# GESTURE CONTROL IN MEDIA PLAYER THROUGH DEEP LEARNING TECHNIQUES

Karthi S,

Information Technology Veltech Hightech Dr.Rangarajan Dr.Sakunthala Engineering College.

## Rajasimman A

Information Technology
Veltech Hightech
Dr.Rangarajan
Dr.Sakunthala
Engineering College.

# Vigneshwaran T,

y Information Technology Veltech Hightech Dr.Rangarajan Dr.Sakunthala Engineering College.

# \*Corresponding Author

S.Nithya ME Veltech Hightech Dr.Rangarajan Dr.Sakunthala Engineering College.

#### **ABSTRACT**

Early life, the world operates through interaction with intricate processes that guarantee a reaction. Because gesticulation recognition systems can communicate with both humans and computers, they have drawn interest in the past. Communication between humans and systems generates a complex understanding of the signals. In this research, we proposed a simple method for quickly and efficiently executing media player gestures. With this approach, we canuse our hands to manage the media without the need for technology (Gesture). The deep learning model Keras plays a vital role in hand motion detection. This video simplifies this occasionally complex idea into manageable chunks. Three principles will be covered: activation and pool, shared weights and biases, and local receptive fields.

**Keywords** — Python Open CV, Tensor Flow, PyAutogui, Keras, and Streamlit.

# 1.INTRODUCTION

Gesture recognition is becoming anessential component of computer-human interaction. To make it easier for people to communicate with computers in a straightforward manner Humans can communicate with robots by gestures instead than using keyboards, laser pens, orother devices. Without having to touch the PC directly, users of the suggested system can use the Media Player with four easy gestures. A gesture can represent an emotion or a physical behavior. Both hand and body gestures are included. Static gestures and dynamic gestures are the two types into which it belongs. For the former, a sign is indicated by a body position or hand gesture. For the latter, certain messages are sent through hand or body movement. Gestures can be employed as a means of communication between humans and computers. It can achieve gesture recognition to enable human-computer interaction, which sets it apart from the conventional hardware-based approaches. Through the recognition of a body component or body gesture, gesturerecognition technology ascertains the user'sintent. Many academics have worked toadvance the technology for hand gesture detection over the past few decades. In numerous applications, including robotcontrol, augmented reality (virtual reality), sign language interpreters for the impaired, and sign language identification, hand gesture recognition is extremely valuable. Due to their capacity for effectivehuman-computer interaction, gesture-basedreal-time gesture recognition systems have drawn a lot of interest lately.

When various natural forms of device-free communication are established, Human- Computer Interaction can benefit from multiple factors.

In order to control the media player with gestures, this project creates low-cost inputsoftware based on vision and computer vision techniques.

Controlling Media using Hand Motions: The authors of the 2022 system, Human-Computer Interaction, Vallabh Chapalgaonkar, Atharva Kulkarni, and Amey Sonawale, suggested that the development of various organic forms of device-free communication can yield a number of

benefits. Utilizing gestures as a means of communication with computers creates a new paradigm for computing interaction since gestures are a natural sort of activity that we frequently utilize in our daily lives. using the help of computer vision and gesture recognition algorithms, this project creates low-cost input softwarebased on vision that allows users to operatemedia players using gestures[1].

Hand Gesture Recognition Based on Pixels Using Kinect Depth Camera Writers: Chong Wang A method that makes advantage of the Kinect Deposit Camera was proposed in 2015 by Chong Wang with the title "Super Pixel-Based Hand Gesture Recognition with Kinect Depth Camera". Large pixels serve as its foundation, providing a compact representation that faithfully capturestextures, forms, and deep touch features. System costs are increased because this program makes use of the Kinect camera for depth[2].

Writing the Recognition System: Hand Swapnil D. Badgujar is the author. A system that stated to see touching an unknown input via hand tracking and extraction approach was proposed in 2014 by Swapnil D. Badgujar in his paper "Handwriting The Recognition System." The application see one touch uses this one. One idea is to have a fixed background such that the tracking zone is searched by a smaller machine. This application solelyuses the webcam to control the mouse finger.[3]

Motion Non-specific-user hand touch recognition using MEMS Accelerator: Wen J. Li, Shengli Zhou, and Ruize Xu Thesystem that Ruize Xu, Shengli Zhou, and Wen J. Li created in 2012, titled "MEMS Accelerometer Based Non- Specific-User Hand Touch Recognition," was able to recognize a variety of hand movements, including up, down, right, left, crossing, and turning. To identify distinct hand motions, three separate modules were built. MicroElectromechanical System) 3. The inputs are axes of accelerometers. Three accelerometers detected the hand movement in three perpendicular directions, and they transmitted the data to the system using Bluetooth. After applying the segmentation algorithm, different hand motions were eventually identified by the system since they had the same touch. People frequently favor the internet for daily updates on the weather, news, etc. Thus, they employ the mouse and keyboardfor this purpose. The limited size of the hand touch website means that this application provides minimal accuracy in obtaining final touch points[4].

The Hand Gestures Interface for VLC Media Player Operation Based on Vision: Siddharth Swarup Rautaray and Anupam Agrawal The Vision based Hand Gestures Interface for Operating VLCMedia Player Application application, developed in 2010 by Anupam Agrawaland Siddharth Swarup Rautaray, employed the closest K neighbor method to detect different types of touches. Hand movements controlled the play, pause, full screen, volume up/down, and capacity reduction features of the VLC media player. Lucas Kanade's Optical Flow at Pyramidical Video input by hand is detected by the algorithm. The aforementioned method finds movement spots in the input image. Next, a hand centeris found using K's methods. The hand is noticed in the same way when employing this facility.

#### 2.EXISTING SYSTEM

To provide an interface that connects the system to its surroundings so that it can recognize specific colors and use that information as a point of reference to interact with the system and carry out somebasic duties, such managing a media player and adjusting its settings. Some significantissues in the actual world could be resolvedwith gestures, including:

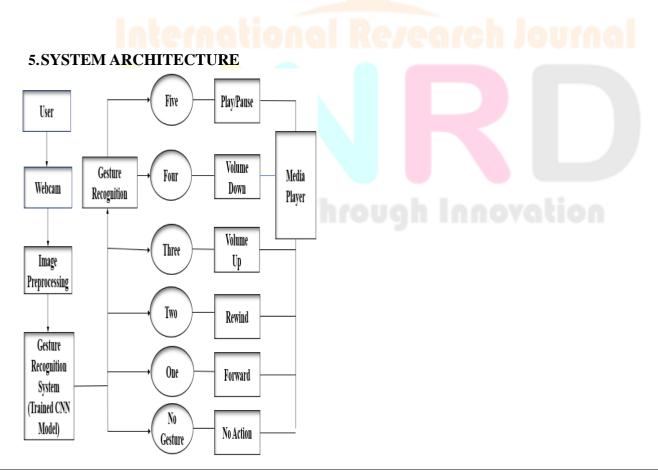
**Demerits of Existing System:** 

#### 1. Communicate at Distance

It makes it possible for users to interact withthe system even when they are far away from it. Therefore, if high-quality web cameras are utilized, they may record gestures at a sufficient distance. For example, a user can sit anywhere in the room and access the media player; the motion just needs to be visible for the web cameras to record it.

**2. Beneficial for Person with Disability** In the world, about 1 billion people sufferfrom a disability. This translates to roughly15% of the global populace. Thus, gestures are helpful in resolving this issue. These people have direct gestural communication and media environment control.

# 3. Substitute for Keyboard and Mouse Media


controlled by gestures mayeventually take the place of keyboard andmouse hardware in computers. This allowsfor a decrease in the price of computerhardware. Computer hardware is a majorcontributor to e-waste. This program canassist in reducing the amount of ewasteproduced by these hardware components.

## 3.PROPOSED SYSTEM

With the help of this project, you may manipulate a media player with hand gestures, giving users a novel interface thatsimulates what they would encounter in thereal world. They don't need any interruptions or extra devices, and they feelnatural. Additionally, they provide a variety of interaction options rather than restricting the user to a single point of input. Here, an image is transformed to RGB when it is captured. We will now verify if our image contains more than one hand. The list of hand elements—that is, the number of points on the hand—that we were able to identify using the media pipe are stored in an empty list in this code. Now require the thumb and index finger to control volume, so as was previously mentioned, the list should start out empty. Then, when our hand is recognized, we will assign coordination to the thumb and index finger. After that, we'll draw a circle on the thumband index finger tips. The thumb and index finger tips will then be connected by a line that we draw. Next, using a hypothesis, wewill measure the distance between our fingers and adjust the sound level accordingly. Similar controls for play and pause are available; the only differences arein their range and gestures.

## 4.METHODOLOGY

An open-source Python library called OpenCV is utilized for computer vision tasks like facial recognition, machine learning, and artificial intelligence. The term "computer vision" (abbreviated as "CV") in OpenCV refers to the branch of research that assists computers in comprehending the content of digital images, including photos and videos. The goal of computer vision is to comprehend the image content. It takes the written description, the item description, the three-dimensional model, and so on, and extractsit from the images. Computer vision, for instance, can be used to help cars. It can recognize and respond to various items on the road, such as pedestrians, traffic signals, signs, and so on. The computer can carry out jobs with the same efficiency as humansthanks to computer vision. When it comes to object classification, we use a dataset of specific items to train a model, which then classifies new things into one or more of your training categories. The images can berecognized in two main ways: The only twocolors shown in a grayscale image are blackand white. White is considered to be the strongest intensity and black to be the poorest intensity when measuring contrast. The computer determines the value of each pixel in the grayscale image according to itsdegree of darkness. An RGB is the result of combining the colors red, green, and blue tocreate a new hue. Each pixel's value is extracted by the computer, which then stores the findings in an array for interpretation.



# **CONCLUSION**

Gesture recognition has gained widespreadawareness as a result of technological breakthroughs that offer new, practical, andquick ways for people to communicate withcomputers. Although the various current systems have decent functionality, users have not been very positive about them. These systems' complicated algorithms andlow accuracy rates are the primary causes of the issue. In order to overcome these problems and differentiate itself from othergesture recognition systems, a new system has been suggested. It will offer a touch- free user interface for managing multimediafiles and programs, including music and video players. It will serve as a helpful toolfor system manipulation for those with impairments who are unable to use their input devices or for anyone who wouldrather use this more organic way of communication compared to another method.

# RESULTS AND FUTURE SCOPE

In today's world, there are numerousoptions for giving input to any program; some require physical contact, while othersdon't (voice, hand gesture etc.). However, there aren't many apps that use the neat and modern feature of accepting input using hand gestures. The user can control the application using this manner without a keyboard and mouse when they are far away. This program offers a new human-computer interface that allows the user to manipulate the media player (VLC) with hand gestures. The VLC player's functions can be controlled by certain gestures defined by the program. Using gestures, theuser will input data based on the function that interests them. People with physical disabilities can create the application's userinterest gestures more easily because it gives them the option to define the gesturesin a way that best suits their needs. The current application's recognition phase is not as strong. By using more resilient techniques to lessen noise and blur motion, the application's robustness can be raised. Currently, the application uses a global keyboard shortcut in VLC to control the player. The keybd\_event() function is used to create a keyboard event for that global shortcut. It's not the most intelligentmethod of managing any application.

# APPENDIX: SCREENSHOTS:



Fig1:Play/Pause-5

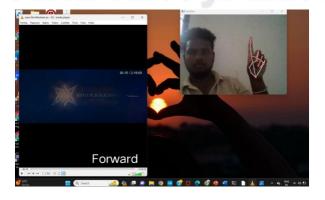



Fig2: Forward-1



Fig3:Rewind-2



Fig4:Volume Down-4



Fig5: Volume-up-3

#### REFERENCE

- [1] Sidharth Rautaray et Anupam Agrawal, "AVision Based Hand Gesture Interface for Controlling VLC Media Player", Journ. International Journal Of Computer Applications (0975-8887), vol. 10-No.7, November 2010.
- [2] D Jadhav et Prof L.M.R.J Lobo "Hand Gesture Recognition System To Control Slide Show Navigation", Journ. International Journal Of Applications or Innovation in Engineering & Management (IJAIEM)", vol. 3, PP-283- 286, January 2014.
  - [3] N. Krishna Chaitanya et R. Janardan Rao "Controlling of Windows Media Player Using HandRecognition System", Journ. The International Journal Of Engineering And Science (IJES), vol. 3,PP 01-04, 2014.
  - [4] Xiaoming Liu et Tsuhan Chen "Video- Based Face Recognition using Adaptive Hidden Markov Model", Electrical and Computer Engineering, Caregie Mellon University, Pittsburgh, PA, 15213, U.S.A.
  - [5] Davis A, Nordholm S, Togneri R: Statisticalvoice activity detection using low-variancespectrum estimation and an adaptive threshold. Audio, Speech, Lang. Proc. IEEE Trans 2006,14(2):412–424.

- [6] Jyoti Rani et Kanwal Garg, "Emotion Detection Using Facial Expression", Journ. International Journal Of Advanced Research In Computer Science & Software Engineering, Vol. 4,PP-465467, April 2014.
- [7] Chong Wang, Zhong Liu and Shing-Chow Chan"Superpixel-Based Hand Gesture Recognition with Kinect Depth Camera", IEEE Trans. Multimedia, vol. 17, no. 1, Jan.2015.
- [8] Swapnil D. Badgujar, Gourab Talukdar, Omkar Gondhalekar and Mrs. S.Y. Kulkarni "Hang Gesture Recognition System", International Journal of Scientific and Research Publications, vol. 4, Issue 2, Feb. 2014, pp. 2250-3153.
- [9] Viraj Shinde, Tushar Bacchav, Jitendra Pawar and Mangesh Sanap "Hand Gesture Recognition System Using Camera", International Journal of Engineering Research & Technology (IJERT), Vol. 3, Issue 1, January 2014. N. Krishna Chaitanya and R.Janardhan Rao "Controlling of windows media player using hand recognition system", The International Journal Of Engineering And Science (IJES), Vol. 3, Issue 12, Pages 01-04, 2014.
- [10] N. Krishna Chaitanya et R. Janardan Rao "Controlling OF Windows Media Player Using Hand Recognition System", Journey. The International Journal of Engineering and Science (IJES), vol. 3, PP 01-04, 2014. X. Liu, Y. Huang, X.Zhang, and L. Jin. "Fingertip in the eye: A cascaded CNN pipeline for the realtime fingertip detection in egocentric videos," CoRR, abs/1511.02282, 2015.
- [11] Anupam Agrawal and Siddharth Swarup Rautaray "AVision based Hand Gesture Interface for Controlling VLC Media Player", International Journal of Computer Applications, vol. 10, no. 7, Nov. 2010. Asanterabi Malima, Erol Ozgur, and Mujdat Cetin "A Fast Algorithm for Vision-BasedHand Gesture Recognition for Robot Control", Turkey, 2006.
- [12]. Eleventh International Multi-Conference on Information Processing-2015 (IMCIP-2015)Human Computer Interaction using Hand Gesture Ram Pratap Sharma\* and Gyanendra K. Verma National Institute of Technology Kurukshetra, Kurukshetra, Haryana 136 119, India, 2015.
- [13]. Design of Intangible Interface for Mouseless Computer Handling using Hand Gestures Alisha Pradhana\*, B.B.V.L. Deepakb aDepartment of Industrial Design, NIT Rourkela, Rourkela-769008, India bDepartment of Industrial Design, NIT Rourkela, Rourkela-769008, India, 2016.
- [14]. EMG-based HCI Using CNN-LSTM Neural Network for Dynamic Hand Gestures RecognitionQiyu Li\* Reza Langari\*\*
  \*Texas A&M University, College Station, TX 77843 USA (e-mail: qiyu.li@tamu.edu). \*\*Texas A&M University, College Station, TX 77843 USA, 2022.
- [15]. Hand gesture recognition method based on HOG- LBP features for mobile devices Housem Lahiania,b,c,\*,Mahmoud Nejib,c aNational Schoolof Electronics and Telecommunications (Enet'Com),University of Sfax,Tunisia bFaculty of Economics and Management (FSEGS), University of Sfax,Tunisia cMultimedia Information Systems andAdvanced Computing Laboratory (Miracl), Sfax,Tunisia ,2018.

