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ABSTRACT 

Congenital abnormalities, trauma, and infections all cause tissue and organ loss in both humans and animals. The 

human being's body has a lower regenerating capability than urodele amphibians, sometimes known as 

salamanders. Hundred so thousands of people worldwide would benefit greatly from the ability to replace organs 

and tissues on demand. Historically, transplanting intact organs and tissues has served as the foundation for 

replacing damaged and sick body components. Dependence on transplant has resulted in waiting list of persons 

wanting organs and tissues donated, and supply is often insufficient. To provide risk-free and reputable sources, 

Scientists together with clinicians attempts to develop medications and procedures for regenerating tissue and, in 

some circumstances, creating completely new tissue. Tissues engineering, often known as regenerative medicine, 

is a branch of life sciences that integrates engineering techniques with biological concepts in order to create new 

organs as well as tissues or to stimulate the regenerative process of injured or diseased tissues. Significant 

advances are being made not only in regenerative medicine (RM), but also in tissue engineering, which will have a 

significant influence on natural 3D bioprinting (BP) of organs as well as tissues. 3D BP has tremendous potential 

not only in tissue BP, but also for artificial organs. This paper examines Recent advancements into regenerative 

medicine including tissues engineering can assist from 3D BP and conversely. Before 3D bioprinting becomes 

extensively employed to generate organotypic constructions for RM, several hurdles must be solved. 

Index Terms: Tissue Engineering, organ, Biomedical, Biological, Bioprint,  Transplant 

INTRODUCTION 

Tissue as well as organ limits are currently recognized as a major concern to the health of the public, with few 

people eligible for transplantation [1, 2]. Most organ and tissue waiting lists do not accurately reflect the scale of 

the crisis, as only patients seek such assistance [3–8]. Scientists and physicians frequently use the phrases RM as 

well as tissue engineering interchangeably, and they are utilized as synonyms in this review. Regenerative 

medicine's future prospects are dependent on its capacity to fix and substitute damaged organs as well as tissues [9, 

10]. RM has demonstrated encouraging results in regeneration as well as replacement of numerous tissues and 

organs, including the skin, kidneys, the heart, also liver, which has the potential to heal some 

http://www.ijrti.org/


         © 2024 IJNRD | Volume 9, Issue 8 August 2024| ISSN: 2456-4184 | IJNRD.ORG 

IJNRD2408114 International Journal Of Novel Research And Development (www.ijnrd.org) 
 

 

b185 
c185 

congenital abnormalities [11-13]. The customary dependence on volunteers organs and tissue for transplantation is 

complicated by the shortage of donors and the potential for organ-specific immune rejection [14, 15]. The large 

number of organ transplants performed in poor countries is an example of transplant tourism in which well-funded 

and powerful foreigners are prioritized over local residents [1, 16, 17]. Strategies like this are often denounced 

since they can result in being taken advantage of vulnerable communities [1,18,19]. Regardless of a country's 

economic status, medical institutions that address issues such as organ shortages and the practical constraints of 

organ procurement and preservation can assist increase the overall number of persons eligible for organ 

transplantation [1, 20, 21]. Consequently, there is a need to further develop techniques and technologies to expand 

access to    organs and tissues for transplantation. In most situations, such as when injured in an accident, conflict, 

or natural disaster, tissues and organs need to be obtained only once for transplantation [22, 23]. The shortage of 

organs and tissues hampers not only medical care but also scientific research. One possibility is to generate lab-

grown tissues, made human tissues from animals, and biosynthetic organ [27-28]. RM has the potential to help 

solve these problems [29, 30]. 

For regenerative medicine (RM) approaches to demonstrate effectiveness, the materials employed must possess the 

capability to serve as replacements for damaged tissue, functioning akin to the original tissue, or facilitate the 

regeneration of previously compromised tissue [31, 32]. Cells employed in RM and tissue engineering endeavors 

may be sourced from the patient themselves (autologous) or from a different donor (allogeneic). Moreover, 

xenogeneic cells sourced from animals are viable options for integration into regenerative medicine protocols [33, 

34]. Tailoring the RM strategies to the individual's age enables the exploitation of various techniques to enhance 

the body's innate recuperative mechanisms [35, 36]. Materials have long been utilized to mimic the extracellular 

matrix of cells, offering more than mere structural support [37-39]. Biomaterials, in conjunction with biomimetics, 

possess the inherent capability to stimulate rejuvenation independently, while also serving as carriers for bioactive 

molecules such as growth factors, crucial for driving cellular proliferation [32, 34, 38-40]. Biomaterials or 

scaffolds, previously considered essential for supporting physical cells, can now integrate biological signals and 

cues to improve or enhance tissue and functional regeneration.[41-43]. Different tissues have different 

regeneration capacity, so certain tissues may not need cells and only need biomaterials and biologicals, while other 

tissues do not have extensive regeneration capacity and need biomaterials, biological for regeneration. They also 

need biomoleculesandcells.Organsandtissueswithlittleornegligibleuseof 

regenerative capacity include cartilage and cornea, while organs and tissues with significant regenerative capacity 

include liver and lungs [ 9 , 44 , 45 ]. 

Over the past decade, both the FDA and EMA have granted authorization for numerous 3D bioprinted constructs 

and stem cell therapies [11, 12, 36, 46]. Such therapies along with goods include biologicals, medical equipment, 

and biopharmaceuticals [36, 47, 48]. This approach uses bone morphogenetic proteins (BMPs) for synthesis of 

bones and platelet-derived growth factors for healing wounds [49, 50]. Although FDA-approved products often 

outperform existing treatments, their effectiveness is variable [ 36 , 51 – 54 ]. However, most solutions fail to 

adequately treat intricate injury and disorders [36, 52- 54]. Emerging biologics, including treatments based on stem 

cells, take longer for them to reach the market due to the stringent rules necessary for FDA clearance and a 

shortage of funding for these goods. It typically takes over a decade for a product to make it to market, and over a 

billion dollars is being invested in its development [12, 29, 36, 51, 55-57]. Introducing new medical devices is 

generally easier and less expensive than introducing drugs or biologicals. This has promoted the research and 

development of acellular regeneration technologies. 

3D printing is one of the most significant technological developments in thelast few decades [58, 59]. Primarily, it 

is noteworthy that biological materials can be directly deposited onto scaffolds through the process of 3D 
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bioprinting [60]. This innovative technique amalgamates principles from materials science, cell biology, and tissue 

engineering [59, 61, 62]. To successfully mimic human tissues, 3D bioprinting must demonstrate proficiency in 

reproducing the intricate architecture of the extracellular matrix (ECM) and the abundant cell populations 

characteristic of each tissue type [36, 59, 63-65]. 

1.Augmentationofhumanbodytissueand organs 

Bodily tissues,possess both shape and functioning, thus synthetic materials need to be capable of mimicking the 

morphology and qualities of the desired tissues or organs [66-68].The breakdown of organs along with tissues 

prior to transplantation holds promise because it removes immune cells while preserving the structure as well as 

the composition of the original extracellular matrix material. [69, 70]. Decellularization is usually performed on 

organs that are too old for transplantation. Decellularized ECM offers merit of mimicking Specific to tissue 

Characteristics and thus provides appropriate signals for cell differentiation and proliferation [ 69, 71 - 75 ]. The 

accumulation of specific decellularization surfactants is an issue that has to be rectified. Decellularization 

techniques, in conjunction with the advent of biological reactors, have proven to be efficacious in treating a myriad 

of diseases in laboratoryanimals[44,76,77].Ifthecellularrepopulationstageisskipped, 

decellularized organs and tissues can be used as health products [78–80]. The product is considered cell-free, 

which reduces time to market. There are many methods for decellularization of tissues and organs in general [36, 

42]. The majority of breakdown procedures have the potential to alter the physical attributes of tissues or organs; 

nevertheless, these techniques also entail the removal of messenger molecules typically present within the 

extracellular matrix (ECM) [36, 42, 69, 71, 74, 77, 81]. Employing chemical agents during the decellularization 

process may induce changes or degradation in the transplanted tissue or organ over time, thereby posing the risk of 

additional complications [44, 69, 72, 77, 82]. 

Fabricated scaffolds often lack the complete fidelity of biological organs and tissues [44, 59, 83, 84]. The 

overwhelming majority of these scaffolds are composed of a combination of extracellular matrix (ECM) proteins 

andsynthetic polymers [59, 85-87]. Notably, hydrogels emerge as a compelling option due to their resemblance to 

native tissue properties and their environmentally sustainable nature [36, 88, 89]. Hydrogels are widelyemployed 

in diverse fields, with significant applications observed in the treatment of congenital heart defects and the 

fabrication of vascular grafts [36, 62, 90]. Numerous studies have delved into cell proliferation, encompassing 

chondrocytes, both in elastin-based hydrogels independently and when combined with polymers such as 

polyethylene glycol and polycaprolactone [91- 94]. Additionally, researches has explored the impact of combining 

ceramics with natural biomaterials like type I collagen for the development of mesenchymal stem cells [39]. The 

role of seeded cells remains a subject of contention, with certain studies proposing that these cells predominantly 

instigate inflammation, thus promoting the infiltration of host cells to populate the graft and establish distinct 

blood vessels [36, 62]. Bearing this in mind, numerous vascular grafts, having undergone decellularization 

following extracellular matrix formation, are presently under scrutiny in clinical trials [78-80, 95]. Several 

investigations have illustrated that the mechanical characteristics of hydrogels and decellularized extracellular 

matrices (ECMs) yield therapeutic benefits and impact cellular differentiation [41, 51, 96-98]. Multiple 

investigations are currently ongoing to assess the impact of blending different scaffolds to enhance or additively 

improve scaffold performance [99- 101]. Furthermore, advancements in noninvasive imaging technology have 

made it feasible to tailor replacement tissues specific to a patient's body measurements [102]. Cutting-edge 

imaging technologies have already been harnessed to produce patient-specific scaffolds. Through the utilization of 

computed tomography (CT) scans, polymers were employed to fabricate structures such as the trachea and other 

tissues tailored to individual patients [103, 104]. 

1. 3DBIOPRINTING 

http://www.ijrti.org/


         © 2024 IJNRD | Volume 9, Issue 8 August 2024| ISSN: 2456-4184 | IJNRD.ORG 

IJNRD2408114 International Journal Of Novel Research And Development (www.ijnrd.org) 
 

 

b187 
c187 

In 2016, TE focused on additive manufacturing technology or 3D bioprinting. This technique involves the 

deposition of cells and biomaterials (bioinks) into predetermined 3D patterns and shapes through bottom-up 

assembly [105]. Biofabrication technology has made great advances in replicating the shape, complexity,and 

durability ofhuman tissue,which could lead to applications in organ engineering and therapy. Combining the use of 

computer-aided design/manufacturing (CAD/CAM) frameworks and 3D bioprinting has the potential to lead to 

personalized organ repair for patients. 

Several review papers released this year [106-112] provide an up-to-date summary of the rapidly evolving research 

field. 

As3Dbioprintingbecomesmainstream,wehighlightcurrentadvancesin basic and applied research. We use the unique 

properties of 3D bioprinting to create new bioink biomaterials, combine 3D bioprinting with nanomaterials 

toaddress unmet needs, and create multifaceted tissue constructs in the clinic. We focus on important technological 

advances, including advances in the vascular 3D printing process. networks. Relevance and application in 

regenerative medicine [112]. 

 INK JET BIOPRINTING 

Inkjet printing, more commonly known as droplet printers, is suitable for applications that include biological as 

well as non-biological applications. Commercial inkjet paper printers have effectively become printers of 

biological materials [31, 114, 115-117]. Biological materials in a liquid state are meticulously applied to specific 

surfaces with heightened clarity, precision,and swiftness. Conventionally, the liquid is propelled from the printer 

utilizing either thermal or acoustic pressure, directed onto a scaffold or substrate— integral constituents of the 

graft that can be implanted into tissue (refer to Figure 1). In thermal inkjet printers, a heated print head dispenses 

droplets of biological material onto the scaffold [118, 119, 120]. Crucially, the heating process does not 

compromise the quality or integrity of the biological material. Thermal inkjet printers stand out as the most cost-

effective choice and are extensively utilized in numerous bioprinting applications. Inkjet printers can also print on 

a variety of biological materials. Acoustic printers use piezoelectric crystals to generate sound waves [121]. 

Adjusting the time interval and the amplitude of the waves generated in the printer head enables the modification 

of the size of the drops of biological materials. Acoustic inkjet printers provide a convenient means to precisely 

regulate the size and trajectory of the stream of biological material droplets. Nevertheless, one 

drawbackofutilizinginkjetprintersisthenecessitytoupholdaspecific 

thickness of printed biological materials [59, 122]. Exceeding the specified viscosity may block the printer nozzle. 

To maintain a liquid-like biological material, the amount of cells that are captured and subsequently printed is 

generally reduced. A significant concentration of cells reduces droplet production and increases the possibility of 

printer nozzle clogging [59, 123]. Previously, inkjet bioprinting has been utilized for the regeneration of intact skin 

and cartilage [92, 113]. 
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Figure1:Using inkjet technology forbioprinting involves two primary methods. In thermal 

inkjetprinters,pressurepulses aregenerated by electrically heating the printhead, which directs droplets of biological 

material through a nozzle. Acoustic inkjet printers, alternatively, utilize piezoelectric pressure pulses to transform 

liquid into droplets. 

 “Laser-assistedbioprinting”(LAB) 

Numerous biological materials, notably peptides, cells, and DNA, have been successfully printed utilizing laser-

assisted bioprinting [124, 125]. While less common than inkjet and micro extrusion bioprinting, this technique 

employs laser pulses to create pressure bubbles, which are then dispersed onto the scaffold or substrate (refer to 

Figure 2). This approach does not cause printer head blockage as there is not a nozzle. Furthermore, this approach 

can be tailored to accommodate various viscosities. This suggests that cell densities akin to those found in natural 

tissues can be achieved with minimal impacts on cell viability and functionality [127]. Metallic residues are 

generated during printing and end up in the end product of bioprinted substance; this contamination is a key 

downside of the technology [59, 126]. Furthermore, this procedure is highly expensive, and it is hoped that these 

prices would reduce with time. The efficacy of laser-assisted bioprinting has been demonstrated in human tissue as 

well as in the development of many animals [128,129]. 

 

Figure 2 - Laser printers employ a pulsed laser beam directed at an absorbent substrate, creating a pressure bubble 

facilitates the deposition of biological material onto the substrate. 

2. “New perspectives on RM and tissue engineering” 
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When producing tissues as well as grafts, several parameters must be considered, including the biological material 

and biological source used [46, 59].Transplanted rejuvenated tissue must align with normal tissue in terms of cell 

types and function [58, 130, 131, 132, 133].As in healthy organs and tissues, different cells play different roles, 

including endothelial cells, which provide structural and support functions. Hence, the selection of cells utilized in 

3D bioprinting significantly influences the performance of the eventual graft or scaffold [44, 59]. 

To integrate, implanted graft or scaffold must regenerate itself and continue to maintain homeostasis [29, 134, 

135]. Autologous cells are the most preferred cell source because they prevent host immune responses [134, 135]. 

Autologous cells can undergo in vitro expansion to cultivate into the desired cell types before 3D bioprinting or 

implantation. Nevertheless, employing autologous cells comes with certain constraints, including the regenerative 

capacity of primary cells and the technical hurdles associated with in vitro cell culture. Compared to cell-free 

printing, 3D bioprinting offers greater controllability, as it involves the incorporation of cells during the printing 

process. Additionally, for successful integration of a graft into the body, proper vascular integration within the 

patient's blood vessels is essential [136, 137]. Our body cells are strategically positioned near blood vessels to 

facilitate the transportation of oxygen and nutrients [138]. However, conventionaltechniques like biomimetic 

scaffolding and tissue and organ engineering often 

fallshortinmeetingtheneurologicalandvascularrequirementsnecessaryfor 

tissues and organs. To tackle this challenge, a range of angiogenic growth factors, including VEGF, bFGF, and 

PDGF, have been integrated into tissue engineering strategies to promote blood vessel formation [138, 139]. These 

growth factors are administered to the scaffold, prompting the body to initiate angiogenesis. However, the short 

half-life and potential adverse effects of growth factors raise concerns [96, 140]. Experimental findings indicate 

that sustained release of growth factors has been successful in preventing necrosis in specific tissues [96, 141]. 

One strategy to facilitate graft vascularization before transplantation is by promoting angiogenesis within the graft 

itself. Endothelial cells can be incorporated into suitable substrates during 3D bioprinting prior to implantation. 

Several approaches, including microfluidics and patterning, have been used to generate or stimulate angiogenesis 

intissues [ 59 , 142 , 143 ]. It has been shown to enhance the engraftment of the implanted graft prior to 

vascularization of the target site [ 144 , 145 ]. Numerous tissues necessitate the presence of additional nerves for 

optimal functionality. Likewise, analogous tissues require the host to innervate the transplanted tissue for proper 

integration [59, 146]. Similar to vascularization, growth factors are pivotal in facilitating nerve sprouting within 

grafted tissues [147]. Hydrogels can be designed with channels containing extracellular matrix (ECM) proteins and 

growth factors to guide neural growth following implantation [148, 149]. 

There are various concerns that need to be addressed with cells utilized in 3D bioprinting. Ensuring cell viability 

throughout the 3D bioprinting process is imperative, staying strong, proliferate, also differentiate, much as stem 

cells do [59]. When the the scaffold or as graft has been implanted, cells must operate normally. Finally, all cells 

employed in the 3D bioprinting process ought to be capable of interacting directly or via the release of 

biomolecules that consist of growth factors & cytokines. Therefore, cells with the ability to self-renew and 

differentiate into various cell types, such as embryonic and adult stem cells,are highly sought after. Adult stem 

cells are deemed safer for transplantation compared to other cell types and retain their potency following 3D 

bioprinting [59, 150]. The introduction of external cells alone stimulates the host tissue to release biological 

molecules such as growth factors. Transplanted cells,whether accompanied by scaffolds or materials or not, can 

trigger a host response to repair tissue damage [151, 152]. Moreover, transplanted cells can modify the 

composition of the host extracellular matrix (ECM) by secreting growth factors, producing new ECM proteins, or 

releasing ECM-degrading enzymes like matrix metalloproteinases (MMPs) [153, 154]. Transplanted cells do not 

need to contact host cells to induce these therapeutic responses [59, 150, 155]. Mesenchymal stem cells (MSCs) 

are the preferred cell type when the priority is the repair of damaged tissue [150, 156, 157]. These cells are 
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consideredsaferthanembryoniccells.Inaddition,cellsderivedfromadult 

tissues are widely available. Most commercially available therapies use cells derived from adult tissue 

[69,158,159]. Induced pluripotentstem cells (iPSCs) and embryonic stem cells (ES cells) serve as abundant cell 

sources in regenerativemedicineinitiatives[44,160]. Severalstudieshaveshowcased that ES cells have the capacity 

to differentiate into all cell types present in the human body and can be safely employed in regenerative medicine 

procedures [161, 162]. iPSCs, derived from a patient's own cells, mitigate the risk of rejection of transplanted cells 

[163, 164]. However, cells transplanted using scaffolds are rapidly eliminated through the host tissue and their 

efficiency decreases [165]. To address this, coating the cells with materials such as hydrogels may allow them to 

remain in the transplanted tissue for a longer period of time, possibly preventing rejection [166,167]. Coating 

transplanted cells with specific antibodies or peptides facilitates their ability to target particular organs or tissues 

[168, 169]. Despite its role in graft and new tissue rejection, the immune system may actively stimulate tissue 

regeneration and improve graft survival [170]. Because of technological advancements, changing scaffold features 

can reduce graft rejection while increasing graft tolerance [170, 171]. 

3. BIOPRINTING OF TISSUES 

Cartilage Regeneration 

Articular cartilage allows humans, along with other animals, to walk without pain. Pathological events and 

disorders associated with osteoarthritis cancause cartilage loss and pain during movement in humans [172-176]. 

The presence of cartilage adjacent to joint surfaces serves as a lubricant and absorbs the body's weight during 

physical activity. Comprised primarily of extracellular matrix (ECM) proteins such as collagen type II and 

aggrecan, cartilage collaborates with synovial fluid to provide lubrication and withstand loads [177]. Successful 

regeneration necessitates replicating the surface layer orinterstitialtissue ofcartilage.However,synthetic derivatives 

ofpolymersand metals pose challenges; for instance, plastic and metal cartilage implants have limited lifespans and 

can provoke a foreign body response due to wear. Recently,a combination ofchondrocytesand 

mesenchymalstemcells has been employed to address cartilage abnormalities through regeneration [173, 178]. 

However, the utilization of cells has yielded relatively satisfactory outcomes, partly due to a limited understanding 

of the mechanisms underlying cartilage growth. Our research indicates that the extracellular matrix derived from 

the surrounding cells can direct the differentiation of adipose-derivedmesenchymal stem cells (MSCs) toward the 

chondrogenic lineage [41, 179]. Recently, biomaterials mimicking cartilage stromal tissue have been developed, 

concurrently promoting cartilage repair. Incorporating hyaluronic acid into 

biomaterialsalongsidehydrogelsenhanceslubrication[43,180].Crucially, 
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integrating living cells into biomaterials has enhanced the regenerationprocess, yielding superior outcomes 

compared to using cells and biomaterials separately [41, 176, 181]. Some translational research has focused on the 

combination of different biomaterials of stem cells. Multiple studies have showcased that robust soft materials can 

augment the chondrogenic growth of stem cells [41, 182, 183]. Various polyethylene glycol (PEG) hydrogels have 

been investigated for cartilage repair alongside other polymers [184, 185]. Successful integration and inclusion of 

alginate, gellan gum, and type II collagen have been accomplished. 

4. 3D BPOF ORGANS 

3D organ BP presents significantly greater challenges compared to tissue bioprinting, as it demands precise and 

intricate placement of multiple cell types to replicate complex organic organs [59, 188]. In addition, not only blood 

vessels, but also nerves are required for organ function. Scientists and doctors must determine whether these 

complex organs can be mass-produced for in- vivo transplantation. While thin tissue bioprinting has seen 

advancements, the 3D printing of larger and more intricate organs and tissues poses ongoing challenges. The 

complexity and size of organs necessitate extended bioprinting times, potentially impacting cell viability [29, 59, 

189, 190]. Biomolecules like chemokines and growth factors can enhance cell viability before and after 

bioprinting. Bioreactors play a crucial role in post-printing processes by providing an optimal microenvironment 

for long-term storage and culture ofthe final scaffold or implant. These bioreactors simulate healthy organ 

environments, facilitating nutrient, oxygen, and biomolecule exchange and ensuring a conducive environment for 

the scaffold or graft [69, 70, 72, 191]. During incubation, cells must communicate and synthesize extracellular 

matrix (ECM), leading to an equilibrium among cells, ECM components, and cell surface receptors [66, 69, 192, 

193-195]. This equilibrium promotes integration of the graft or scaffold with host tissue. Tissue engineering and 

regenerative medicine enable the development of functional, full-scale organs for transplantation [66, 69, 192, 194, 

196]. Despite the feasibility of 3D bioprinting various tissues due to differences in complexity, bioprinting organs 

remains a formidable challenge.The complexity of organs requires simultaneous bioprinting of many tissues as 

well as cell lines [1, 66, 69, 192]. To achieve a single function, both cells and tissues must be interconnected. The 

key is that organizations must be able to interact with each other. 

 Heart 

The heart, one of the earliest functional organs during fetal development, plays a crucial role in sustaining life by 

facilitating blood circulation throughout the body[100].With its intricate structure, the heart consists primarily of 

three 

celltypes: cardiomyocytes,endothelial cells,and fibroblasts [200].Heartfailure often necessitates organ transplants, 

but the limited availability of donor organs underscores the urgency for alternative solutions. In this context, 3D 

bioprinting emerges as a promising avenue to address this challenge. Numerous publications indicate that many 

cardiac designs and implants have been evaluated [90, 201-204]. The heart needs proper blood vessels and 

innervation for effective functioning. Consequently, cardiac structures and grafts require adequate vascularization, 

which presents a significant problem. The extracellular matrix of the heart plays an important role in cell 

differentiation, including protein expression. The extracellular matrix (ECM) of the heart is predominantly 

composed of collagen. Due to its complexity, heart repair has been approached through various techniques such as 

allografts, xenografts, and even autologous transplants. Tissue engineering and regenerative medicine hold 

promise in addressing heart repair and cardiovascular diseases, garnering significant attention. Already, 

3Dbioprinting has been utilized to create functional heart tissue, including heart valves. Biodegradable materials 

are commonly employed for bioprinting heart valves, enabling the replication of valve structures. Multiple 3D 

bioprinting techniques and cell types have been utilized to create living heart tissue [44, 59]. Embryonic stem (ES) 

cells have shown the capability to form embryoid bodies [98], and direct laser synthetic bioprinting provides 

precise control over their size and growth [205, 206]. MSCs containing more endothelial cells have been printed 

on patches to stimulate blood vessel growth [31, 59, 205, 206]. The majority of 3D bioprinted cells demonstrate 
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high cell viability and differentiation towards the cardiac lineage, as indicated by the expression of cardiovascular 

transcription factor genes. Coronary artery occlusion and myocardial infarction result in significant damage to the 

heart, prompting exploration of artificial myocardial tissue as an alternative solution [207, 208]. Myocardial 

infarction primarily leads to heart failure due to cell death caused by necrosis. Notably, bioprinting technology has 

been utilized to create viable patterned patches that enhance the function of infarcted hearts post- transplantation. 

For example, alginate hydrogels containing cardiomyocyte progenitor cells sustain cell viability and promote 

cardiac tissue repair. Additionally, decellularized heart tissue has been employed in microextrusion bioprinting to 

generate heart tissue [8, 209]. Furthermore, the bioprinting of living prostheses capable of responding to cardiac 

conditions and integrating moreeffectively with thehumanheartthannon-living prostheseshas improved prosthetic 

performance. 

 Liver 

Hepatocytes comprise the vast majority of liver tissue [210]. The liver contains 

severaladditionalcells,includingportalfibroblasts&endothelialcells.The 

liver plays a crucial role in several metabolic activities, including plasma synthesis of proteins, hormone 

production, & xenobiotic detoxification. The liver is divided into four hepatic lobes и contains two types of cells: 

parenchymal and nonparenchymal. Hepatocytes have a tremendous regenerating ability, rendering the liver among 

the most regenerative organs. However, once maintained in vitro, hepatocytes degrade rapidly [211]. Adult stem 

cells are the preferred option for 3D bioprinting of liver tissue because they can be directly harvested from 

patients, allowing for the bioprinting of personalized tissue [173, 211, 212]. These stem cells also express 

hepatocyte- like genes. The creation of microlivers has enabled high-throughput screening of numerous promising 

drugs. Various bioprinting methods have been utilized to create 3D liver tissues [213, 214]. Embryonic stem cells 

have beenbioprinted to generate liver constructs using valve-based bioprinting techniques, leading to the 

subsequent differentiation of the cells into hepatocyte-like cells [36, 160, 215]. Adipose-derived stromal cells, 

Wharton's jelly-based stromal cells, and liver progenitor cells are among the cell sources utilized for liver 

construction and transplantation. Bioprinted cells have exhibited hepatocyte-like characteristics such as albumin 

secretion. The incorporation of endothelial cells has enhanced the complexity of these structures. Hydrogels 

incorporating different combinations of gelatin, polyethylene glycol, and alginate have been employed for the 3D 

bioprinting of liver-like structures [32, 122, 216, 211-213, 217-221]. In addition to injury responses, many 3D 

bioprinted tissues exhibit liver-specific functions. Several companies and research institutes have developed liver 

constructs that mimic the natural structure and function of the liver [52, 211, 212, 214, 222, and 223]. The demand 

for liver tissue is significant, and producing liver tissue or even whole livers through bioprinting holds the potential 

to address this demand effectively. Other experiments conducted using liver tissue containing organoids include 

drug trials, including liver disease research. Stem cell- derived hepatocyte-like cells rapidly degenerate in vitro, 

similar to adult hepatocytes [211]. The structure of the liver is intricate, characterized by a modular 

microenvironment, which poses challenges in accurately replicating normal liver tissue [211]. 

5. Challenges in 3D Bioprinting involving Tissues as well asOrgans 

3D bioprinting is a multidisciplinary field, so success requires collaboration between scientists from different 

disciplines. There are many challenges that must be overcome before the existing limited proof of concept can be 

translated into real 3D BP of tissues along with organs. Indeed, there is a pressing need for standardized techniques 

in the design and fabrication of tissues and organs [44, 59, 85]. This is problematic because some cells come from 

people who are 

very different from each other.As a result, the patterns of cell proliferation and final differentiation are different. 

Many technical issues must also be considered. Indeed, several challenges persist in bioprinting processes, 

including the slow speed of bioprinting and the biocompatibility of materials utilized [31, 58, 224, 225]. Moreover, 

many tissues necessitate the incorporation of diverse biomaterials and cells, which must be printed simultaneously 
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and accurately positioned, either as a cohesive unit or within a scaffold. Addressing these requirements may 

involve employing various bioprinting strategies. Following bioprinting, the scaffold or construct typically 

undergoes a period of maturation within a bioreactor [69, 71, 159, 194, 226]. This allows the cells to deposit 

extracellular matrix (ECM) simultaneously with the synthesis of biomolecules such as growth factors, which are 

essential for the development of viable tissue structures. 

Angiogenesis represents one of the most significant challenges in regenerative medicine and tissue engineering, a 

challenge that 3D bioprinting aims to address [127, 228-232]. Numerous studies have demonstrated successful 

creation of 3D vascular tissues in both human and animal models [233–238]. For example, Arcudas et al. 

demonstrated that vascularization of femoral bone defects in rats and sheep resulted in enhanced bone formation 

[239, 240]. Effective 3D bioprinting holds the promise of customization to meet an individual's specific 

regenerative needs. In view of the above, superior 3D bioprinting is required to ensure the suitability of the 

resulting structures and implants for human use. Each step of the process requires strict quality controls 

comparable to those used in human medicine. Most experiments to date have been conducted on animals. After 

development, all structures and implants must undergo approval by relevant regulatory authorities such as the FDA 

or the European Medicines Agency. While challenges persist, the field of tissue engineering, like regenerative 

medicine, holds immense potential, achievable through collaborative efforts among clinicians and researchers to 

advance bioprinting strategies and engineering designs. The versatility of 3D bioprinting extends beyond organ 

and tissue creation to other areas of research, including drug toxicity and oncology. 

CONCLUSION 

Regenerative medicine is currently used to treat a variety of diseases and conditions. Continuous manipulation of 

hybrid scaffolds and cells enables precise control of the host response to the presence of cells and scaffolds within 

organs and 3D bioprinted structures. Technological advances make it possible to colonize cells in specific areas of 

the scaffold to create customized, patient- specific grafts that resemble natural tissue. Most importantly, as more is 

learned about the vasculature and innervation of the graft, integration of the graft with the host tissue will improve. 

Advancements in technology for the 

Controlled release of growth factors within 3Dbioprinted structures and organs post-

transplantationfacilitateprecisehealingandregeneration.Modulatingthe immune system could potentially minimize 

the immunogenic response to 3D bioprinted organs and tissues, or at least enable scientists to achieve a more 

favorable immune reaction. Enhanced understanding of stem cell behavior and controlled cell differentiation may 

help address safety concerns. Furthermore, modifying the host environment to prevent rejection of 3D bioprinted 

constructs and organs, as well as creating a conducive niche for transplanted cells to thrive in "natural conditions," 

can significantly enhance the outcomes of regenerative medicine strategies. Recent research emphasizes the 

substantial impact of the microbiome on nearly every cellular process within the body. Consequently, 

comprehending the microbiome's role in graft establishment or integration is vital. The ongoing developmentof3D 

bioprinted models of human disease and illness must persist to drive significant advancements in regenerative 

medicine strategies. To propel the field of regenerative medicine and tissue engineering forward, scientists and 

physicians must embrace a mindset of "mimicking nature" or "collaborating with nature" when designing 

biomaterials and harnessing advanced technologies such as nanotechnology. 
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