ON πSC^* -CLOSED SET IN TOPOLOGICAL SPACES ## NEERAJ KUMAR TOMAR AND M. C. SHARMA DEPARTMENT OF APPLIED MATHEMATICS, GAUTAM BUDDHA UNIVERSITY, GREATER NOIDA, UTTAR PRADESH 201312, INDIA DEPARTMENT OF MATHEMATICS, N. R. E. C. COLLEGE, KHURJA, UTTAR PRADESH 203131, INDIA ABSTRACT. In this paper we introduced a new class of closed sets in a topological space called, πSC^* -closed sets and some of its characteristics are investigated. Further we studied the concepts of πSC^* -open sets and πSC^* - $T_{1/2}$ space. #### Introduction Levine [7] and Andrijevic [2] introduced the concept of generalized open sets and b-open sets respectively in topological spaces. The class of b-open sets is contained in the class of semipre-open sets and contains the class of semi-open and the class of pre-open sets. Since then, several researches were done and the notion of generalized semi-closed, generalized pre-closed and generalized semipre- open sets were investigated in [3, 8, 5]. In 1968 Zaitsev [13] defined π -closed sets. Later Dontchevand Noiri [6] introduced the notion of πg -closed sets. Park [10] defined $\pi g p$ -closed sets. Then Aslim, Caksu and Noiri [4] introduced the notion of $\pi g s$ -closed sets. The idea of $\pi g b$ -closed sets were introduced by D.Sreeja and S.Janaki [12]. A.Chandrakala and K.Bala Deepa Arasi[14] define $S C^*$ -closed sets. Later the properties and characteristics of $\pi g b$ -closed sets were introduced by Sinem Caglar and Gulhan Ashim [1]. The aim of this paper is to investigate the notion of $\pi S C^*$ -closed sets and its properties. In section 2, we study the basic properties of $\pi S C^*$ -closed sets. In section 3, some characteristics of $\pi S C^*$ -closed sets are introduced and the idea of $\pi S C^*$ -closed is discussed. ### 1. PRELIMINARIES AND NOTATIONS In what follows, spaces always mean topological spaces on which no separation axioms are assumed unless explicitly stated and $f:(X,\tau)\to (Y,\sigma)$ (or simply $f:X\to Y$) denotes a function f of a space (X,τ) into a space (Y,σ) . Let A be a subset of a space X. The closure and the interior of A are denoted by cl(A) and int(A), respectively. - 1.1. **Definition:** A subset A of a space X is said to be - (1) a semi-closed set if $int(cl(A)) \subseteq A$. - (2) a α -closed set if $cl(int(cl(A))) \subseteq A$. - (3) a pre-closed set if $cl(int(A)) \subseteq A$. - (4) a semipre-closed set if $int(cl(int(A))) \subseteq A$. - (5) a regular-closed set if A = cl(int(A)). - (6) a b-closed set if $cl(int(A)) \cap int(cl(A)) \subseteq A$. - (7) a b^* -closed set if $int(cl(A)) \subset U$, whenever $A \subset U$ and U is b-open. - (8) a SC^* -closed set if $scl(A) \subset U$, whenever $A \subset U$ and U is c^* -open. Date: August 23, 2024. 2020 Mathematics Subject Classification. 54A05, 54C08, 54C10, 54D15. Key words and phrases. πSC^* -closed, πSC^* -T_{1/2} - space, πSC^* -open, πSC^* -closure operator. The complements of the above-mentioned sets are called semi open, α -open, pre-open, semipre- open, regular open, b-open, b^* -open, and SC^* -open sets respectively. The intersection of all semi closed (resp. α -closed, preclosed, semipre-closed, regular closed, b-closed and SC^* -closed) subsets of (X, τ) containing A is called the semi closure (resp. α -closure, pre-closure, semipre-closure, regular closure, b-closure and SC^* -closure) of A and is denoted by scl(A) (resp. $\alpha cl(A)$, pcl(A), spcl(A), rcl(A), bcl(A) and SC^* -cl(A)). A subset A of (X, τ) is called clopen if it is both open and closed in (X, τ) . - 1.2. **Definition:** A subset A of a space (X, τ) is called π -closed [13] if A is a finite intersection of regular closed sets. - 1.3. **Definition:** A subset A of a Space (X, τ) is called c^* -open [9] if $int(cl(A)) \subset A \subset cl(int(A))$. - 1.4. **Definition:** A subset A of a space (X, τ) is called w-closed [11] (weakly closed) if $cl(A) \subseteq U$, whenever $A \subset U$ and U is semi-open in (X, τ) . - 1.5. **Definition:** A subset A of a space (X, τ) is called - (1) a g-closed set if $cl(A) \subset U$, whenever $A \subset U$ and U is open in (X, τ) . - (2) a gp-closed set if $pcl(A) \subset U$, whenever $A \subset U$ and U is open in (X, τ) . - (3) a gs-closed set if $scl(A) \subset U$, whenever $A \subset U$ and U is open in (X, τ) . - (4) a gb-closed set if $bcl(A) \subset U$, whenever $A \subset U$ and U is open in (X, τ) . - (5) a $g\alpha$ -closed set if $\alpha cl(A) \subset U$, whenever $A \subset U$ and U is open in (X, τ) . - (6) a πq -closed set if $cl(A) \subset U$, whenever $A \subset U$ and U is π -open in (X, τ) . - (7) a $\pi g \alpha$ -closed set if $\alpha cl(A) \subset U$, whenever $A \subset U$ and U is π -open in (X, τ) . - (8) a πqp -closed set if $pcl(A) \subset U$, whenever $A \subset U$ and U is π -open in (X, τ) . - (9) a πgs -closed set if $scl(A) \subset U$, whenever $A \subset U$ and U is π -open in (X, τ) . - (10) a πgb -closed set if $bcl(A) \subset U$, whenever $A \subset U$ and U is π -open in (X, τ) . Complement of π -closed set and w-closed set is called π -open set and w-open set. Complement of c^* -open set is called c^* -closed set. Complement of g-closed, gp-closed, gs-closed, gb-closed, $g\alpha$ -closed, πg -closed, $\pi g\sigma$ -closed, πgp -closed, πgp -closed, πgg -closed, and πgb -closed sets are called g-open, gs-open, gs-open, gs-open, $g\sigma$ -open, - 1.6. **Definition:** Let (X, τ) be a topological space then a set $A \subseteq (X, \tau)$ is said to be Q-set if int(cl(A)) = cl(int(A)). - 2. πSC^* -Closed Sets in Topological Spaces - 2.1. **Definition:** A subset A of a space (X, τ) is said if πSC^* -closed SC^* -cl $(A) \subseteq U$, whenever $A \subset U$ and U is π -open in (X, τ) . - 2.2. **Example.** Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$. Then the πSC^* -closed sets are $\{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, X\}$. - 2.3. **Definition:** A subset A of a space (X, τ) is said if πSC^* -open set if its complement is πSC^* -closed. - 2.4. **Example.** Let $X = \{a, b, c, d\}$ and $T = \{\phi, \{b, d\}, \{a, b, d\}, \{b, c, d\}, X\}$. Then the πSC^* -open sets are $\{\phi, X, \{a\}, \{b\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}$. - 2.5. **Theorem.** Let X be topological spaces. Then every w-closed set is πSC^* -closed. **Proof**. Let A be a w-closed set. Let U be a π -open set containing A. Since every π -open set is open. Since A is w-closed, $cl(A) \subset U$. Since SC^* - $cl(A) \subset cl(A)$, SC^* - $cl(A) \subset U$. Therefore, A is πSC^* -closed. - 2.5.1. *Remark.* The converse of the above theorem is not true as seen from the following example. - 2.5.2. Example. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$. Here $A = \{a, b\}$ is πSC^* -closed but it is not w-closed. - 2.6. **Theorem.** Let X be topological spaces. Then every closed set is πSC^* -closed. **Proof**. Let A be a closed set. Since every closed set is w-closed and by **Theorem 2.5**, A is πSC^* -closed. - 2.6.1. *Remark.* The converse of the above theorem is not true as seen from the following example. - 2.6.2. Example. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, X\}$. Here $A = \{a, b, c, d\}$ - $\{a, b\}$ is πSC^* -closed but it is not closed. - 2.7. **Theorem.** Let X be topological spaces. Then regular closed set is πSC^* -closed. **Proof.** Let A be a regular closed set. Since every regular closed set is closed and by **Theorem2.6**, A is πSC^* -closed. - 2.7.1. Remark. The converse of the above theorem is not true as seen from the following example. - 2.7.2. Example. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$. Here $A = \{a, b\}$ is πSC^* -closed but it is not regular-closed. - 2.8. **Theorem.** Let X be topological spaces. Then π -closed set is πSC^* -closed. **Proof**. Let A be a π -closed set. Since every π -closed set is closed and by **Theorem 2.6**, A is πSC^* -closed. - 2.8.1. *Remark.* The converse of the above theorem is not true as seen from the following example. - 2.8.2. Example. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$. Here $A = \{a\}$ is πSC^* -closed but it is not π -closed. - 2.9. **Theorem.** Let X be topological spaces. Then every g-closed set is πSC^* -closed. **Proof**. Let A be a g-closed set. Then $cl(A) \subseteq U$ whenever, $A \subseteq U$ and U is open. Let U be a π -open set containing A. Since every π -open set is open, U is open. Since A is g-closed, $cl(A) \subseteq U$. Since SC^* - $cl(A) \subseteq cl(A)$, SC^* - $cl(A) \subseteq cl(U)$. Therefore, A is πSC^* -closed. - 2.9.1. Remark. The converse of the above theorem is not true as seen from the following example. - 2.9.2. Example. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{b, d\}, \{a, b, d\}, \{b, c, d\}, X\}$. Here $A = \{a, b, d\}$ is πSC^* -closed but it is not q-closed. - 2.10. **Theorem.** Let X be topological spaces. Then every qs -closed set is πSC^* -closed. **Proof**. Let A be a gs-closed set. Let U be a π -open set containing A. Since every π -open set is semi-open, U is semi-open. Since A is gs-closed, $scl(A) \subseteq U$. Therefore, A is πSC^* -closed. - 2.10.1. Remark. The converse of the above theorem is not true as seen from the following example. - 2.10.2. Example. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$. Here $A = \{a, d\}$ is πSC^* -closed but it is not gs-closed. - 2.11. **Theorem.** Every *gp*-closed set is πSC^* -closed. **Proof.** Let A be a gp-closed subset of (X, τ) such that $A \subseteq U$ and U is π -open in X. Since every π -open set is open, $pcl(A) \subseteq U$, as $scl(A) \subseteq pcl(A) \subseteq U$, SC^* - $cl(A) \subseteq U$. Hence A is πSC^* -closed. - 2.11.1. Remark. The converse of the above theorem is not true as seen from the following example. - 2.11.2. Example. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a,b\}, X\}$. Here $A = \{a,b\}$ is πSC^* -closed but it is not gp-closed. - 2.12. **Theorem.** Every $g\alpha$ -closed set is πSC^* -closed. **Proof.** Let A be a $g\alpha$ -closed subset of (X, τ) such that $A \subseteq U$ and U is π -open in X. Since every π -open set is open, $\alpha cl(A) \subseteq U$, as $scl(A) \subseteq \alpha cl(A) \subseteq U$, SC^* - $cl(A) \subseteq scl(A) \subseteq U$. Hence A is πSC^* -closed. - 2.12.1. Remark. The converse of the above theorem is not true as seen from the following example. - 2.12.2. Example. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, X\}$. Here $A = \{a\}$ is πSC^* -closed but it is not $g\alpha$ -closed. - 2.13. **Theorem.** Every *gb*-closed set is πSC^* -closed. **Proof.** Let A be a gb-closed subset of (X, τ) such that $A \subseteq U$ and U is π -open in X. Since every π -open set is open, $bcl(A) \subseteq U$, as $scl(A) \subseteq bcl(A) \subseteq U$, $SC^*-cl(A) \subseteq scl(A) \subseteq U$. Hence A is πSC^* -closed. - 2.13.1. *Remark.* The converse of the above theorem is not true as seen from the following example. - 2.13.2. Example. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{a, c\}, X\}$. Here $A = \{a, c\}$ is πSC^* -closedbut it is not gb-closed. - 2.14. **Theorem.** Every b^* -closed set is πSC^* -closed. **Proof.** Let A be a b^* -closed subset of (X, τ) such that A U and U is π -open in X. Sinceevery π -open set is b-open, and A is b^* -closed, as $scl(A) \subset int(bcl(A)) \subset U$, SC^* - $cl(A) \subset U$. Hence A is πSC^* -closed. - 2.14.1. Remark. The converse of the above theorem is not true as seen from the following example. - 2.14.2. Example. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}$. Here $A = \{a\}$ is πSC^* -closed but it is not b^* -closed. 2.15. **Theorem.** Every πg -closed set is πSC^* -closed. **Proof.** Let A be a πg -closed subset of (X, τ) such that $A \subset U$ and U is π -open in X. Then $cl(A) \subset U$, as SC^* - $cl(A) \subset Scl(A) \subset U$. Hence A is πSC^* -closed. - 2.15.1. Remark. The converse of the above theorem is not true as seen from the following example. - 2.15.2. *Example.* Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{d\}, \{a, d\}, \{c, d\}, \{a, c, d\}, X\}$. Here $A = \{c\}$ is πSC^* -closed but it is not πg -closed. - 2.16. **Theorem.** Every $\pi g \alpha$ -closed set is πSC^* -closed. **Proof.** Let A be a $\pi g \alpha$ -closed subset of (X, τ) such that $A \subset U$ and U is π -open in X. Then $\alpha cl(A) \subset U$, and as $scl(A) \subset \alpha cl(A) \subset U$, $SC^*-cl(A) \subset scl(A) \subset U$. Hence A is πSC^* -closed. - 2.16.1. Remark. The converse of the above theorem is not true as seen from the following example. - 2.16.2. Example. Let $X = \{a, b, c, d, e\}$ and $\tau = \{\phi, \{a, b\}, \{c, d\}, \{a, b, c, d\}, X\}$. Here $A = \{a\}$ is πSC^* -closed but it is not $\pi g\alpha$ -closed. - 2.17. **Theorem.** Every πgp -closed set is πSC^* -closed. **Proof.** Let A be a πgp -closed subset of (X, τ) such that $A \subset U$ and U is π -open in X. Then $pcl(A) \subset U$, and as $scl(A) \subset pcl(A) \subset U$, SC^* - $cl(A) \subset Scl(A) \subset U$. Hence A is πSC^* -closed. - 2.17.1. Remark. The converse of the above theorem is not true as seen from the following example. - 2.17.2. Example. Let $X = \{a, b, c, d, e\}$ and $\tau = \{\phi, \{a, b\}, \{c, d\}, \{a, b, c, d\}, X\}$. Here $A = \{a, b\}$ is πSC^* -closed but it is not πgp -closed. - 2.18. **Theorem.** Every πqs -closed set is πSC^* -closed. **Proof.** Let A be a πgs -closed subset of (X, τ) such that $A \subset U$ and U is π -open in X. Then $scl(A) \subset U$, and as $bcl(A) \subset scl(A) \subset U$, SC^* - $cl(A) \subset bcl(A) \subset scl(A) \subset U$, SC^* - $cl(A) \subset SC^*$ - $cl(A) \subset U$. Hence A is πSC - $cl(A) \subset SC$ - $cl(A) \subset U$. - 2.18.1. Remark. The converse of the above theorem is not true as seen from the following example. - 2.18.2. *Example.* Let X be the real numbers with the usual topology and A be the set of irrational numbers in the interval (0, 2). Then A is πSC^* -closed but it is not πgs -closed. # 3. CHARACTERISTICS OF πSC^* -Closed Sets 3.1. **Theorem.** Let X be a topological space. If ϕ and X are the only π -open sets, then all thesubsets of X are πSC^* -closed. **Proof.** Let A be a subset of X. If $A = \phi$, then A is πSC^* -closed. If $A \neq \phi$, then X is the only π - open set containing A. This implies, SC^* -cl $(A) \subseteq X$. Hence A is πSC^* -closed. 3.2. **Theorem.** Let X be a topological space. If A is πSC^* -closed subset of X such that $A \subseteq B \subseteq SC^*$ -cl(A) Then B is a πSC^* -closed set in X. **Proof.** Let H be a π -open set containing B. Then $A \subseteq H$. Since $A \subseteq \pi$ is a πSC^* -closed we have SC^* -cl $(A) \subseteq H$. Since $A \subseteq \pi$ is a πSC^* -closed set in X. 3.3. **Theorem.** Let X be a topological space and A be a subset of X. If A is regular open and πSC^* -closed, then A is both semi-open and semi-closed. **Proof.** Assume that A is regular open and πSC^* -closed. Since every regular open set is π -open, we have SC^* - $cl(A) \subseteq A$. Then $A = SC^*$ -cl(A). This implies, A is semi-closed. Since A is regular open, we have A is semi-open. Hence A is both semi-open and semi-closed set in X. **3.4. Theorem.** Let (X, τ) be a topological space if $A \subset X$ is nowhere dense then A is πSC^* -closed. **Proof.** Let $A \subseteq U$ where U is π -open in X. Since A is nowhere dense, SC^* - $cl(A) = \phi$. Now SC^* - $scl(A) \subset SC^*$ - $cl(A) = \phi \subset U$. Therefore A is πSC^* -closed in X. - **3.5. Theorem.** If $cl(SC^*-cl(A)) \subset B \subset A$ and A is πSC^* -open, then B is πSC^* -open. **Proof.** Let F be a π -closed set such that $F \subseteq B$. since $B \subseteq A$ we get $F \subseteq A$. Given A is πSC^* -open thus $F \subset cl(SC^*-cl(A)) \subset cl(SC^*-cl(B))$. Therefore B is πSC^* -open. - **3.6. Definition.** A space (X, τ) is called a $\pi SC^* T_{1/2}$ space if every πSC^* -closed set is π -closed. - **3.7. Theorem.** For a topological space (X, τ) the following are equivalent. - 1. X is $\pi SC^*-T_{1/2}$ - 2. for all $A \subset X$, A is πSC^* -open if A is π -open. - **Proof.** (1) \Rightarrow (2) Let $A \subseteq X$ be πSC^* -open. Then (X A) is πSC^* -closed and by (1) (X A) is π -closed $\Rightarrow A$ is π -open. Conversely assume A is π -open. Then (X A) is π -closed. As every π -closed set is πSC^* -closed, (X A) is πSC^* -closed $\Rightarrow A$ is πSC^* -open. - (2) \Rightarrow (1) Let A be a πSC^* -closed set in X. Then (X A) is πSC^* -open. Hence by (2) $(X A)\pi$ -open \Rightarrow A is π -closed. Hence X is πSC^* - $T_{1/2}$. - **3.8 Theorem.** Let (X, τ) be a πSC^* -T_{1/2} space then every singleton set is either π -closed or b^* -open. **Proof.** Let $x \in X$ suppose $\{x\}$ is not π -closed. Then $X - \{x\}$ is not π -open. Hence $X - \{x\}$ is trivially πSC^* -closed. Since X is πSC^* - $T_{1/2}$ space, $X - \{x\}$ is b^* -closed $\Rightarrow \{x\}$ is b^* -open. #### 4. CONCLUSION In this paper we have introduced πSC^* - closed sets in topological spaces and studied some of its basic properties. Also, we have studies the relationship between πSC^* - closed sets with some generalized sets in topological spaces. #### REFERENCES - 1. Sinem Caglar Akgun and G Ashm, On πgb -closed sets and related topics, International Journal of Mathematical Archive **3** (2012), no. 5, 1873–1884. - 2. Dimitrije Andrijević, On b-open sets, Matematički Vesnik (1996), no. 205, 59-64. - 3. SP Arya, Characterizations of s-normal spaces, Indian J. Pure Appl. Math. 21 (1990), no. 8, 717–719. - 4. Gulhan Aslim, Aysegul Caksu Guler, and Takashi Noiri, On π gs-closed sets in topological spaces, Acta Mathematica Hungarica **112** (2006), no. 4, 275–283. - 5. J Dontchev, On generalizing semi-preopen sets, Mem. Fac. Sci. Kochi Univ. Ser. A, Math. 16 (1995), 35-48. - 6. J Dontchev and T Noiri, Quasi-normal spaces and π g-closed sets, Acta Mathematica Hungarica **89** (2000), no. 3, 211–219. - 7. Norman Levine, *Generalized closed sets in topology*, Rendiconti del Circolo Matematico di Palermo **19** (1970), 89–96. - 8. Haruo MAKI, Every topological space is pre-t j 1/2, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 17 (1996), 33–42. - 9. S Malathi and S Nithyanantha Jothi, *On pre-generalized c*-closed sets in topological spaces*, Journal of Computer and Mathematical Sciences **8** (2017), no. 12, 720–726. - 10. JH Park, MJ Son, and BY Lee, On πgp -closed sets in topological spaces, Indian J. Pure Appl. Math., Acta Mathematica Hungarica **112** (2006), no. 4, 257–283. - 11. A Pushpalatha, Studies on generalizations of mappings in topological spaces, (2000). - 12. D Sreeja and C Janaki, *On πgb-closed sets in topological spaces*, International Journal of Mathematical Archive **2** (2011), no. 8, 1314–1320. - 13. V Zaitsev, On certain classes of topological spaces and their bicompactifications, Dokl. Akad. Nauk SSSR, vol. 178, 1968, pp. 778–779. - 14. A. Chandrakala and K. Bala Deepa Arasi, On SC*- closed sets in topological spaces, Science, Technology and Development, Vol.XIV. May 2022, 416-421.