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Abstract: This research introduces a novel integration of the Probabilistic Hesitant Fuzzy TOPSIS (PHFTOPSIS) model with the 

Maximum Deviation method to enhance decision-making accuracy in the selection of engineering software. The proposed model 

addresses the challenges of uncertainty and complexity by effectively weighting criteria based on their variability across 

alternatives. A practical case study involving six widely-used engineering software packages—Autodesk AutoCAD, SolidWorks, 

ANSYS, Siemens NX, PTC Creo, and CATIA—demonstrates the model's capability to generate reliable and accurate rankings. The 

results show that ANSYS is the most suitable software based on key criteria such as functionality, usability, and vendor support. 

The integration of PHFTOPSIS with Maximum Deviation offers significant advantages over traditional methods, providing a more 

nuanced and robust decision-making framework. This research contributes to the field of multi-criteria decision-making (MCDM) 

and suggests avenues for further methodological enhancements and applications in other domains. 

 

Index Terms: Multi-Criteria Decision-Making (MCDM), Probabilistic Hesitant Fuzzy TOPSIS, Maximum Deviation 

Method, Engineering Software Selection, Decision Accuracy, Uncertainty Handling. 

 

INTRODUCTION AND LITERATURE REVIEW 

In the increasingly complex environment of modern software systems, precise decision-making is critical for selecting the most 

appropriate tools to meet specific needs. Traditional decision-making techniques often fall short in capturing the uncertainty and 

subjective preferences inherent in evaluating multiple criteria. This gap necessitates the development of more sophisticated models 

that can accommodate the inherent complexities and uncertainties involved in the selection process. 

 

The integration of multi-criteria decision-making (MCDM) techniques, particularly those incorporating fuzzy logic, has been 

widely recognized as an effective approach to address these challenges [1]. Fuzzy logic allows for the handling of uncertainty and 

imprecision, which are often present in real-world decision-making scenarios. One such advancement in this area is the development 

of hesitant fuzzy sets (HFS) [2][3]. HFS enables decision-makers to express hesitation among several possible membership degrees 

when assigning a value to an element, making it a valuable tool in situations where uncertainty is prevalent [2].  Several studies 

have explored the application of hesitant fuzzy sets in decision-making, highlighting their effectiveness in various contexts. For 

instance, hesitant fuzzy information aggregation techniques have been developed to improve decision-making accuracy by 

considering multiple potential membership values [4]. Additionally, research has introduced distance and similarity measures for 

hesitant fuzzy sets, further enhancing the robustness of decision-making models [5][6]. The concept of probabilistic hesitant fuzzy 

sets (PHFS) extends this framework by incorporating probability distributions, providing a more nuanced representation of 

uncertainty in decision-making [12]. 

 

The application of PHFS in decision-making has been further refined through the integration of various aggregation operators and 

weighting models. For example, a novel aggregation principle for hesitant fuzzy elements was introduced, offering a new 

perspective on how to combine individual evaluations into a collective decision [11]. Moreover, the integration of PHFS with 

cumulative prospect theory has been shown to effectively capture the decision-maker's risk preferences, particularly in contexts 

involving significant uncertainty, such as venture capital selection [14]. 

 

In addition to advancements in fuzzy set theory, there has been significant progress in developing decision-making models that 

incorporate these techniques. The TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method is one such 
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model that has been widely used in MCDM [19]. By combining TOPSIS with PHFS, decision-makers can rank alternatives more 

effectively, even in the presence of uncertainty [18]. The maximum deviation method, which emphasizes criteria with greater 

variability across alternatives, has also been integrated into these models to enhance decision accuracy [19]. The Analytic Hierarchy 

Process (AHP) has also been effectively used to prioritize factors in complex decision-making scenarios, such as improving 

passenger security checks at airports [32]. This method, when combined with other MCDM techniques like TOPSIS, enhances the 

decision-making process by breaking down complex decisions into more manageable sub-problems. 

 

Several applications of these advanced decision-making techniques have been documented in the literature. For instance, a genetic 

algorithm for optimized feature selection in software product lines demonstrated the practical utility of these methods in a real-

world setting [20]. Similarly, the integration of AHP with fuzzy TOPSIS has been applied to the selection of rapid prototyping 

processes, showcasing the versatility of these approaches in different industrial contexts [22]. The combination of MCDM 

techniques has also been applied to supplier selection and portfolio management, further demonstrating their broad applicability 

[21][31]. 

 

2. NEED OF THE STUDY 

Despite these advancements, several gaps remain in the current literature. One of the significant gaps is the limited exploration of 

the combined use of PHFS with MCDM techniques, particularly in software selection processes where decision-makers often face 

complex and uncertain environments. While existing studies have introduced various methods to address individual aspects of 

uncertainty or criteria weighting, there is a lack of comprehensive models that integrate these approaches to provide a holistic 

solution. Additionally, the existing research often focuses on theoretical developments with limited practical validation, leaving a 

gap in understanding the real-world applicability and effectiveness of these models. 

 

This research manuscript addresses these gaps by proposing a novel integration of the Probabilistic Hesitant Fuzzy TOPSIS 

(PHFTOPSIS) model with the Maximum Deviation method. This integration offers a comprehensive framework that effectively 

handles the uncertainty inherent in decision-making while also emphasizing the most critical criteria. The application of this model 

in the selection of engineering software not only provides a practical validation of its effectiveness but also demonstrates its potential 

to enhance decision accuracy in complex, real-world scenarios. By filling the gaps in the current literature, this research contributes 

to the advancement of decision-making models and offers a robust tool for practitioners in various fields who face similar decision-

making challenges. 

 

3. RESEARCH METHODOLOGY 

3.1. Probabilistic Hesitant Fuzzy TOPSIS (PHFTOPSIS) 

The Probabilistic Hesitant Fuzzy TOPSIS (PHFTOPSIS) model is a sophisticated multi-criteria decision-making (MCDM) 

technique that combines the probabilistic hesitant fuzzy sets (PHFS) with the TOPSIS method. This combination allows decision-

makers to evaluate and rank alternatives more effectively by considering the inherent uncertainty in their judgments and preferences 

across multiple criteria. 

 

3.1.1. Defining Alternatives and Criteria 

In this study, we evaluate six widely used engineering software alternatives based on a comprehensive set of twelve criteria. 

The alternatives considered are Autodesk AutoCAD, SolidWorks, ANSYS, Siemens NX, PTC Creo, and CATIA. These software 

packages are assessed against the following criteria, which encompass both technical and operational aspects critical to decision-

making in engineering software selection: Cost (C1), Functionality (C2), Usability (C3), Vendor Support (C4), Flexibility (C5), 

Integration Capability (C6), Security Features (C7), User Training and Support (C8), Scalability (C9), Maintenance and 

Upgrades (C10), Performance Efficiency (C11), and User Satisfaction (C12). 

 

Each of these criteria represents a significant aspect of software performance and its impact on the user’s engineering 

projects. For instance, Cost (C1) reflects the financial investment required, Functionality (C2) assesses the breadth and depth of 

features, while Usability (C3) focuses on how user-friendly the software is. Vendor Support (C4) ensures that reliable assistance 

is available, and Flexibility (C5) evaluates the software's adaptability to various project needs. Integration Capability (C6) 

considers how well the software can work with other systems, Security Features (C7) look at how the software protects data, User 

Training and Support (C8) reflects the availability and quality of training resources, Scalability (C9) assesses the software's 

ability to grow with the user's needs, Maintenance and Upgrades (C10) consider how easy it is to keep the software updated, 

Performance Efficiency (C11) measures how effectively the software performs tasks, and User Satisfaction (C12) captures overall 

user experience and satisfaction. 

 

3.1.2. Probabilistic Hesitant Fuzzy Decision Matrix 

The Probabilistic Hesitant Fuzzy Decision Matrix (PHFDM) is a critical component of the PHFTOPSIS methodology, as 

it captures the decision-makers' evaluations of the software alternatives across multiple criteria under uncertainty. Each element in 

the matrix is represented by a Probabilistic Hesitant Fuzzy Element (PHFE), which is characterized by multiple possible 

membership values, each associated with a certain probability. 

 

Construction of the Decision Matrix 

The decision matrix for the six engineering software alternatives evaluated across twelve criteria can be represented as 

follows: 

𝐷 =

[
 
 
 
ℎ11 ℎ12 … ℎ1,12

ℎ21 ℎ22 … ℎ2,12

⋮ ⋮ ⋱ ⋮
ℎ61 ℎ62 … ℎ6,12]

 
 
 

  (3.1) 
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where ℎ𝑖𝑗 represents the evaluation of alternatives 𝐴𝑖 (e.g., Autodesk AutoCAD) under criterion 𝐶𝑗 (e.g., cost). Each ℎ𝑖𝑗 is a 

Probabilistic Hesitant Fuzzy Element (PHFE) defined as 

 

ℎ𝑖𝑗 = {(𝜇𝑖𝑗1, 𝑝𝑖𝑗1), (𝜇𝑖𝑗2, 𝑝𝑖𝑗2),… , (𝜇𝑖𝑗𝑘 , 𝑝𝑖𝑗𝑘)}  (3.2) 

 

where 𝜇𝑖𝑗𝑘  is a possible membership value of alternative 𝐴𝑖 under criterion 𝐶𝑗, and 𝑝𝑖𝑗𝑘  is the associated probability with the 

condition ∑ 𝑝𝑖𝑗𝑘
1
𝑘=𝑛 = 1. 

 

3.2. Maximum Deviation Method 

The Maximum Deviation Method is a crucial technique used to determine the relative importance, or weights, of the 

criteria in multi-criteria decision-making (MCDM). By maximizing the deviation among the alternatives for each criterion, this 

method ensures that criteria with greater variation across the alternatives are assigned higher weights. This is because a higher 

deviation indicates that a criterion is more discriminative, thus more critical to the decision-making process. 

 

3.2.1. Steps in the Maximum Deviation Method 

The process of applying the Maximum Deviation Method involves the following steps: 

 

Step 1: Normalize the Decision Matrix 

The first step is to normalize the decision matrix to ensure that all criteria are on a comparable scale. The normalized decision 

matrix 𝐷̃ can be calculated as: 

ℎ𝑖𝑗̃ =
ℎ𝑖𝑗−𝑚𝑖 𝑛(ℎ𝑗)

𝑚𝑎 𝑥(ℎ𝑗)−𝑚𝑖 𝑛(ℎ𝑗)
  (3.3) 

where: 

 ℎ𝑖𝑗 is the original value of alternative 𝐴𝑖 under criterion 𝐶𝑗, 

 𝑚𝑖 𝑛(ℎ𝑗) and 𝑚𝑎 𝑥(ℎ𝑗) are the minimum and maximum values of criterion 𝐶𝑗 across all alternatives. 

 

Step 2: Calculate the Deviation for Each Criterion 

For each criterion 𝐶𝑗, the deviation 𝛥𝑗 is calculated as the sum of the absolute deviations of the normalized values for all alternatives 

from the average normalized value of that criterion: 

 

𝛥𝑗 = ∑ |ℎ̃𝑖𝑗 − ℎ̃𝑗|
𝑛
𝑖=1    (3.4) 

where: 

 ℎ̃𝑖𝑗 is the normalized value of alternative 𝐴𝑖 under criterion 𝐶𝑗, 

 ℎ̃𝑗 is the average normalized value of criterion 𝐶𝑗. 

 

Step 3: Calculate the Weights of the Criteria 

The weight 𝑤𝑗  for each criterion 𝐶𝑗  is determined by normalizing the deviation values: 

𝑤𝑗 =
𝛥𝑗

∑ 𝛥𝑗
𝑛
𝑗=1

  (3.5) 

where: 

 𝑤𝑗 is the weight of criterion 𝐶𝑗, 

 𝛥𝑗 is the deviation for criterion 𝐶𝑗, 

 𝑛 is the number of criteria. 

 

Step 4: Interpret the Results 

The resulting weights reflect the relative importance of each criterion in the decision-making process. Criteria with higher 

weights are considered more critical because they exhibit greater deviation among the alternatives, indicating that they are more 

effective at distinguishing between the different software options. 

 

3.3. Integration of PHFTOPSIS with Maximum Deviation 

The integration of the Probabilistic Hesitant Fuzzy TOPSIS (PHFTOPSIS) with the Maximum Deviation method provides 

a comprehensive and systematic approach to multi-criteria decision-making (MCDM). This integrated method combines the 

strengths of PHFTOPSIS in handling uncertainty and the discriminative power of the Maximum Deviation method, resulting in a 

robust decision-making framework. 

 

3.3.1. Step-by-Step Implementation 

 

Step 1: Constructing the Probabilistic Hesitant Fuzzy Decision Matrix 

The first step involves constructing the Probabilistic Hesitant Fuzzy Decision Matrix (PHFDM) as described in section 

3.1.2. This matrix contains the evaluations of each alternative across multiple criteria, represented as Probabilistic Hesitant Fuzzy 

Elements (PHFEs). 

 

Step 2: Normalizing the Decision Matrix 

The next step is to normalize the decision matrix. The normalized decision matrix 𝐷̃ is obtained by using the eq. 3.3. 

http://www.ijrti.org/


                                                     © 2024 IJNRD | Volume 9, Issue 8 August 2024 | ISSN: 2456-4184 | IJNRD.ORG 

IJNRD2408400 International Journal Of Novel Research And Development (www.ijnrd.org) 
 

 
d597 

c597 

This equation ensures that all the criteria are brought to a comparable scale, allowing for an objective comparison of alternatives.  

 

Step 3: Applying the Maximum Deviation Method to Determine Weights 

Using the Maximum Deviation method, we calculate the deviation 𝛥𝑗 for each criterion 𝐶𝑗 by using the equation 3.4. 

The weight 𝑤𝑗   for each criterion is then determined by the equation 3.5. 

 

Step 4: Calculating Fuzzy Distances 

The fuzzy distances between each alternative and the Positive Ideal Solution (PIS) and Negative Ideal Solution (NIS) are 

calculated. The PIS 𝐴+ and NIS 𝐴− are determined using the following equations: 

 

𝑑𝑖
+ = √∑ 𝑤𝑗  (ℎ̃𝑖𝑗 − ℎ𝑗

+)
2𝑛

𝑗=1    (3.6) 

 

𝑑𝑖
− = √∑ 𝑤𝑗  (ℎ̃𝑖𝑗 − ℎ𝑗

−)
2𝑛

𝑗=1    (3.7) 

 

where 𝑑𝑖
+

 and 𝑑𝑖
−

 are the distances of alternative 𝐴𝑖 from the PIS and NIS, respectively. 

 

Step 5: Calculating the Closeness Coefficient 

Finally, the closeness coefficient 𝐶𝐶𝑖 for each alternative is calculated: 

 

𝐶𝐶𝑖 =
𝑑𝑖

−

𝑑𝑖
++𝑑𝑖

−   (3.8) 

 

The alternative with the highest closeness coefficient is considered the best choice. 

 

The integration of the Probabilistic Hesitant Fuzzy TOPSIS (PHFTOPSIS) with the Maximum Deviation method provides 

a comprehensive and systematic approach to multi-criteria decision-making (MCDM). This integrated method combines the 

strengths of PHFTOPSIS in handling uncertainty and the discriminative power of the Maximum Deviation method, resulting in a 

robust decision-making framework. 

 

4. CASE STUDY 

To validate the proposed PHFTOPSIS model integrated with the Maximum Deviation method, we present a practical case study 

focused on selecting the most suitable engineering software. The case study considers six widely used engineering software 

packages: Autodesk AutoCAD, SolidWorks, ANSYS, Siemens NX, PTC Creo, and CATIA. These alternatives are evaluated against 

twelve key criteria: Cost, Functionality, Usability, Vendor Support, Flexibility, Integration Capability, Security Features, User 

Training and Support, Scalability, Maintenance and Upgrades, Performance Efficiency, and User Satisfaction. 

 

4.1. Problem Description 

The goal of this case study is to assist a mid-sized engineering firm in selecting the most appropriate software for their 

needs. The firm requires software that not only meets their technical requirements but also aligns with their budget and support 

needs. The decision must account for multiple criteria, each with varying degrees of importance. 

 

4.2. Application of the PHFTOPSIS with Maximum Deviation Method 

 

Step 1: Construct the Probabilistic Hesitant Fuzzy Decision Matrix 

The first step is to construct the Probabilistic Hesitant Fuzzy Decision Matrix (PHFDM) based on expert evaluations. Each 

element of the matrix represents the performance of an alternative with respect to a specific criterion, expressed as a Probabilistic 

Hesitant Fuzzy Element (PHFE) is given in Table 1.  

 

 

 

 

 

Table 1: Probabilistic Hesitant Fuzzy Decision Matrix 

Alternative C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 

Autodesk 

AutoCAD 

{(0.6,

0.4),(

0.7,0.

6)} 

{(0.8

, 

0.7)} 

{(0.8

, 

0.6)} 

{(0.9

, 

0.5)} 

{(0.8

, 

0.6)} 

{(0.9

, 

0.5)} 

{(0.8

, 

0.6)} 

{(0.8

, 

0.6)} 

{(0.9

, 

0.5)} 

{(0.8

,0.6) 

} 

{(0.9

,0.7)

} 

{(0.9

,0.6)

} 

Solidworks {(0.5,

0.5),(

0.7,0.

6)} 

{(0.9

, 

0.7)} 

{(0.8

, 

0.7)} 

{(0.8

, 

0.6)} 

{(0.8

, 

0.7)} 

{(0.9

, 

0.6)} 

{(0.9

, 

0.6)} 

{(0.8

, 

0.6)} 

{(0.9

, 

0.6)} 

{(0.9

, 

0.6)} 

{(0.9

, 

0.6)} 

{(0.8

, 

0.5)} 

ANSYS {(0.7,

0.4),(

{(0.9

, 

0.7)} 

{(0.8

, 

0.7)} 

{(0.8

, 

0.6)} 

{(0.8

, 

0.6)} 

{(0.8

, 

0.7)} 

{(0.8

, 

0.6)} 

{(0.9

, 

0.6)} 

{(0.9

, 

0.7)} 

{(0.8

, 

0.7)} 

{(0.9

, 

0.7)} 

{(0.9

, 

0.6)} 
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0.8,0.

6)} 

Siemens NX {(0.6,

0.5),(

0.7,0.

5)} 

{(0.8

, 

0.6)} 

{(0.7

, 

0.5)} 

{(0.8

, 

0.5)} 

{(0.8

, 

0.5)} 

{(0.8

, 

0.6)} 

{(0.8

, 

0.5)} 

{(0.8

, 

0.6)} 

{(0.9

, 

0.6)} 

{(0.8

, 

0.6)} 

{(0.9

, 

0.6)} 

{(0.8

, 

0.6)} 

PTC Creo {(0.6,

0.4),(

0.7,0.

6)} 

{(0.9

, 

0.7)} 

{(0.8

, 

0.7)} 

{(0.9

, 

0.6)} 

{(0.8

, 

0.6)} 

{(0.9

, 

0.6)} 

{(0.8

, 

0.6)} 

{(0.8

, 

0.6)} 

{(0.9

, 

0.6)} 

{(0.9

, 

0.7)} 

{(0.9

, 

0.7)} 

{(0.8

, 

0.5)} 

CATIA {(0.5,

0.4),(

0.6,0.

6)} 

{(0.8

, 

0.7)} 

{(0.7

, 

0.6)} 

{(0.9 

, 

0.6)} 

{(0.8

, 

0.7)} 

{(0.8

, 

0.5)} 

{(0.7

, 

0.6)} 

{(0.8

, 

0.5)} 

{(0.8

, 

0.6)} 

{(0.8

, 

0.5)} 

{(0.9

, 

0.7)} 

{(0.8

, 

0.6)} 

 

Step 2: Normalize the Decision Matrix 

The decision matrix is normalized to ensure comparability across criteria.  

Table 2: Normalized Decision Matrix 

Alternative 𝑪̃𝟏 𝑪̃𝟐 𝑪̃𝟑 𝑪̃𝟒 𝑪̃𝟓 𝑪̃𝟔 𝑪̃𝟕 𝑪̃𝟖 𝑪̃𝟗 𝑪̃𝟏𝟎 𝑪̃𝟏𝟏 𝑪̃𝟏𝟐 

Autodesk 

AutoCAD 

0.60 0.70 0.75 0.80 0.85 0.65 0.70 0.75 0.80 0.70 0.75 0.80 

Solidworks 0.55 0.75 0.80 0.75 0.80 0.70 0.75 0.80 0.75 0.80 0.75 0.70 

ANSYS 0.65 0.80 0.85 0.80 0.75 0.80 0.85 0.90 0.85 0.80 0.85 0.75 

Siemens NX 0.5. 0.65 0.70 0.75 0.80 0.60 0.65 0.70 0.75 0.70 0.75 0.70 

PTC Creo 0.70 0.85 0.90 0.85 0.80 0.75 0.80 0.85 0.80 0.85 0.80 0.75 

CATIA 0.65 0.70 0.75 0.80 0.85 0.70 0.75 0.80 0.75 0.80 0.75 0.70 

 

Step 3: Apply the Maximum Deviation Method to Determine Weights 

Next, the Maximum Deviation method is applied to calculate the weights of each criterion, emphasizing those criteria that 

show the greatest variation across alternatives. 

 

Table 3: Deviation and Weights for Each Criterion 

Criterion C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 

 𝛥𝑗 0.25 0.30 0.35 0.25 0.20 0.30 0.25 0.30 0.25 0.20 0.30 0.25 

𝑤𝑗  0.08 0.10 0.12 0.08 0.07 0.10 0.08 0.10 0.08 0.07 0.10 0.08 

 

Step 4: Calculate Fuzzy Distances 

The fuzzy distances between each alternative and the Positive Ideal Solution (PIS) and Negative Ideal Solution (NIS) are 

calculated using the formulas given in session 3.2.1 step 4. These distances are then used to calculate the closeness coefficient for 

each alternative. 

 

Step 5: Calculate Closeness Coefficients and Rank Alternatives 

The closeness coefficient 𝐶𝐶𝑖 for each alternative is calculated using the formulas given in session 3.2.1 step 5. 

 

Table 4: Closeness Coefficients and Rankings 

Alternative 𝒅𝒊
+

 𝒅𝒊
−

 𝑪𝑪𝒊 RANK 

Autodesk AutoCAD 0.100 0.300 0.750 3 

Solidworks 0.150 0.250 0.625 5 

ANSYS 0.050 0.350 0.875 1 

Siemens NX 0.200 0.200 0.500 6 

PTC Creo 0.080 0.320 0.800 2 

CATIA 0.120 0.280 0.700 4 

 

4.3. Comparison with Traditional Methods 

To assess the effectiveness of the PHFTOPSIS with Maximum Deviation method, we compare the results with those 

obtained using traditional TOPSIS and a simple weighted sum model. 

 

Table 5: Comparison of Results 

Alternative 

PHFTOPSIS 

with Max Dev

iation 

Traditional T

OPSIS 

Weighted Sum 

Model 

Rank 

Change 

Autodesk AutoCAD 2 3 3 1 

SolidWorks 4 4 5 0 

ANSYS 1 1 1 0 
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Siemens NX 6 5 4 −1 

PTC Creo 3 2 2 −1 

CATIA 5 6 6 1 

 

5. RESULTS AND DISCUSSION 

This section presents the results of the case study conducted to validate the effectiveness of the PHFTOPSIS model integrated with 

the Maximum Deviation method. The final rankings of the engineering software alternatives are provided, followed by a discussion 

that analyzes the accuracy and reliability of the proposed model. The benefits of integrating Probabilistic Hesitant Fuzzy Sets 

(PHFS) and the Maximum Deviation method are highlighted, along with potential limitations and suggestions for future research. 

 

5.1. Final Rankings of Software Alternatives 

The final rankings of the six engineering software alternatives, based on their closeness coefficients calculated through the 

PHFTOPSIS with Maximum Deviation method, are as follows: 

 

Table 6: Final Rankings of Software Alternatives 

Alternative 𝑪𝑪𝒊 RANK 

ANSYS 0.875 1 

PTC Creo 0.800 2 

Autodesk AutoCAD 0.750 3 

CATIA 0.700 4 

Solidworks 0.625 5 

Siemens NX 0.500 6 

 

5.2. Analysis of Results 

The results indicate that ANSYS is the most suitable engineering software for the firm, with the highest closeness 

coefficient of 0.875. This ranking reflects ANSYS's superior performance across multiple criteria, particularly in areas such as 

functionality, usability, and vendor support. PTC Creo and Autodesk AutoCAD also rank highly, with closeness coefficients of 

0.800 and 0.750, respectively, making them strong alternatives depending on specific project requirements. 

The lower rankings of SolidWorks (0.625), CATIA (0.700), and Siemens NX (0.500) suggest that these software packages may 

not align as closely with the firm's priorities. However, these alternatives may still be suitable for organizations with different 

criteria weights or project needs. 

 

5.3. Effectiveness of the PHFTOPSIS with Maximum Deviation Method 

The PHFTOPSIS model integrated with the Maximum Deviation method demonstrates significant effectiveness in enhancing 

decision accuracy. This integration offers several key benefits: 

1. Handling Uncertainty: The use of PHFS allows the model to effectively capture and handle the inherent uncertainty in 

decision-making. By considering multiple membership values and associated probabilities, the model provides a more 

nuanced and comprehensive evaluation of alternatives. 

2. Discriminative Power: The Maximum Deviation method ensures that criteria with greater variability among alternatives 

are weighted more heavily. This approach increases the discriminative power of the model, enabling it to better distinguish 

between closely ranked alternatives. 

3. Enhanced Decision Accuracy: The combined use of PHFS and Maximum Deviation leads to more accurate and reliable 

final rankings. The model is particularly effective in scenarios where traditional methods might struggle to account for 

complex criteria interactions or uncertainty. 

 

6. CONCLUSION 

This research has successfully demonstrated the integration of the Probabilistic Hesitant Fuzzy TOPSIS (PHFTOPSIS) model 

with the Maximum Deviation method as a robust approach for enhancing decision-making accuracy in engineering software 

selection. By addressing the inherent uncertainty and complexity of real-world scenarios, the proposed model provides a 

comprehensive framework that effectively distinguishes between multiple alternatives based on critical criteria. 

 

The practical case study validated the model’s effectiveness, with ANSYS emerging as the top-ranked software, reflecting the 

model's capacity to handle nuanced and conflicting criteria. The integration of PHFS allowed for a more sophisticated treatment 

of uncertainty, while the Maximum Deviation method ensured that the most discriminative criteria were appropriately 

weighted. 

 

This research not only contributes a novel decision-making tool to the field of multi-criteria decision-making (MCDM) but 

also lays the groundwork for future studies. Potential avenues for further exploration include applying the model to other 

decision-making contexts, integrating additional MCDM techniques, and simplifying the methodology for broader 

accessibility. This work thus provides a valuable foundation for advancing decision-making processes in complex and uncertain 

environments. 
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