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ABSTRACT 

Gold nanoparticles (AuNPs) have garnered significant attention in the realm of tumor diagnosis and treatment 

due to their unique fundamental properties. To optimize AuNPs for these applications, it is essential to 

thoroughly understand their inherent characteristics and their interconnectedness. 

AuNPs possess distinct physical and chemical properties that are pivotal in their utility. Physically, AuNPs 

exhibit localized surface plasmon resonance (LSPR), high X-ray absorption coefficient, and radioactivity, which 

are extensively leveraged in tumor diagnosis and therapy. Chemically, AuNPs can form stable bonds with sulfur 

(S) and nitrogen (N)-containing groups, facilitating versatile surface modifications with organic ligands or 

polymers tailored for specific functions. These modifications enhance AuNPs' biocompatibility, targeting 

efficiency, and drug delivery capabilities. 

This review systematically summarizes the physicochemical properties of AuNPs and elucidates their intrinsic 

relationships. It also discusses recent advancements in research and clinical trials utilizing these properties. 

Furthermore, the review identifies challenges in translating laboratory findings to clinical applications and 

proposes potential solutions. Finally, it assesses the feasibility of integrating these findings into clinical trials, 

aiming to guide researchers in effectively harnessing the remarkable physicochemical properties of gold 

nanoparticles for oncological therapies. 

 

1. Introduction 

The historical use of gold nanoparticles (AuNPs) in biomedicine dates back to the Middle Ages, where "potable 

gold," known in old Latin texts as "aurum potabile," was believed to possess remarkable therapeutic properties 

against ailments such as heart and venereal diseases, arthritis, epilepsy, and tumors, and even for diagnosing 

syphilis [1]. However, due to limited understanding at the time, the colloidal gold used was often in an oxidized 

state, leading to significant side effects during its application. 
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Modern nanotechnology has revolutionized the biomedical applications of AuNPs, leading to substantial 

progress and continued research interest in their potential. Several reviews have highlighted the superior 

properties of AuNPs and their diverse biomedical applications. For instance, Ghosh and Pal discussed the 

interparticle coupling effect on the surface plasmon resonance (SPR) of AuNPs, focusing on assembling 

strategies, optical properties, and applications [2]. In contrast, Dreaden et al. emphasized the synthesis, 

functionalization, and in vivo metabolic dynamics of AuNPs across diagnostics, imaging, and medicine [3]. 

Dykman and Khlebtsov explored the immunological properties of AuNPs, while Yang et al. covered their 

chemical synthesis, optical properties, biomedical applications, and pharmacokinetics, with a particular focus on 

tunable optical properties [4, 5]. 

The physical and chemical properties of AuNPs, influenced significantly by their nanostructure (shape and 

crystal texture), play a crucial role in their biomedical applications. For instance, gold nanorods or nanostars are 

preferred for photothermal therapy (PTT) or photodynamic therapy (PDT) due to their efficient absorption of 

near-infrared light (NIR) compared to spherical AuNPs [6]. Additionally, Au clusters have unique capabilities, 

such as producing propylene oxide (PO) from O2 and water, which AuNPs cannot achieve [7]. 

In the context of tumor diagnosis and treatment, understanding the natural properties of AuNPs is essential for 

optimizing their application. This review focuses on elucidating these fundamental properties—both physical and 

chemical—and their interrelationships. These properties include their roles as imaging agents, in phototherapy, 

radiotherapy, targeting, nano-enzyme applications, and drug delivery (Figure 1). Clinical trials showcasing 

AuNPs with various physical and chemical properties are highlighted to provide insights into their potential for 

clinical translation. 

 

Figure 01 Applications for tumor diagnosis and treatment based on the basic physical and chemical properties of 

gold nanoparticles  

2. Characteristics of AuNPs 

The physical properties of gold nanoparticles (AuNPs)—localized surface plasmon resonance (LSPR), 

radioactivity, and high X-ray absorption coefficient—are pivotal in both diagnosing and treating tumors. LSPR 

in AuNPs enables various applications such as surface-enhanced Raman spectroscopy (SERS), surface-enhanced 

fluorescence (SEF), photothermal and photochemical conversions, and colorimetric responses. These capabilities 

http://www.ijrti.org/


                            © 2024 IJNRD | Volume 9, Issue 7 July 2024| ISSN: 2456-4184 | IJNRD.ORG 

IJNRD2407219 International Journal Of Novel Research And Development (www.ijnrd.org) 
 

 

c221 
c221 

are extensively utilized for non-invasive detection in vivo and in situ, as well as for imaging, photothermal 

therapy (PTT), photodynamic therapy (PDT), and in vitro diagnostics (IVD). 

The radioactivity of AuNPs is harnessed for radiotherapy and radionuclide imaging (RNI), further enhancing 

their role in cancer treatment. Additionally, the high atomic number of AuNPs enhances their effectiveness in 

radiotherapy by sensitizing tumor cells. 

These unique physical properties highlight the versatility of AuNPs in oncology applications, significantly 

advancing diagnostic accuracy and therapeutic efficacy in the field. 

2.1. Localized Surface Plasmon Resonance (LSPR) 

 

Under light stimulation, electrons on a noble metal collectively oscillate, a phenomenon known as "plasmon" [8]. 

Plasmon resonance (PR) occurs when incident photons resonate with these oscillations of conduction electrons 

[6]. Due to rapid attenuation of the incident electromagnetic wave within the metal, resonance predominantly 

occurs at the metal surface, termed surface plasmon resonance (SPR) [9]. When SPR occurs in nanoparticles 

(NPs), which are similar in size to the incident light wavelength, it is termed localized surface plasmon resonance 

(LSPR). LSPR in gold nanoparticles (AuNPs) induces two significant effects: enhancement of the local 

electromagnetic field and increased extinction coefficient (Figure 2). 

During LSPR, electromagnetic fields near the surface of AuNPs can undergo significant enhancement, 

particularly in regions of high local curvature known as "hot spots" [10]. These hot spots amplify the spectral 

signals of nearby substances, a phenomenon referred to as surface enhancement spectroscopy (SES), crucial in 

oncotherapy applications such as surface-enhanced Raman spectroscopy (SERS) and surface-enhanced 

fluorescence (SEF) [11]. 

Moreover, LSPR maximizes the optical extinction of AuNPs (e.g., 2.7 × 10^8 M^–1 cm^–1 for 13 nm AuNPs), 

over 1000 times stronger than typical organic molecules [12]. This enhancement significantly boosts the 

efficiency of photothermal and photochemical conversions, as well as light energy absorption by AuNPs. These 

properties are exploited in photothermal therapy (PTT), photodynamic therapy (PDT), and colorimetric assays 

for tumor diagnosis and treatment. 

This section emphasizes the physical properties of AuNPs influenced by LSPR and their intricate relationship. 

Factors such as nanoparticle size, shape, composition, and microenvironment profoundly impact LSPR 

characteristics. For further exploration, interested readers are encouraged to refer to comprehensive reviews cited 

in Reference [13] 

 

 

Figure 02 Localized surface Plasmon resonance of AuNPs and associated properties. 
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2.1.1. Surface-Enhanced Raman Spectroscopy 

When monochromatic light interacts with a particle, Rayleigh scattering occurs if the particle is significantly 

smaller than the wavelength of the light. According to theory, the scattered light retains the same frequency and 

direction as the incident light. However, molecules adsorbed on the particle's surface also vibrate upon absorbing 

light, causing some of the scattered light to deviate in frequency from the original incident light. This 

phenomenon results in both Stokes scattering (lower energy) and anti-Stokes scattering (higher energy). The 

difference in energy between the scattered photon and the incident photon is known as Raman scattering (RS) 

[14]. RS corresponds to the vibrational mode energy of the adsorbed molecule, making Raman imaging capable 

of providing finely detailed vibrational information (approximately 0.1 nm resolution), often referred to as a 

"chemical fingerprint," crucial for precise single molecule detection [15]. 

However, the cross-sections of RS are typically small, ranging from 10 to 30 cm²/molecule, which limits its 

sensitivity and detectability [16]. This limitation is overcome by surface-enhanced Raman spectroscopy (SERS), 

which can enhance Raman signals from 10⁶ to 10¹⁵, significantly boosting signal sensitivity. SERS finds 

extensive use in sensing, detection, and imaging applications, particularly in cancer diagnosis [17]. Gold 

nanoparticles (AuNPs) serve as effective contrast agents in SERS, facilitating imaging of small tumors, 

differentiation of tumor cells, monitoring of tumor metabolism, and detection of tumor markers. 

For instance, Qian et al. employed AuNPs conjugated with single-chain variable fragment (ScFv) antibodies 

targeting epidermal growth factor receptors (EGFR) on human cancer cells and xenograft tumor models, 

successfully enhancing and detecting RS signals [18]. Hossain et al. utilized an AuNP-deposited ITO substrate to 

enhance Raman signals, effectively characterizing and distinguishing sub-types of breast cancer cells originating 

from various organs [19]. Shiota et al. utilized AuNPs with horse-bean shapes to generate multiple SERS 

excitation sources, visualizing hypotaurine consumption, a critical mechanism in cancer survival [20]. Lin et al. 

demonstrated the diagnostic utility of AuNP-based SERS in detecting colorectal tumor markers with high 

sensitivity and specificity in patient serum samples [21]. 

For further insights into the application of AuNPs as SERS imaging agents, interested readers are encouraged to 

explore additional literature reviews (e.g., [22]). 

2.1.2. Surface Enhanced Fluorescence 

Localized Surface Plasmon Resonance (LSPR) in AuNPs can induce either fluorescence quenching or 

enhancement in fluorescent molecules, depending on their proximity to the nanoparticles. When free fluorescent 

molecules absorb photons, they transition from the ground state to an excited state. Subsequently, they undergo 

vibrational relaxation and internal conversion (k_int), followed by returning to the ground state through energy 

decay, which includes radiative decay (γ) and nonradiative decay (k_nr) rates, where radiative decay manifests as 

fluorescence emission [23]. 

Nonradiative decay processes include intersystem transitions and energy transfer mechanisms like fluorescence 

resonance energy transfer (FRET), which predominantly causes fluorescence quenching in the presence of 

AuNPs. FRET efficiency decreases sharply with distance, and when the distance is less than 5 nm, the excited 

state energy of fluorescent molecules transfers completely to AuNPs, resulting in quenching [24]. This 

interaction between AuNPs and fluorescent molecules is pivotal for diagnostic applications, often achieved by 

linking them with specific linkers that modulate their spatial relationship. For instance, recognition sequences in 

linkers are employed to target cancer cells in lung tumors, acute lymphocytic leukemia, human Burkitt’s 

lymphoma, and for detecting intracellular mRNA in cancer cells [25-29]. 

Conversely, LSPR can enhance fluorescence via two mechanisms: improving the excitation efficiency and 

increasing the radiative decay rate of fluorescence. Enhanced electromagnetic fields at "hot spots" on AuNPs 

intensify molecule excitation, while AuNPs act as resonant cavities that elevate the radiative rate of quantum 
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emitters by enhancing the local density of states [30]. This property makes AuNPs valuable in applications such 

as two-photon luminescence (TPL) imaging for tumor cell visualization and three-dimensional in vivo imaging 

[31, 32]. AuNPs also facilitate connections with quantum dots, fluorescent molecules, or cellular 

autofluorescence emission, thereby enhancing tumor cell detectability and guiding targeted tumor therapy [33]. 

2.1.3. Photothermal Conversion 

After absorbing photons, AuNPs convert the energy of light into kinetic energy of electrons. These energetic 

electrons interact with the lattice/phonons of the material, causing them to scatter and transfer some of their 

kinetic energy into lattice vibrations. Ultimately, this vibrational energy dissipates as heat, which is known as the 

"photothermal effect." 

In cancer therapy, this effect is particularly advantageous due to the unique characteristics of tumor vasculature, 

which often lacks efficient blood vessel structure, leading to poor heat dissipation. Consequently, heat generated 

by photothermal conversion tends to accumulate within tumors, raising their temperature significantly (up to 

46°C), while surrounding normal tissues typically reach temperatures around 41°C. Tumor cells are also more 

susceptible to heat compared to normal cells, with lethal temperatures for tumors generally being between 42.5°C 

to 43°C, whereas normal cells can tolerate temperatures as high as 47°C. This differential thermal sensitivity 

makes photothermal conversion a promising approach for cancer cell imaging and photothermal therapy (PTT) 

[34]. 

Biological tissues exhibit low absorption and negligible spontaneous fluorescence in the near-infrared (NIR) 

spectrum [35], making it an ideal range for PTT applications. By adjusting the surface plasmon resonance of 

AuNPs to the NIR region, efficient photothermal conversion can be achieved, termed as plasmonic photothermal 

therapy (PPTT) [36]. Initially demonstrated in vitro using visible light in 2003, AuNPs have since been 

successfully applied in vivo for PTT via interstitial and intravenous injections [37-39]. Numerous strategies have 

been developed to enhance the efficiency of photothermal conversion and optimize AuNP performance for in 

vivo applications, including aggregation of small AuNPs (<10 nm) and nanostructure modifications [40]. 

Monitoring the photothermal conversion of AuNPs can be achieved through techniques such as photothermal 

imaging (PTI) [34] and photoacoustic imaging (PAI). These methods are instrumental in clinical tumor 

diagnosis, aiding in hyperthermia procedures and integrating visual therapy with diagnostic capabilities [42]. For 

further details on the applications and principles of AuNPs in PTT and PAI, additional references are available 

[43]. 

2.1.4. Photosensitization 

In response to photoexcitation, gold nanoparticles (AuNPs) can transfer their excited state photon energy to 

nearby molecules, such as organic photosensitizers or molecular oxygen (O2). This process leads to the 

generation of cytotoxic oxygen-based species like singlet oxygen (1O2), O2−, and OH−, which are crucial in 

photodynamic therapy (PDT) for cancer treatment [44]. AuNP-based PDT involves two main approaches: (1) 

using AuNPs to enhance the photosensitization of existing photosensitizers to produce 1O2, and (2) AuNPs 

acting as photosensitizers themselves to directly generate 1O2. 

Due to their localized surface plasmon resonance (LSPR), AuNPs efficiently absorb near-infrared (NIR) light 

energy and transfer it to photosensitizers or molecular oxygen. This capability addresses limitations of 

conventional organic photosensitizers, such as poor stability and low light energy conversion efficiency [45]. As 

a photosensitizer enhancer, AuNPs can enhance the sensitization of organic photosensitizers to produce 1O2 

[46]. Alternatively, AuNPs can directly sensitize molecular oxygen to generate 1O2, effectively killing tumor 

cells [47]. 
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In pioneering work, Vankayala and colleagues demonstrated that AuNPs can sensitize 1O2 formation under 

visible and NIR light excitation, showing significant PDT efficacy in treating solid tumors in animal models [48]. 

The yield of 1O2 formation has been linked to the shape of AuNPs [49]. Ongoing research focuses on enhancing 

AuNP roles in PDT. For instance, Chen et al. developed an AuNP-based photosensitizer capable of fluorescence 

imaging, alleviating tumor hypoxia, and inducing PDT under NIR-II (1064 nm) light in vivo [50]. 

PTT and PDT are frequently combined in studies, leveraging their complementary strengths in cancer therapy. 

The applications of these combined therapies are summarized in Table 1. 

Table 01 AuNPs are used for photodynamic therapy (PDT) and photothermal therapy (PTT) combination  

 

2.1.5. Colorimetric Responses 

Due to their high molar absorption coefficient, gold nanoparticles (AuNPs) enable highly sensitive detection 

through colorimetric analysis at nanomole levels, significantly surpassing traditional methods. AuNP-based 

assays exploit the plasmon-induced color change from red to blue, purple, or gray upon analyte-induced 

aggregation of AuNPs. These analytes encompass tumor-related proteins, nucleic acids, and cytokines [62]. Kang 

et al. pioneered the application of AuNP-based colorimetric assays for cancer diagnosis in 2010, focusing on 

charge-induced AuNP aggregation using activated protein kinase Cα (PKCα) as a cancer marker [63]. They 

employed a cationic PKCα-specific peptide substrate and AuNPs with anionic surface charges as the 

chromogenic agent. Phosphorylation of the cationic peptide substrate in cancer cells or tissue lysates increased 

anionic charges at the phosphorylation site, inhibiting AuNP aggregation and maintaining a red color. 

Conversely, normal cells or tissue lysates resulted in a blue color. 

Furthermore, Lu et al. demonstrated the selective detection of breast cancer with high HER2 expression using 

antibody-induced AuNP aggregation [65]. Lee et al. utilized AuNP-based assays for ultra-selective detection of 
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cancer mutations (e.g., BRCA1, EGFR, KRAS, p53) through base pairing-induced AuNP aggregation [66]. This 

platform supports signal amplification via isothermal amplification or polymerase chain reaction, achieving 

visualization of cancer-related molecules with picomolar sensitivity suitable for point-of-care applications [68, 

70] 

2.2. Radioactivity 

Gold (Au) is a metal with radionuclide properties that make it valuable in biomedicine. Isotopes like 198Au 

(half-life of 2.7 days) and 199Au (half-life of 3.2 days) are used because they can be excreted intact in urine [71] 

or accumulate in the liver [72]. These isotopes emit β-particles with energies of 0.96 MeV (198Au) and 0.45 

MeV (199Au), along with γ-rays (412 keV for 198Au and 208 keV for 199Au), which are useful for imaging 

[73]. 

198AuNPs, enriched with these radioactive isotopes, require smaller quantities to achieve therapeutic levels of 

radioactivity [74]. The high-energy β-emission of 198AuNPs is effective for tumor cell destruction [75], as 

demonstrated in studies where intravenous injection of 198AuNPs inhibited tumor growth significantly in mouse 

models of prostate cancer [76]. Target-specific 198AuNPs have been developed to enhance tumor accumulation, 

using tumor-specific antibodies or nanocomposite devices [76]. 

The γ-rays emitted by AuNPs can penetrate soft tissues effectively, making them suitable for imaging using 

single-photon emission computed tomography (SPECT) scanners [77]. For instance, PEGylated 198AuNPs have 

been used to image AuNPs in living animals and dissected tissues [79], and they have also been employed in 

Cerenkov luminescence imaging [80]. 

199Au, emitting β-particles with a maximum energy of 0.45 MeV and γ-rays of 208 keV, is particularly suitable 

for SPECT imaging [81]. This isotope has been incorporated into AuNPs for imaging in clinical studies, such as 

in mouse models of triple-negative breast cancer [82]. Researchers have also explored using 198,199Au-labeled 

amino-functionalized graphene oxide sheets for SPECT imaging in rat models of fibrosarcoma tumors [83]. 

The use of 199AuNPs is advantageous due to their ability to selectively bind to monoclonal antibodies, 

enhancing tumor targeting and potentially increasing therapeutic efficacy [84]. For further insights into the role 

of AuNPs in tumor imaging and treatment, relevant reviews can be consulted [85]. 

2.3. High Atomic Number 

When the atomic number exceeds 53, the absorption of X-rays increases [86]. Gold (Au), with an atomic number 

of 79, exhibits a significantly enhanced X-ray absorption coefficient [87]. This property makes Au promising as 

a sensitizer in radiotherapy for oncological treatments [88]. AuNPs enhance the cross-section of cancer cells or 

tissues to X-rays and emit secondary electrons such as photoelectrons [89], Auger electrons [90], Compton 

electrons [91], and other forms, which can directly ionize DNA molecules. This ionization leads to breaks in 

DNA strands, cross-linking of bases and sugars [93], and the generation of free radicals through interaction with 

tissue water [94]. These radicals bind to DNA, initiating electron transfers that further oxidize target DNA 

molecules. 

The mechanism behind AuNP-mediated radiotherapy sensitization is often quantified using a dose enhancement 

factor (DEF) [95]. The DEF of AuNPs depends on various factors including nanoparticle diameter, 

concentration, X-ray energy, intracellular localization, and the three-dimensional distribution of radiation doses 

[96-99]. Initial experiments by Hainfeld et al. underscored the radiosensitization effect of AuNPs, demonstrating 

prolonged survival in tumor-bearing mice treated with radiotherapy and AuNPs [100]. 

In addition to sensitizing radiotherapy, AuNPs' high X-ray absorption rate makes them effective contrast agents 

for X-ray (CT) imaging in cancer diagnosis, treatment guidance, and therapeutic evaluation. Popovtzer et al. 
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pioneered molecular CT imaging of cancer using targeted AuNPs, showing clear visualization of small tumor 

tissues in vivo [101, 102]. By modifying AuNPs with antibodies such as anti-EGFR, they achieved targeted 

imaging in models of head and neck cancer. 

For a comprehensive understanding of the theory and applications of gold nanoparticles in tumor radiotherapy, 

refer to detailed reviews [95], which discuss the physics, chemistry, and biological mechanisms of AuNP 

radiosensitization 

3. Chemical Properties 

3.1. Easy to Couple 

Gold nanoparticles (AuNPs) possess a distinct advantage over numerous other nanoparticles due to their ability 

to establish stable chemical bonds with groups containing sulfur (S) and nitrogen (N). This unique characteristic 

enables AuNPs to conjugate effectively with a diverse range of organic ligands or polymers tailored for specific 

functionalities. These surface modifications significantly enhance the biocompatibility of AuNPs and equip them 

with exceptional capabilities for targeting specific sites and delivering drugs [103]. 

3.1.1. Biocompatibility 

The biocompatibility of gold nanoparticles (AuNPs) in vivo is evaluated through their pharmacokinetics, tissue 

distribution, toxicity, and clearance mechanisms. Achieving biocompatibility is crucial for all applications of 

AuNPs in vivo, which can be enhanced by surface modifications, primarily through the formation of stable Au–S 

bonds. 

Strategies to optimize the pharmacokinetics of AuNPs include prolonging their circulation half-life by reducing 

clearance by the mononuclear phagocyte system (MPS) or optimizing their physical size. Polyethylene glycol 

(PEG) is widely used to decrease AuNP uptake by the MPS, with longer PEG chains increasing circulation half-

life [104]. Compared to larger AuNPs (e.g., 100 nm), smaller ones (e.g., 15 nm) exhibit prolonged in vivo 

circulation times [105]. However, AuNPs smaller than 6 nm are rapidly filtered and cleared by the kidneys [106]. 

For applications in tumor diagnosis and treatment, AuNPs must enhance retention in tumor tissues while 

minimizing accumulation in other organs. Upon entering circulation, AuNPs quickly undergo opsonization, 

leading to the formation of a protein corona that facilitates recognition by phagocytic cells in the MPS, 

predominantly located in the liver, spleen, and bone marrow [107]. Charged surfaces of AuNPs are more prone 

to forming protein coronas compared to neutral surfaces [40]. Accumulation of AuNPs in non-target organs can 

lead to toxicity, characterized by acute inflammatory responses and cell apoptosis. For instance, specific sizes of 

AuNPs have been shown to disrupt cellular metabolism and induce adverse effects in animal models [108, 109]. 

Fortunately, these toxic effects can be mitigated through surface modifications and optimization of 

physicochemical parameters. 

To minimize toxicity and enhance clearance from healthy organs, AuNPs are primarily cleared from the body via 

renal and biliary pathways, as they are not metabolized enzymatically within the body. Small AuNPs (less than 

10 nm) are efficiently cleared via renal pathways, with up to 70% eliminated within 72 hours, while larger ones 

are cleared via bile [110, 111]. Although the exact mechanisms remain under investigation, studies have 

consistently demonstrated the clearance mechanisms of AuNPs from the body. 

For further detailed information on AuNP biocompatibility and clearance mechanisms, interested readers are 

encouraged to consult relevant reviews [5, 6, 112]. 
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3.1.2. Targeting 

Targeting strategies for gold nanoparticles (AuNPs) can be categorized into passive targeting, involving the 

enhanced permeability and retention (EPR) effect and mononuclear phagocyte system (MPS) escape, and active 

targeting, which includes tumor cell-specific targeting and stimuli-responsive targeting. The EPR effect takes 

advantage of the abnormal vasculature and limited lymphatic drainage in tumors due to their rapid growth, 

allowing certain-sized AuNPs to efficiently penetrate and accumulate within tumor tissues. This property has 

been exploited for both imaging and therapeutic applications in cancer [113, 114]. 

MPS escape strategies for AuNPs often involve surface coatings with hydrophilic polymers [115], branched 

architectures [116], or particles with both hydrophilic and hydrophobic domains [117]. These modifications help 

evade immune system recognition and clearance, thereby enhancing AuNP accumulation at tumor sites. 

Active targeting of AuNPs relies on specific ligands that can recognize and bind to receptors overexpressed on 

cancer cells. Examples include Lam 67R and GRP for human prostate tumors [85, 118], and CCR5 and HER2 

for breast tumors [65]. These ligand-functionalized AuNPs improve specificity and efficacy in targeting cancer 

cells while minimizing off-target effects. 

Stimuli-responsive targeting involves both exogenous stimuli such as near-infrared (NIR) light [119], magnetic 

fields [120], and ultrasound [121], as well as endogenous stimuli such as pH changes [56] and redox conditions 

[122]. These stimuli trigger controlled release of therapeutic payloads from AuNPs within the tumor 

microenvironment, enhancing treatment efficacy while reducing systemic side effects. 

3.1.3. Delivery 

Gold nanoparticles (AuNPs) exhibit a capability to combine with chemotherapy drugs, proteins, or nucleic acids 

through electrostatic adsorption or covalent bonds. This property, coupled with their excellent biocompatibility 

and targeting abilities, positions them as highly promising vehicles for tumor-targeted delivery. In chemotherapy, 

AuNPs can effectively carry drugs such as mitoxantrone (MTX) [123], phthalocyanine4 (Pc4) [124], doxorubicin 

(Dox) [125], and photosensitizers [46], thereby enhancing their accumulation at tumor sites and improving 

therapeutic outcomes. 

In immunotherapy, AuNPs can be loaded with immune-targeting antibodies to stimulate immune cell activation. 

Examples of these antibodies include polyclonal anti-carcino-embryonic antigen (CEA) [126], monoclonal anti-

HER2 [121], among others. Dumani et al. developed AuNPs coated with glycol-chitosan that facilitate uptake by 

immune cells and subsequent transport to sentinel lymph nodes for metastasis detection [121]. 

3.2. Catalytic Activity and Applications 

In 1987, Haruta et al. published pioneering research demonstrating that gold nanoparticles (AuNPs) exhibit 

exceptional efficiency in catalyzing the oxidation of carbon monoxide (CO) at or below room temperature [128]. 

This discovery sparked rapid development in the field of AuNP-based biomimetic catalysts [129]. Since then, 

AuNPs have been shown to mimic the activities of various enzymes including nucleases, esterases, silicatein, 

glucose oxidase (GO), peroxidase (POD), catalase, superoxide dismutase, and oxidase. 

Among these mimic enzyme activities, the peroxidase-like activity of AuNPs was initially observed by 

catalyzing the oxidation of the peroxidase substrate 3,3,5,5-tetramethylbenzidine (TMB) using hydrogen 

peroxide (H2O2), resulting in a blue color formation in aqueous solutions [130]. This capability has been utilized 

to catalyze H2O2 within tumor cells under acidic conditions to generate hydroxyl radicals (·OH), inducing 
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intracellular oxidative damage in gastric tumors [131], and to detect glutathione (GSH) concentrations for cancer 

diagnostics [132]. 

The glucose oxidase-like activity of AuNPs involves the aerobic oxidation of glucose to gluconate and H2O2, 

which serves as a model reaction [133]. The localized production of H2O2 can trigger the growth of AuNPs, 

enabling sensitive detection of cancer biomarkers at picomolar levels [134]. Moreover, H2O2 produced can also 

act as a substrate for POD-like catalysis, leading to the generation of highly toxic hydroxyl radicals that induce 

apoptosis in tumor cells [135]. 

3.3. Biological Activity 

Gold nanoparticles (AuNPs) possess intrinsic antineoplastic biological activity in addition to their role in tumor 

therapy through external functionalization or activation. This biological activity is often size-dependent, with 

smaller AuNPs (less than 2 nm) capable of inducing cellular oxidative stress, mitochondrial damage, and 

interactions with DNA, thereby causing cancer cell death. Larger AuNPs do not exhibit the same cytotoxic 

effects at equivalent concentrations [136]. 

AuNPs with a particle size around 5 nm selectively interact with heparin-binding glycoproteins on endothelial 

cell surfaces, altering their molecular conformation and inhibiting tumor activity [137]. Furthermore, AuNPs 

have been reported to enhance apoptosis and suppress the proliferation of cancer cells [138]. They also 

selectively accumulate in the mitochondria of tumor cells, where they reduce mitochondrial membrane potential, 

increase reactive oxygen species production, and ultimately induce apoptosis in tumor cells. Importantly, normal 

cells and stem cells do not demonstrate the same susceptibility to these effects [139]. 

4. Application of AuNPs in Clinical Trial 

In practical applications, particularly in clinical trials, a comprehensive utilization of the physical and chemical 

properties of gold nanoparticles (AuNPs) is crucial to achieve effective oncotherapy. The current clinical trial 

applications of AuNPs are summarized in Table 2. 

Table 02 AuNPs are used for clinical trials in tumor therapy and diagnosis 

 

5. Areas for Improvement and Future Directions 

Despite the abundant promising data from laboratory studies, there is a notable scarcity of gold nanoparticle 

(AuNP)-based tumor therapy strategies currently undergoing or entering clinical trials. This gap is primarily 
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attributed to several challenges encountered during the transition from laboratory research to clinical application. 

These challenges include overcoming the clearance mechanisms of the mononuclear phagocytic system (MPS) 

and renal excretion to effectively target tumor tissues, navigating through various physiological barriers to exert 

therapeutic effects, and understanding the metabolic fate of nanoparticles post-treatment. 

A promising approach to address these challenges involves optimizing the utilization of AuNPs' physical and 

chemical properties. For instance, Liu and colleagues devised a multifunctional poly(amino acid)–gold–magnetic 

complex characterized by its large particle diameter (~170 nm), enabling evasion of renal clearance. The 

complex utilizes the enhanced permeability and retention (EPR) effect to penetrate vascular barriers, facilitating 

efficient CT imaging due to its high X-ray absorption coefficient. Moreover, its guanidine group enhances uptake 

efficiency by coupling with arginine on AuNPs, while its high photothermal conversion capability allows for 

effective photothermal therapy (PTT). Crucially, the complex biodegrades into smaller particles (~3 nm), 

enabling renal clearance post-therapy. 

By leveraging these exceptional properties of AuNPs through innovative designs, it is anticipated that more 

AuNP-based tumor therapy strategies will advance into clinical trials and ultimately receive approval for treating 

cancer patients. 
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