, \langle b, 0.5, 0.8, 0.1 \rangle, \langle c, 0.3, 0.2, 0.2 \rangle\}$

 $C_N = \{\langle a, 0.2, 0.4, 0.8 \rangle, \langle b, 0.4, 0.2, 0.4 \rangle, \langle c, 0.4, 0.2, 0.3 \rangle\}$

Then $\tau_N = \{0_N, A_N, B_N, C_N, 1_N\}$ is fuzzy neutrosophic topological space on (X, τ_N) . Now, we define the two fuzzy neutrosophic semi-open sets as follows:

 $E_N = \{\langle a, 0.5, 0.4, 0.8 \rangle, \langle b, 0.5, 0.3, 0.5 \rangle, \langle c, 0.6, 0.2, 0.4 \rangle\}$ and

 $G_N = \{ \langle a, 0.5, 0.3, 0.5 \rangle, \langle b, 0.5, 0.3, 0.7 \rangle, \langle c, 0.4, 0.2, 0.4 \rangle \}. \text{ Here } (E_N)^+ = C_N \text{ and } ((E_N)^+)^- = 1 \text{ and } (F_N)^+ = A_N \text{ and } ((F_N)^+)^- = 1 \text{ and } (F_N)^+ = A_N \text{ and } (F_$

But $E_N \wedge F_N = \{(\alpha, 0.5, 0.3, 0.5), (b, 0.5, 0.3, 0.5), (c, 0.4, 0.2, 0.4)\}$ is not a fuzzy neutrosophic semi-open set in (X, τ_N) .

Theorem 3.7:

Let A_N be a fuzzy neutrosophic semi-open in the fuzzy neutrosophic topological space (X, τ_N) and suppose $A_N \leq B_N \leq (A_N)^-$. Then B_N is a fuzzy neutrosophic semi-open set in (X, τ_N) .

Proof:

There exists a fuzzy neutrosophic open set fn0 such that $fn0 \le A_N \le fn(fn0)^-$. Then $\le B_N$. But $(A_N)^- \le fn(fn0)^-$ and thus $B_N \le fn(fn0)^-$. Hence $fn0 \le B_N \le fn(fn0)^-$ and B_N is a fuzzy neutrosophic semi-open set in (X, τ_N) .

Theorem 3.8:

Every fuzzy neutrosophic open set in the fuzzy neutrosophic topological space (X, τ_N) is fuzzy neutrosophic semi-open set in (X, τ_N) .

Proof:

Let A_N be fuzzy neutrosophic open set in fuzzy neutrosophic topological space (X, τ_N) . Then $A_N \leq (A_N)^+$. Also $(A_N)^+ \leq ((A_N)^+)^-$. This implies that $A_N \leq ((A_N)^+)^-$. Hence by theorem 3.2, A_N is a fuzzy neutrosophic semi-open set in (X, τ_N) .

Remark 3.9:

In a fuzzy neutrosophic topological space, every fuzzy neutrosophic semi-open set in (X, τ_N) is need not to be fuzzy neutrosophic open set in (X, τ_N) as shown by the example.

Example 3.6:

Let $X = \{a, b, c\}$ and with $\tau_N = \{0_N, A_N, B_N, C_N, D_N, E_N, F_N, 1_N\}$. Some of the fuzzy neutrosophic semi-open sets are

 $A_N = \{\langle a, 0.5, 0.4, 0.2 \rangle, \langle b, 0.3, 0.1, 0.2 \rangle, \langle c, 0.8, 0.6, 0.9 \rangle\}$

 $B_N = \{\langle a, 0.4, 0.2, 0.5 \rangle, \langle b, 0.2, 0.1, 0.1 \rangle, \langle c, 0.8, 0.5, 0.6 \rangle\}$

 $C_N = \{\langle a, 0.1, 0.6, 0.5 \rangle, \langle b, 0.3, 0.1, 0.4 \rangle, \langle c, 0.5, 0.9, 0.8 \rangle\}$

 $D_N = \{ \langle a, 0.4, 0.5, 0.3 \rangle, \langle b, 0.2, 0.1, 0.6 \rangle, \langle c, 0.5, 0.8, 0.7 \rangle \}$

 $E_N = \{\langle a, 0.6, 0.5, 0.1 \rangle, \langle b, 0.1, 0.6, 0.4 \rangle, \langle c, 0.8, 0.5, 0.9 \rangle\}$

 $F_N = \{ \langle a, 0.5, 0.4, 0.3 \rangle, \langle b, 0.2, 0.3, 0.1 \rangle, \langle c, 0.8, 0.7, 0.5 \rangle \}$

Here A_N , B_N , C_N , D_N , E_N , F_N are fuzzy neutrosophic semi—open sets but are not fuzzy neutrosophic open sets in (X, τ_N) .

4. Fuzzy Neutrosophic Semi-Closed Sets In Fuzzy Neutrosophic Topological Spaces.

In this section, the concept of fuzzy neutrosophic semi-closed set is introduced and also discussed their properties.

Definition 4.1:

Let A_N be a fuzzy neutrosophic set of a fuzzy neutrosophic topological space (X, τ_N) . Then A_N is said to be fuzzy neutrosophic semi-closed set in (X, τ_N) if there exists a fuzzy neutrosophic closed (fnC) set such that $fn(fnC)^+ \le A_N \le (fnC)$.

Theorem 4.2

A fuzzy neutrosophic set A_N in a fuzzy neutrosophic topological space (X, τ_N) is fuzzy neutrosophic semi-closed set if only if $((A_N)^-)^+ \leq A_N$.

Proof:

Sufficiency: Let $((A_N)^-)^+ \le A_N$. Then for $fnC = (A_N)^-$, we have $(fnC)^+ \le A_N \le fnC$. Necessity: Let A_N be a fuzzy neutrosophic semi-closed set in (X, τ_N) . Then $fn(fnC)^+ \le A_N \le fnC$ for some fuzzy neutrosophic semi-closed set fnC. But $fn(A_N)^- \le fnC$ and thus $((A_N)^-)^+ \le fn(fnC)^+$ Hence $((A_N)^-)^+ \le fn(fnC)^+ \le A_N$.

Theorem 4.3:

Let (X, τ_N) be a fuzzy neutrosophic topological space and A_N be a fuzzy neutrosophic set of (X, τ_N) . Then A_N is a fuzzy neutrosophic semi-closed set if and only if complement of $C(A_N)$ is fuzzy neutrosophic semi-open set in (X, τ_N) .

Proof:

Let A_N be a fuzzy neutrosophic semi-closed set in (X, τ_N) . Then by theorem 4.2, $((A_N)^-)^+ \le A_N$. Taking complement on both sides, $C(A_N) \le C(((A_N)^-)^+) = (C(A_N)^-)^-$. By using proposition 1.17, $C(A_N) \le ((C(A_N))^+)^-$. By Theorem 3.2, $C(A_N)$ is fuzzy neutrosophic semi-open. Conversely let $C(A_N)$ is fuzzy neutrosophic semi-open set. By Theorem 3.2, $C(A_N) \le ((C(A_N))^+)^-$. Taking complement on both sides, $A_N \ge C((C(A_N))^+)^- = (C(C(A_N))^+)^+$. By using proposition 1.17(b), $A_N \ge ((A_N)^-)^+$. By theorem 4.2, A_N is a fuzzy neutrosophic semi-closed set.

Theorem 4.4:

Let (X, τ_N) be a fuzzy neutrosophic topological space. Then intersection of two fuzzy neutrosophic semi-closed sets is a fuzzy neutrosophic semi-closed set in fuzzy neutrosophic topological space (X, τ_N) .

Proof:

Let A_N and B_N are fuzzy neutrosophic semi-closed sets in (X, τ_N) . Then $((A_N)^-)^+ \leq A_N$ and $((B_N)^-)^+ \leq B_N$. Therefore $A_N \wedge B_N \geq ((A_N)^-)^+ \wedge ((B_N)^-)^+ = ((A_N)^- \vee (B_N)^-)^+ \geq ((A_N \vee B_N)^-)^+$ By proposition 1.18] Hence $A_N \wedge B_N$ is fuzzy neutrosophic semi-closed set in (X, τ_N) .

Theorem 45.

Let $\{A_{N_i}\}_{i\in\Delta}$ be a collection of fuzzy neutrosophic semi-closed sets in a fuzzy neutrosophic topological space (X, τ_N) . Then $\Lambda_{i\in\Delta}A_{N_i}$ is fuzzy neutrosophic semi-closed set in (X, τ_N) .

Proof:

For each $i \in \Delta$, we have a fuzzy neutrosophic semi-closed set fnC_i such that $fn(fnC_i)^+ \leq A_{N_i} \leq fnC_i$. Then $fn(\Lambda_{i \in \Delta} fnC_i)^+ \leq \Lambda_{i \in \Delta} fn(fnC_i)^+ \leq \Lambda_{i \in \Delta} fnC_i$. Hence let $fnC = \Lambda_{i \in \Delta} fnC_i$.

Remark 4.6

IJNRD2409358

The union of any two fuzzy neutrosophic semi-closed sets need not be a fuzzy neutrosophic semi-closed set in (X, τ_N) as shown by the following example.

Example 4.7:

```
Let X = \{a, b, c\} and A_N = \{(a, 0.1, 0.5, 0.5)\}, B_N = \{(a, 0, 0.9, 0.2)\}, C_N = \{(a, 0.9, 0.2, 0.1)\}.
```

Then $\tau_N = \{0_N, A_N, B_N, C_N, A_N \vee B_N, B_N \vee C_N, A_N \wedge C_N, A_N \wedge B_N, B_N \wedge C_N, A_N \wedge C_N, A_N \vee B_N \vee C_N, 1_N\}$ is a fuzzy neutrosophic topological space on (X, τ_N) .

Here $((1 - B_N)^+)^- = 1 = (1 - B_N)^+ = 0$ and $((1 - C_N)^+)^- = 1 = (1 - C_N)^+ = 0$ are fuzzy neutrosophic semi-closed sets in (X, τ_N) .

But $((1 - B_N) \vee (1 - C_N)^-)^+ = ((1 - B_N \vee C_N)^-)^+ = (1 - B_N \vee C_N)^+ = A_N \neq 0$ is not a fuzzy neutrosophic semi-closed set in (X, τ_N) .

Theorem 4.8:

Let A_N be fuzzy neutrosophic semi-closed set in the fuzzy neutrosophic topological space (X, τ_N) and suppose $(A_N)^+ \leq B_N \leq A_N$. Then B_N is fuzzy neutrosophic semi-closed set in (X, τ_N) .

Proof:

There exists a fuzzy neutrosophic semi-closed set (fnC) such that $fn(fnC)^+ \le A_N \le fnC$. Then $B_N \le fnC$. But $fn(fnC)^+ \le (A_N)^+$ and thus $fn(fnC)^+ \le B_N$. Hence $fn(fnC)^+ \le B_N \le fnC$ and B_N is fuzzy neutrosophic semi-closed set in (X, τ_N) .

Theorem 4.9:

Every fuzzy neutrosophic closed set in the fuzzy neutrosophic topological space (X, τ_N) is fuzzy neutrosophic semi-closed set in (X, τ_N) .

Proof:

Let A_N be fuzzy neutrosophic closed set in fuzzy neutrosophic topological space (X, τ_N) . Then $(A_N)^- = A_N$. Also $((A_N)^-)^+ = (A_N)^-$. This implies that $((A_N)^-)^+ \le A_N$. Hence by theorem 3.2, A_N is a fuzzy neutrosophic semi-closed set in (X, τ_N) .

Remark 4.10:

In a fuzzy neutrosophic topological space, every fuzzy neutrosophic semi-closed set in (X, τ_N) is need not to be fuzzy neutrosophic closed set in (X, τ_N) . For the following example.

Example 4.11:

```
Let X = \{a, b, c\} and with \tau_N = \{0_N, A_N, B_N, C_N, D_N, E_N, 1_N\}. Some of the fuzzy neutrosophic semi-open sets are
```

 $A_N = \{\langle a, 0.3, 0.6, 0.5 \rangle, \langle b, 0.9, 0.7, 0.1 \rangle, \langle c, 0.4, 0.6, 0.1 \rangle\}$

 $B_N = \{\langle a, 0.7, 0.4, 0 \rangle, \langle b, 0.9, 0.6, 0.1 \rangle, \langle c, 0.8, 0.5, 0.5 \rangle\}$

 $C_N = \{\langle a, 0.5, 0.4, 0.3 \rangle, \langle b, 0.1, 0.3, 0.9 \rangle, \langle c, 0.1, 0.4, 0.4 \rangle\}$

 $D_N = \{\langle a, 0, 0.6, 0.7 \rangle, \langle b, 0.1, 0.4, 0.9 \rangle, \langle c, 0.5, 0.5, 0.8 \rangle\}$

 $E_N = \{ \langle a, 0.9, 0.4, 0.2 \rangle, \langle b, 0.9, 0.2, 0 \rangle, \langle c, 0.1, 0.2, 0.3 \rangle \}$

Now, $((1-C_N)^-)^+ = (1-C_N)^+ = 0$, $((1-D_N)^-)^+ = (1-D_N)^+ = 0$,

 $((1-E_N)^-)^+ = (1-E_N)^+ = 0.$

Here the fuzzy neutrosophic semi-closed sets are $1 - C_N$, $1 - D_N$, $1 - E_N$ but are not a fuzzy neutrosophic closed sets in (X, τ_N) .

5. Fuzzy Neutrosophic Semi-Interior In Fuzzy Neutrosophic Topological Spaces.

In this section, we introduce the fuzzy neutrosophic semi-interior and their properties in fuzzy neutrosophic topological space.

Definition 5.1:

Let (X, τ_N) be a fuzzy neutrosophic topological space. Then for a fuzzy neutrosophic set A_N of (X, τ_N) , the fuzzy neutrosophic semi-interior of A_N is the union of all fuzzy neutrosophic semi-open sets of (X, τ_N) contained in A_N .

That is, $fnS(A_N)^+ = \bigvee \{G_N : G_N \text{ is a fuzzy neutrosophic semi } - \text{ open set in } (X, \tau_N) \text{ and } G_N \leq A_N \}$

Proposition 5.2

Let (X, τ_N) be a fuzzy neutrosophic topological space. Then for any fuzzy neutrosophic sets A_N and B_N of a fuzzy neutrosophic topological space (X, τ_N) we have

```
(i) fnS(A_N)^+ \leq A_N
```

- (ii) A_N is fnSO set in $(X, \tau_N) \iff fnS(A_N)^+ = A_N$
- $(iii) fnS (fnS(A_N)^+)^+ = fnS(A_N)^+$
- (iv) If $A_N \leq B_N$ then $fnS(A_N)^+ \leq fnS(B_N)^+$.

Proof:

(i) follows from definition 5.1

Let A_N be fuzzy neutrosophic semi-open set in (X, τ_N) . Then $A_N \le fnS(A_N)^+$. Conversely assume that $A_N = fnS(A_N)^+$. By using definition 5.1, A_N is a fuzzy neutrosophic semi-open set in (X, τ_N) . Thus (ii) proved.

By using (ii), $fnS(fnS(A_N)^+)^+ = fnS(A_N)^+$. This proved (iii).

Since $A_N \leq B_N$ by using (i), $fnS(A_N)^+ \leq A_N \leq B_N$. Thus $fnS(A_N)^+ \leq B_N$. By (iii), $fnS(fnS(A_N)^+)^+ = fnS(B_N)^+$. Thus $fnS(A_N)^+ \leq fnS(B_N)^+$. This proves (iv).

Theorem 5.3

Let (X, τ_N) be a fuzzy neutrosophic topological space. Then for any fuzzy neutrosophic sets A_N and B_N of a fuzzy neutrosophic topological space (X, τ_N) we have

- $(i) fnS(A_N \wedge B_N)^+ = fnS(A_N)^+ \wedge fnS(B_N)^+.$
- $(i) fnS(A_N \vee B_N)^+ \ge fnS(A_N)^+ \vee fnS(B_N)^+.$

Proof:

Since $A_N \wedge B_N \leq A_N$ and $A_N \wedge B_N \leq B_N$. By using proposition 5.2 (iv), $fnS(A_N \wedge B_N)^+ \leq fnS(A_N)^+$ and $fnS(A_N \wedge B_N)^+ \leq fnS(B_N)^+$. This implies that $fnS(A_N \wedge B_N)^+ = fnS(A_N)^+ \wedge fnS(B_N)^+ \rightarrow (1)$. By using proposition 5.2 (i),

 $fnS(A_N)^+ \leq A_N$ and $(B_N)^+ \leq B_N$. This implies that $fnS(A_N)^+ \wedge fnS(B_N)^+ \leq A_N \wedge B_N$. Now applying proposition 5.2(iv), $fnS(fnS(A_N)^+ \land fnS(B_N)^+)^+ \le fnS(A_N \land B_N)^+ \to (2)$. By (1), $fnS(fnS(A_N)^+)^+ \land fnS(fnS(B_N)^+)^+ \le fnS(A_N \land B_N)^+ \to (2)$. $fnS(A_N \wedge B_N)^+$. By proposition 5.2(iii), $fnS(A_N)^+ \wedge fnS(B_N)^+ \leq fnS(A_N \wedge B_N)^+$. From (1) and (2), $fnS(A_N \wedge B_N)^+$ $(B_N)^+ = fnS(A_N)^+ \wedge fnS(B_N)^+$. This implies (i).

Since $A_N \le A_N \lor B_N$ and $B_N \le A_N \lor B_N$, by using proposition 5.2 (iv), $fnS(A_N)^+ \le fnS(A_N \lor B_N)^+$ and $fnS(B_N)^+ \le fnS(A_N \lor B_N)^+$ $fnS(A_N \vee B_N)^+$. This implies that $fnS(A_N)^+ \vee fnS(B_N)^+ \leq fnS(A_N \vee B_N)^+$. Hence (ii).

The following example shows that the equality need not hold in theorem 5.3(ii).

6. Fuzzy Neutrosophic Semi-Closure In Fuzzy Neutrosophic Topological Spaces.

In this section, we introduce the concept of fuzzy neutrosophic semi-closure and their properties in fuzzy neutrosophic topological space.

Definition 6.1:

Let (X, τ_N) be a fuzzy neutrosophic topological space. Then for a fuzzy neutrosophic set A_N of (X, τ_N) , the fuzzy neutrosophic semi-closure of A_N [fnS $cl(A_N)$ for short] is the intersection of all fuzzy neutrosophic semi-closed sets of (X, τ_N) contained in A_N .

That is, $fnS(A_N)^- = \Lambda \{K_N : K_N \text{ is a } fnSC \text{ set in } (X, \tau_N) \text{ and } K_N \ge A_N \}.$

Proposition 6.2

Let (X, τ_N) be a fuzzy neutrosophic topological space. Then for any fuzzy neutrosophic sets A_N and B_N of a (X, τ_N) ,

 $(i) C(fnS(A_N)^+) \leq fnS(C(A_N))^-,$

 $(ii) C(fnS(A_N)^-) \leq fnS(C(A_N))^+$

Proof:

(i) follows from definition 5.1, $fnS(A_N)^+ = \bigvee \{G_N : G_N \text{ is a } fnSO \text{ in } (X, \tau_N) \text{ and } G_N \leq A_N \}$. Taking complement on both $C(fnS(A_N)^+) = C(V\{G_N: G_N \text{ is a } fnSO \text{ set } in (X, \tau_N) \text{ and } G_N \leq A_N\}) = \Lambda$

 $\{C(G): C(G) \text{ is a } fnSC \text{ set } in(X, \tau_N) \text{ and } C(A_N) \leq C(G_N) \}$. Replacing $C(G_N)$ by K_N , we get $C(fnS(A_N)^+) = \Lambda(K_N: K_N \text{ is a } fnSC \text{ set } in(X, \tau_N) \text{ and } K_N \geq C(A_N) \}$. By definition 6.1, $C(fnS(A_N)^+) = fnS(C(A_N))^-$. This proves (i). By using (i), $C(fnS(C(A_N))^+) = fnS(C(C(A_N)))^- = fnS(A_N)^-$. Taking complement on both sides, we get $fnS(C(A_N))^+ = C(fnS(A_N)^-)$. Hence proved (ii).

Proposition 6.3

Let (X, τ_N) be a fuzzy neutrosophic topological space. Then for any fuzzy neutrosophic sets A_N and B_N of a fuzzy neutrosophic topological space (X, τ_N) we have

 $(i) A_N \leq fnS(A_N)^{-1}$

(ii) A_N is fnSC set in $(X, \tau_N) \iff fnS(A_N)^- = A_N$

(iii) $fnS(fnS(A_N)^-)^- = fnS(A_N)^-$

(iv) If $A_N \leq B_N$ then $fnS(A_N)^- \leq fnS(B_N)^-$.

Proof:

(i) follows from definition 5.1

Let A_N be fuzzy neutrosophic semi-closed set in (X, τ_N) . By using proposition 4.3, $C(A_N)$ be fuzzy neutrosophic semi-open set in (X, τ_N) . By proposition 6.2 (ii), $fnS(C(A_N))^+ = C(A_N) \Leftrightarrow C(fnS(A_N)^-) = C(A_N) \Leftrightarrow fnS(A_N)^- = C(A_N)^- = C($ A_N . Thus (ii) proved.

By using (ii), $fnS(fnS(A_N)^-)^- = fnS(A_N)^-$. This proved (iii).

Since $A_N \leq B_N$, $C(A_N) \leq C(B_N)$. By proposition 5.2 (iv), $fnS(C(B_N))^+ \leq fnS(C(A_N))^+$. Taking complement on both sides, $C(fnS(C(B_N))^+) \ge C(fnS(C(A_N))^+)$. By proposition 6.2 (ii), $fnS(A_N)^- \le fnS(B_N)^-$. This proves (iv).

Proposition 6.4

Let A_N be a fuzzy neutrosophic set in a fuzzy neutrosophic topological space (X, τ_N) . Then $fn(A_N)^+ \leq fnS(A_N)^+ \leq fnS(A_N)^+$ $A_N \leq fnS(A_N)^- \leq fn(A_N)^-$.

Proof:

It follows from the definitions of corresponding operators.

Proposition 6.5

Let (X, τ_N) be a fuzzy neutrosophic topological space. Then for any fuzzy neutrosophic sets A_N and B_N of a fuzzy neutrosophic topological space (X, τ_N) we have

(i) $fnS(A_N \vee B_N)^- = fnS(A_N)^- \vee fnS(B_N)^-$ and (ii) $fnS(A_N \wedge B_N)^- \leq fnS(A_N)^- \wedge fnS(B_N)^-$.

Proof:

Since $fnS(A_N \vee B_N)^- = fnS(C(C(A_N \vee B_N)))^-$, by using proposition 6.2(i), $fnS(A_N \vee B_N)^- = C(fnS(C(A_N \vee B_N)))^ (B_N)^+$ = $C(fnS(C(A_N) \land C(B_N))^+$). Again using proposition 5.3 (i), $fnS(A_N \lor B_N)^- = C(fnS(C(A_N))^+ \land C(B_N))^+$ $fnS(C(B_N))^+) = fnS(C(C(A_N)) \vee fnS(C(C(B_N)))^- = fnS(A_N)^- \vee fnS(B_N)^-$. This proved (i).

Since $A_N \wedge B_N \leq A_N$ and $A_N \wedge B_N \leq B_N$. By using proposition 6.3 (iv), $fnS(A_N \wedge B_N)^- \leq fnS(A_N)^-$ and $fnS(A_N \wedge B_N)^- \leq fnS(A_N)^ (B_N)^- \le fnS(B_N)^-$. This implies that $fnS(A_N \land B_N)^- \le fnS(A_N)^- \land fnS(B_N)^-$. This proves (ii).

IJNRD2409358

Let (X, τ_N) be a fuzzy neutrosophic topological space. Then for any fuzzy neutrosophic sets A_N and B_N of a fuzzy neutrosophic topological space (X, τ_N) we have

 $(i) fnS(A_N)^- \ge A_N \vee fnS(fnS(A_N)^+)^-,$

(ii) $fnS(A_N)^+ \leq A_N \wedge fnS(fnS(A_N)^-)^+,$

 $(iii) fn(fnS(A_N)^-)^+ \le fn(fn(A_N)^-)^+,$ $(iv)fn(fnS(A_N)^-)^+ \ge fn(fnS(fnS(A_N)^+)^-)^+$

Proof:

By using proposition 6.3 (i), $A_N \leq fnS(A_N)^- \to (1)$. Again By using proposition 5.2 (i), $fnS(A_N)^+ \leq A_N$. Then $fnS(fnS(A_N)^+)^- \le fnS(A_N)^- \to (2)$. By (1) and (2) we have, $A_N \lor fnS(fnS(A_N)^+)^- \le fnS(A_N)^-$. This proves (i). By proposition 5.2 (i), $fnS(A_N)^+ \le A_N \to (1)$. Again by using proposition 6.3 (i), $A_N \le fnS(A_N)^-$. Then $fnS(A_N)^+ \le fnS(A_N)^+$ $fnS(fnS(A_N)^-)^+ \rightarrow (2)$. From (1) and (2) we have $fnS(A_N)^+ \leq A_N \wedge fnS(fnS(A_N)^-)^+$. This proves (ii). By proposition 6.4, $fnS(A_N)^- \le fn(A_N)^-$. We get $fn(fnS(A_N)^-)^+ \le fn(fn(A_N)^-)^+$. Hence (iii). By (i), $fnS(A_N)^- \ge A_N \vee fnS(fnS(A_N)^+)^-$. We have $fn(fnS(A_N)^-)^+ \ge fn(A_N \vee fnS(fnS(A_N)^+)^-)^+$. Since $fn(A_N \vee fnS(A_N)^-)^+ \ge fn(A_N \vee fnS(A_N)^+)^ (B_N)^+ \ge fn(A_N)^+ \lor fn(B_N)^+, fn(fnS(A_N)^-)^+ \ge fn(A_N)^+ \lor fn(fnS(fnS(A_N)^+)^-)^+ \ge fn(fnS(fnS(A_N)^+)^-)^+.$ proves (iv).

REFERENCES

- [1] Azad, K.K.1981.On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal.Appl 82:14-
- [2] AI-Nashef, B. 2001. On semi pro open sets, Ques. And ams. In Gen. topol. 19(2): 203-212.
- [3] Arockiarani I., J.Martina Jency. 2014. More on fuzzy neutrosophic sets and fuzzy neutrosophic topological spaces., International journal of innovative research & studies. Vol 3 issue(5): 643-652.
- [4] Chang, C. 1968. Fuzzy Topological Spaces, J. Math. Anal. Appl. 24: 182-190.
- [5] Florentin Smarandache. 2002. Neutrosophy and Neutrosophic logic. First international conference on Neutrosophy, Neutrosophic logic, set, probability and statistics university of new mexico, gallup, NM 87301, USA, smarand@unm.edu.
- [6] Levine, N.2017. Semi-open setssemi-continuty in topological spaces, Amer. Math. Monthy. 70: 36-41.
- [7] Veereswari, V. 2017. An introduction to fuzzy neutrosophic topological spaces, IJMA, Vol 8(3): 144-149.
- [8]Zadeh, L.A. Fuzzy sets, Information and control, 8: 338-353.

IJNRD2409358