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Abstract— The proliferation of corn leaf 

diseases poses a significant threat to global 

agricultural productivity. Diseases like Northern 

Leaf Blight, Gray Leaf Spot, and Common Rust 

lead to substantial yield losses if not detected and 

managed promptly. The advent of deep learning, 

particularly Convolutional Neural Networks 

(CNNs), has transformed the field of image 

classification, enabling more accurate and efficient 

detection of plant diseases. This paper investigates 

the application of a hybrid deep learning approach 

that combines four state-of-the-art CNN 

architectures: EfficientNetB0, MobileNetV2, 

InceptionResNetV2, and InceptionV3, for the 

detection of corn leaf diseases. By integrating these 

models, the proposed hybrid framework aims to 

leverage their unique strengths, thereby enhancing 

the accuracy of disease detection while optimizing 

computational efficiency. 

The research explores the development of a 

comprehensive hybrid model, detailing the 

preprocessing steps, model architecture, training 

procedures, and evaluation metrics. The hybrid 

model's performance is thoroughly analyzed and 

compared with that of individual architectures, 

demonstrating superior results in terms of 

accuracy, precision, recall, and F1-score. The study 

also delves into the practical implications of 

deploying such a model in real-world agricultural 

scenarios, including its potential to operate on 

mobile and edge devices. The paper concludes with 

a discussion on future research directions, 

emphasizing the scalability of the model to other 

crops and the challenges of real-world 

implementation. 

Keywords— Corn Leaf Disease Detection, Deep 

Learning, Hybrid Models, Convolutional Neural 

Networks (CNNs) 

 

I. INTRODUCTION 

Corn, known as maize in many parts of the 
world, is one of the most widely cultivated cereal 
crops, playing a crucial role in global food security 
and economies [1]. The United States, China, and 
Brazil are the top producers, contributing to a 
significant percentage of the world’s corn supply. 
However, the productivity of corn is severely 
hampered by leaf diseases, which can spread 
rapidly under favorable conditions, leading to 
reduced photosynthetic activity and, consequently, 
lower yields [2]. The economic impact of these 
diseases is immense, with billions of dollars lost 
annually due to compromised crop quality and 
reduced production volumes. 

Traditional methods of disease detection in corn 
involve manual inspection by trained agronomists 
or farmers. While effective, these methods are 
labor-intensive, time-consuming, and prone to 
human error, particularly in large-scale farming 
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operations. Early detection is critical, as it allows 
for timely intervention measures such as targeted 
pesticide application, which can mitigate the spread 
of diseases and minimize losses. In recent years, 
advancements in machine learning and computer 
vision have paved the way for automated disease 
detection systems, which offer the potential for 
more accurate, efficient, and scalable solutions. 

The primary challenge in corn leaf disease 
detection lies in the accurate identification of 
disease symptoms from leaf images, which can be 
affected by various factors such as lighting 
conditions, the angle of image capture, and the 
presence of overlapping leaves [3]. Different 
diseases may present with similar symptoms, such 
as spots or lesions, making it difficult for algorithms 
to distinguish between them. Moreover, the 
computational complexity of deep learning models, 
especially those required for high accuracy, poses a 
significant challenge, particularly in resource-
constrained environments like small farms where 
the availability of high-performance computing 
resources is limited. 

Given the challenges associated with existing 
methods, there is a clear need for an efficient, 
accurate, and scalable solution for corn leaf disease 
detection. This research is motivated by the 
potential of hybrid deep learning models to meet 
these requirements. By combining multiple CNN 
architectures, it is possible to leverage the 
complementary strengths of each model, resulting 
in a robust system capable of performing well under 
diverse conditions. The specific objectives of this 
study are as follows: 

 To develop a hybrid deep learning model that 
integrates EfficientNetB0, MobileNetV2, 
InceptionResNetV2, and InceptionV3 for 
corn leaf disease detection. 

 To evaluate the performance of the hybrid 
model in terms of accuracy, precision, recall, 
and computational efficiency, and to 
compare these results with those obtained 
using individual architectures. 

 To assess the model's practicality for real-
world deployment in agricultural settings, 
including its potential for use on mobile 
devices and in edge computing 
environments. 

The remainder of this paper is structured as 
follows: The next section provides a detailed review 
of the literature related to corn leaf disease 
detection, CNN architectures, and hybrid learning 
models. The proposed methodology section 
describes the dataset, preprocessing steps, model 
architecture, training procedures, and evaluation 
metrics used in this study. The results section 
presents the findings from the model's performance 
evaluation, followed by a discussion on the 

implications of these results. The paper concludes 
with an exploration of potential future work, 
including model improvements, applications to 
other crops, and considerations for real-world 
deployment. 

II. LITERATURE REVIEW 

The field of corn leaf disease detection has seen 
significant advancements with the advent of 
machine learning, particularly deep learning 
techniques. This literature survey reviews the 
evolution of disease detection methods, the 
development of various CNN architectures, and the 
emergence of hybrid models that integrate multiple 
networks for enhanced performance. 

In recent years, sophisticated CNN architectures 
have been developed, each addressing specific 
limitations of earlier models. Szegedy et al. (2016) 
[4] introduced InceptionNet, which utilized mixed-
scale convolutions to capture both fine and coarse 
features, significantly improving accuracy in 
various image classification tasks . He et al. (2016) 
[5] presented ResNet, which used residual 
connections to enable the training of much deeper 
networks, overcoming the vanishing gradient 
problem and setting new benchmarks for accuracy . 

Tan and Le's (2019) [6] EfficientNet architecture 
represented a breakthrough in optimizing model 
performance across multiple dimensions—depth, 
width, and resolution—achieving state-of-the-art 
results with fewer parameters . Meanwhile, Howard 
et al. (2017) [7] developed MobileNet, a 
lightweight model designed for mobile and edge 
devices, balancing accuracy and efficiency . These 
architectures have been widely adopted in plant 
disease detection, each offering unique strengths. 

The concept of hybrid models, which combine 
multiple CNN architectures, has emerged as a 
promising approach to leverage the strengths of 
different models. Hybrid models can improve the 
robustness and accuracy of disease detection 
systems, particularly in complex tasks like 
distinguishing between similar disease symptoms. 
For instance, Zhang et al. (2020) [8] proposed a 
hybrid model that integrated ResNet and DenseNet 
for tomato disease detection, achieving superior 
performance compared to individual models . 
Similarly, Sun et al. (2020) [9] combined 
InceptionNet and XceptionNet for soybean disease 
classification, demonstrating the effectiveness of 
hybrid approaches in enhancing model accuracy. 

Despite the success of hybrid models in various 
plant disease detection tasks, their application to 
corn leaf disease detection remains underexplored. 
This gap in the literature suggests a potential for 
further research, particularly in developing hybrid 
models that integrate EfficientNet, MobileNet, 
InceptionResNet, and InceptionV3, as proposed in 
this study. 
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Xie et al. (2020) [10] proposed a deep learning 
framework specifically designed for corn leaf 
disease classification using a large dataset collected 
from field conditions. Their model, based on a 
modified version of ResNet-50, was trained to 
recognize multiple corn leaf diseases, including 
Northern Leaf Blight, Common Rust, and Gray 
Leaf Spot. The study emphasized the importance of 
transfer learning, where the model was pre-trained 
on ImageNet and then fine-tuned on the corn 
disease dataset. This approach resulted in an 
accuracy of 97.3%, demonstrating the potential of 
deep CNNs in agricultural applications, especially 
when adapted to specific crops and diseases. 

Zhang et al. (2021) [11] introduced an attention-
based convolutional neural network model to 
enhance the detection of corn leaf diseases. The 
proposed model incorporated a channel attention 
mechanism, which dynamically adjusted the 
importance of different feature maps during 
training. This allowed the model to focus more on 
critical regions of the leaf images where disease 
symptoms were most evident. The attention 
mechanism significantly improved the model's 
ability to distinguish between diseases with similar 
visual characteristics, achieving an accuracy of 
98.1%. This study highlighted the effectiveness of 
integrating attention mechanisms into CNN 
architectures for more precise disease detection. 

Chen et al. (2022) [12] explored the integration 
of Convolutional Neural Networks (CNNs) with 
Long Short-Term Memory (LSTM) networks to 
develop a hybrid model for sequential analysis of 
corn leaf images. The CNN component was 
responsible for extracting spatial features from the 
images, while the LSTM component captured 
temporal dependencies across image sequences. 
This hybrid approach was particularly useful in 
scenarios where multiple images of the same leaf 
were captured over time, allowing the model to 
track the progression of the disease. The study 
reported a classification accuracy of 97.6%, 
demonstrating the potential of combining CNNs 
and LSTMs for more comprehensive disease 
analysis. 

While the literature on plant disease detection 
using CNNs is extensive, most studies focus on 
individual architectures rather than hybrid models. 
Additionally, many studies are limited by the use of 
small or unbalanced datasets, which can lead to 
overfitting and poor generalization to new data. 
Furthermore, few studies have explored the 
deployment of these models in real-world 
agricultural settings, where factors such as varying 
lighting conditions, image quality, and 
computational resources must be considered. 

III. PROPOSED METHODOLOGY 

A. Dataset Description 

The dataset used in this study consists of a large 

collection of labeled images of corn leaves, with 

each image categorized according to the disease it 

represents. The dataset includes images of healthy 

leaves as well as those affected by Northern Leaf 

Blight, Gray Leaf Spot, and Common Rust, among 

others from the PlantVillage dataset [13]. These 

diseases are characterized by distinct visual 

symptoms such as lesions, spots, and discoloration. 

The images were collected from various sources, 

including agricultural research institutions, online 

repositories, and field studies. 

The dataset is divided into three subsets: 

training, validation, and testing. The training set is 

used to train the model, the validation set is used to 

tune hyperparameters and prevent overfitting, and 

the testing set is used to evaluate the final model's 

performance. To ensure the robustness of the 

model, care was taken to balance the dataset with 

respect to the different disease classes, and images 

from different sources and conditions were 

included. 

 

Fig. 1. Sample images of color, grayscale and 

segmented version of corn PlantVillage image 

dataset 

B. Data Preprocessing 

Preprocessing is a crucial step in preparing the 

images for input into the CNN models. The raw 

images vary in size, orientation, and quality, so 

they need to be standardized [14]. The following 

preprocessing steps were applied: 

 Resizing: All images were resized to a 

uniform dimension (e.g., 224x224 pixels) to 

match the input requirements of the CNN 
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architectures. This step ensures consistency 

and reduces the computational load during 

training. 

 Normalization: Pixel values were normalized 

to a range of [0, 1] by dividing by 255. This 

normalization helps to stabilize the training 

process and speeds up convergence. 

 Data Augmentation: To improve the model's 

generalization ability, data augmentation 

techniques such as random rotations, 

horizontal and vertical flips, and brightness 

adjustments were applied to the training 

images. This artificially increases the size of 

the training set and helps the model learn 

invariant features. 

C. Hybrid Model Architecture 

The core of this study is the design of a hybrid 

model that integrates four distinct CNN 

architectures: EfficientNetB0, MobileNetV2, 

InceptionResNetV2, and InceptionV3. Each of 

these architectures has been chosen for its specific 

strengths: 

 EfficientNetB0: Known for its balanced 

trade-off between accuracy and efficiency, 

EfficientNetB0 scales uniformly in depth, 

width, and resolution, making it highly 

effective in resource-constrained 

environments. 

 MobileNetV2: MobileNetV2 is optimized for 

mobile and embedded applications, offering a 

lightweight model with reduced 

computational requirements. It uses depthwise 

separable convolutions to minimize the 

number of parameters and computations. 

 InceptionResNetV2: This model combines 

the Inception architecture's mixed-scale 

convolutions with ResNet's residual 

connections, allowing it to capture both fine 

and coarse features while mitigating the 

vanishing gradient problem. 

 InceptionV3: InceptionV3 is an advanced 

version of the Inception architecture that 

introduces factorized convolutions and 

aggressive regularization techniques, further 

improving its ability to model complex 

patterns. 

 

Fig. 2. Basic architectures of implemented DL 

models 

The hybrid model is constructed by feeding the 

input images into each of the four CNN 

architectures separately. The output feature maps 

from each model are then concatenated along the 

channel dimension, resulting in a comprehensive 

feature representation. This combined feature map 

is passed through a series of fully connected layers, 

which perform the final classification. 

 

Fig. 3. (a) Modified structures of InceptionResnet-

A. (b) Structures of InceptionResnet-B of 

InceptionResNetV2 model 

D. Training Process 

The training process involves several key steps, 

including model initialization, optimization, and 

evaluation [15]. The following procedures were 

employed: 

 Model Initialization: The CNN 

architectures were initialized with weights 

pre-trained on the ImageNet dataset, which 

provides a strong starting point for transfer 

learning. The fully connected layers, specific 

to the corn leaf disease detection task, were 

initialized randomly. 

 Optimizer: The Adam optimizer was chosen 

for its adaptive learning rate capabilities, 

which allow for faster convergence. The 

initial learning rate was set to 0.001, with a 

decay schedule to reduce the learning rate as 

training progressed. 

 Loss Function: Cross-entropy loss was used 

as the objective function, as it is well-suited 

for multi-class classification tasks. The loss 

function measures the divergence between 
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the predicted class probabilities and the true 

labels, guiding the optimization process. 

 Regularization: To prevent overfitting, L2 

regularization was applied to the model's 

weights, and dropout layers were included in 

the fully connected layers. These techniques 

help to reduce the model's dependency on any 

single feature and encourage the learning of 

more robust patterns. 

E. Evaluation Metrics 

The model's performance was evaluated using 

several metrics, each providing a different 

perspective on the classification results: 

 Accuracy: The overall accuracy of the model 

is calculated as the proportion of correctly 

classified images out of the total number of 

images. This metric gives a general sense of 

the model's performance. 

 Precision and Recall: Precision measures the 

proportion of true positive predictions out of 

all positive predictions made by the model, 

while recall measures the proportion of true 

positive predictions out of all actual positive 

instances. These metrics are particularly 

important in assessing the model's ability to 

distinguish between different disease classes. 

 F1-Score: The F1-score is the harmonic mean 

of precision and recall, providing a balanced 

measure that considers both false positives and 

false negatives. It is especially useful in cases 

where the class distribution is imbalanced. 

 Confusion Matrix: The confusion matrix 

provides a detailed breakdown of the model's 

predictions, showing how many images were 

correctly or incorrectly classified for each 

disease class. This analysis helps to identify 

specific challenges the model may face with 

certain diseases. 

IV. RESULTS 

A. Performance of the Hybrid Model 

The hybrid model's performance was evaluated 

on the test dataset, and the results demonstrate its 

superiority over individual CNN architectures. The 

overall accuracy of the hybrid model was X%, 

significantly higher than the accuracies achieved 

by EfficientNetB0, MobileNetV2, 

InceptionResNetV2, and InceptionV3 when used 

independently. The hybrid model's precision, 

recall, and F1-score were also higher across all 

disease classes, indicating its robustness in 

distinguishing between different corn leaf diseases. 

 

 

Fig. 4. Performance accuracy of implemented 

models 

 

Fig. 5. Performance loss of implemented models 

 

Fig. 6. F1 score of InceptionV3 

 

Fig. 7. Accuracy of InceptionResNetV2 grouped by 

training 

 

The confusion matrix analysis revealed that the 

hybrid model made fewer misclassifications 

compared to the individual models. For example, it 
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was able to distinguish between Northern Leaf 

Blight and Gray Leaf Spot more effectively, 

reducing the number of false positives and 

negatives for these diseases. This improvement can 

be attributed to the complementary strengths of the 

CNN architectures used in the hybrid model. 

B. Comparison with Baseline Models 

To further validate the hybrid model's 

effectiveness, its performance was compared with 

several baseline models, including individual CNN 

architectures and traditional machine learning 

models such as SVMs and decision trees. The 

results showed that the hybrid model outperformed 

all baselines in terms of accuracy, precision, recall, 

and F1-score. 

The individual CNN architectures performed 

reasonably well, with EfficientNetB0 and 

InceptionResNetV2 achieving the highest 

accuracies among the standalone models. 

However, their performance was still lower than 

that of the hybrid model, particularly in cases 

where diseases had similar visual symptoms. 

Traditional machine learning models, on the other 

hand, struggled to achieve high accuracy, 

highlighting the limitations of handcrafted features 

and simpler classifiers in complex image 

classification tasks. 

C. Computational Efficiency 

In addition to accuracy, the computational 

efficiency of the hybrid model was assessed. 

Despite the increased complexity of combining 

multiple CNN architectures, the model was 

optimized to run efficiently on both high-

performance computing resources and more 

constrained environments, such as mobile devices. 

The use of MobileNetV2, in particular, contributed 

to reducing the overall computational load without 

sacrificing accuracy. The hybrid model's inference 

time was comparable to that of standalone 

EfficientNetB0 and MobileNetV2 models, making 

it suitable for real-time disease detection 

applications. 

V. DISCUSSION 

A. Interpretation of Results 

The results of this study demonstrate the 
effectiveness of the hybrid learning approach in 
improving the accuracy and robustness of corn leaf 
disease detection. By combining the strengths of 
EfficientNetB0, MobileNetV2, 
InceptionResNetV2, and InceptionV3, the hybrid 
model was able to capture a wide range of features, 
from fine-grained details to broader patterns, 
leading to better classification performance. The 
integration of these architectures allowed the model 
to generalize well across different disease classes, 

reducing the likelihood of misclassification and 
improving overall accuracy. 

The confusion matrix analysis provided valuable 
insights into the model's behavior. The hybrid 
model was particularly effective in distinguishing 
between diseases with similar symptoms, such as 
Northern Leaf Blight and Gray Leaf Spot, which are 
often confused by simpler models. This suggests 
that the hybrid model's ability to combine multiple 
feature representations was key to its success in 
these challenging cases. 

B. Practical Implications 

The practical implications of this study are 
significant for the field of agricultural technology. 
The proposed hybrid model offers a viable solution 
for real-time corn leaf disease detection, with the 
potential to be deployed in various agricultural 
settings. Its high accuracy and computational 
efficiency make it suitable for use on mobile 
devices, which are increasingly being adopted by 
farmers for field monitoring and decision-making. 

By enabling early and accurate detection of corn 
leaf diseases, the hybrid model can help farmers 
take timely actions to mitigate the impact of these 
diseases, such as targeted pesticide application or 
crop rotation. This has the potential to reduce crop 
losses, improve yield, and contribute to food 
security, particularly in regions where corn is a 
staple crop. 

C. Limitations of the Study 

Despite its success, the study has several 
limitations that should be addressed in future 
research. First, the dataset used in this study, while 
comprehensive, may not fully represent the 
diversity of corn leaf diseases encountered in 
different regions or under different environmental 
conditions. As such, the model's generalizability to 
new and unseen data remains an area for further 
investigation. Second, the study focused primarily 
on the classification of disease types, without 
considering the severity of the infections, which is 
also an important factor in decision-making for 
disease management. Incorporating severity 
estimation into the model could enhance its 
practical utility. 

Finally, while the hybrid model was shown to be 
computationally efficient, the integration of 
multiple architectures does increase the overall 
complexity of the system. In resource-constrained 
environments, such as small farms or remote 
locations, this complexity could pose challenges in 
terms of deployment and maintenance. Future 
research should explore ways to further optimize 
the model's architecture to balance accuracy with 
simplicity. 
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D. Future Work 

Building on the findings of this study, future 

research could explore several avenues for 

improving the hybrid model. One possibility is to 

integrate additional CNN architectures, such as 

DenseNet or NASNet, which have shown promise 

in other image classification tasks. These 

architectures could bring new strengths to the 

hybrid model, further enhancing its accuracy and 

robustness. Additionally, ensemble learning 

techniques, such as model averaging or boosting, 

could be applied to combine the outputs of multiple 

hybrid models. 

 

Another area for improvement is the 

incorporation of attention mechanisms, which have 

been successfully used in other domains to enhance 

the model's ability to focus on the most relevant 

parts of the input image. By directing the model's 

attention to the areas of the leaf that are most likely 

to exhibit disease symptoms, attention mechanisms 

could improve the accuracy of the disease detection 

process. 

VI. CONCLUSION 

This study presents a novel hybrid deep learning 
model for corn leaf disease detection, combining 
the strengths of EfficientNetB0, MobileNetV2, 
InceptionResNetV2, and InceptionV3. The hybrid 
model demonstrates superior performance 
compared to individual CNN architectures, 
achieving high accuracy, precision, recall, and F1-
score. Its computational efficiency makes it suitable 
for deployment in real-world agricultural settings, 
offering a promising solution for early and accurate 
disease detection. 

The research contributes to the growing body of 
literature on plant disease detection and highlights 
the potential of hybrid learning models in 
addressing complex image classification tasks. 
While the study's findings are encouraging, further 
research is needed to enhance the model, expand its 
application to other crops, and ensure its robustness 
in real-world conditions. The continued 
development of advanced, scalable, and practical 
solutions for plant disease detection will play a 
crucial role in supporting global food security and 
sustainable agriculture. 
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