
© 2022 IJNRD | Volume 7, Issue 12 December 2022 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2212198 International Journal of Novel Research and Development (www.ijnrd.org)

b892

XGBoost Algorithm and Its Comparative

Analysis
Prof.Ankush Patil | Divya Pawar | Sanskar Shete | Sejal Tote | Harshal Rathod

Computer Department
Government College of Engineering, Yavatmal

Abstract: The study contains fundamental details about the XGBoost Machine Learning Approach of Classification. The

discussion of the XGBoost algorithm and its comparison with other Classification algorithms, such as Gradient Boosting

and Random Forest algorithm, which are used to address a variety of prediction and recommendation-related real-world

problems, was more broadly covered. The XGBoost algorithm, its features, and the workings of its techniques, which are

used in recommendation systems, were the paper's primary topics. These algorithms' goals, features, and comparison to

other classification algorithms are all described in detail.

Keywords: Machine Learning, Tree Algorithms, Tree Boosting, Random Forest, XGBoost, LightGBM, CatBoost

Introduction: The digital world has a wealth of data

including Internet of Things (IoT) data, cybersecurity data,

mobile data, business data, social media data, health data,

etc. Knowledge of artificial intelligence (AI), and more

specifically, machine learning (ML), is essential to

intelligently analyze these data and create the

corresponding smart and automated applications. A

potential problem of information overload that prevents

timely access to items of interest on the Internet has been

created by the exponential growth in the amount of digital

information available and the number of Internet users. To

analyze abundant of data or to classify it we need a strong

and accurate algorithm to categories it.

 When we want to develop any prediction or classification

model. Increasing the accuracy of our model takes up the

majority of our time. The XGBoost algorithm, however, is

a better algorithm that can be used to achieve this. Extreme

Gradient Boosting is the meaning behind the acronym

XGBoost. The decision tree algorithm with gradient boost

is employed. If you are not already familiar, please look at

gradient boosted decision tree. Download the XGBoost

library to your computer in order to use it. Results show that

it outperforms the majority of other algorithms in speed. R,

Python, Java, C++, and other languages all support

XGBoost. It is a requirement for performing XGBoost to

have vectorized data, preferably numerical data. In a

nutshell, I would like to say that predictions from multiple

decision trees are used rather than predictions from a single

decision tree. XGBoost grows the decision trees using a

leaf-wise growth strategy. This indicates that it divides the

branch of the tree that minimizes the loss function the most.

Though this approach can make the model vulnerable to

overfitting, it is still preferable. Their widespread success

can be attributed to the fact that they are simple to use and

don't require a deep understanding of internal workings.

The key contributions of this paper are listed as follows:

1) To specify the subject matter of our research by

taking into account the nature, properties, and

capacity of the XGBoost algorithm to address

various real-world classification problems.

2) To discuss how XGBoost algorithm-based

solutions can be used in a variety of real-world

application domains, such as systems that

recommend products to users.

3) To give a thorough overview of the XGBoost

algorithm and its uses in prediction systems, which

can be used to increase the application's intelligence

and capabilities.

4) Comparative analysis of the Various Classification

Machine learning approaches like Gradient

Boosting, Random Forest etc.

5) To emphasize and enumerate the potential research

lines within the purview of our study for intelligent

data analysis and services.

The rest of the paper is organized as follows. The next

section presents the types of data and machine learning

algorithms in a broader sense and defines the scope of

our study. We briefly discuss and explain about

XGBoost algorithm in the subsequent section followed

by the Comparative analysis are discussed and

summarized, and the final section concludes this paper.

Related Work: As device studying is turning into a

crucial a part of the achievement of greater and greater

applications together with credit score scoring, bioactive

molecule prediction, sun and wind power prediction, oil

rate prediction, type of galactic unidentified sources,

sentiment analysis, it's miles crucial to find fashions

which can deal efficaciously with complicated data, and

with big quantities of it. With that angle in mind,

ensemble strategies were a completely effective device

to enhance the overall performance of more than one

present fashions.

These strategies especially rely upon randomization

techniques, which consist in generating many various

answers to the trouble at hand, or on adaptive emphasis

http://www.ijnrd.org/

© 2022 IJNRD | Volume 7, Issue 12 December 2022 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2212198 International Journal of Novel Research and Development (www.ijnrd.org)

b893

procedures. In fact, the abovementioned applications have

in common that they all use ensemble methods and, in

particular, a recent ensemble method called Extreme

Gradient Boosting or XGBoost with very competitive

results. This method, based on gradient boosting, has been

consistently placed among the top contenders in Kaggle

competitions. But XGBoost is not the only one to achieve

remarkable results over a wide range of problems. Random

forest is also well known as one of the most accurate and as

a fast-learning method independently from the nature of the

datasets, as shown by various recent comparative studies.

What is XGBoost?: Extreme Gradient Boosting is the

abbreviation for XGBoost. A supervised learning method

called XGBoost employs an ensemble strategy based on

gradient boosting. Data scientists frequently use this

scalable end-to-end tree boosting system to get cutting-

edge outcomes on a variety of machine learning challenges.

It can efficiently solve classification and regression issues

while producing better outcomes. The Gradient Boosting

machines were used to implement the first iteration of this

algorithm. After making this work open-source, a sizable

data science community began making contributions to the

XGBoost projects, which helped to further improve the

algorithm. XGBoost has developed into a software library

and is now directly installable into our systems thanks to

such an amazing community. It supports a number of

interfaces, such as Python, R, and C++. XGBoost is a

distributed gradient boosting library that has been

optimized to be very effective, adaptable, and portable. It

uses the Gradient Boosting framework to implement

machine learning algorithms. It offers a parallel tree

boosting to quickly and accurately solve a variety of data

science problems. The comparison is carried out in terms of

accuracy and training speed.

Evolution of Tree Algorithms:

Deep learning and artificial neural networks dominate

the market for processing unstructured data like texts,

audio, and image files. At the same time, tree-based

algorithms predominate in the market when dealing with

small or medium-sized structured data. And when we

refer to a tree, Decision Trees serve as the fundamental

unit of analysis. Although DTs could solve classification

and regression problems, they quickly experienced

overfitting problems. To address this, we combined

several DTs with minimal changes to the data formation

process. Bagging and Random Forest algorithms were

produced by it. Following that, scientists concluded that

randomly assembling trees was time-consuming and

computationally inefficient. Why not construct trees

successively and enhance those areas where earlier trees

failed. Boosting was used in this situation. Later, to

further enhance the performance of the Gradient

boosting algorithms, researchers suggested model,

algorithmic, and hardware optimizations. The result of

all these improvements over Gradient boosting is called

XG-Boost.

Features supported by XGBoost:

There are multiple supports that XGBoost provides us.

These supports are growing over time as this framework

is open-source, and people contribute continuously to

enhance the features. Some of the most prominent

features are:

Model Support:

1. Regularized learning: Stronger algorithms are

constantly concerned with overfitting; to address

this, XG-Boost penalizes the overfitting tree using

both L1 and L2 regularization methods.

2. Gradient Tree Boosting: Gradient Boosting

Machines is the main gradient boosting algorithm

that XG-Boost supports (GBM).

3. Shrinkage and Column Subsampling: We

scale the learnings from more recent trees by a

certain amount. This shrinkage lessens the

influence of each individual tree and gives new

trees a chance to enhance the performance of the

model. Along with shrinkage, the dataset can also

support column and row subsampling to create the

GBM. The Random Forest algorithm also employs

this column subsampling.

Split Finding Algorithm’s Support:

1. Weighted Quantile Sketch: The distributed weighted

quantile sketch algorithm was suggested by the authors

of XG-Boost to automatically locate the ideal splitting

points in weighted datasets. The main goal was to

suggest a data structure that supports merge and

pruning operations, each of which was shown to

maintain a specific level of accuracy. This algorithm's

specifics are described in the research paper's appendix

section.

2. Sparsity-aware split finding: These days, it is quite

likely that the data you receive is sparse due to a

number of reasons, including missing values in the

data, frequent zero entries in the statistics, and feature

engineering artifacts like one-hot encoding. The XG-

Boost algorithm learns the best way to handle sparsity

by treating it as a missing value. According to the

testing, this addition outperformed the initial

implementation by a factor of 50.

http://www.ijnrd.org/

© 2022 IJNRD | Volume 7, Issue 12 December 2022 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2212198 International Journal of Novel Research and Development (www.ijnrd.org)

b894

System Design Support:

1. Column Block for Parallel Learning: In XGBoost,

the trees are sequentially grown using parallelization.

Getting the data sorted is the part of the tree learning

algorithm that takes the longest. XG-Boost suggested

using in-memory units known as blocks to store the

data in order to do this effectively. We employ nested

loops to build the base learners, with the outer loop

representing the enumeration of a tree's leaf nodes and

the inner loop representing the computation of the

features. Since these loops cannot be switched out in

the base implementation, computation overhead

results. With the aid of column blocks, XG-Boost

created a range of parallelized learning by making this

loop interchangeable.

2. Cache-aware Access: The creators of XGBoost

created a cache-aware prefetching algorithm that shifts

read/write dependency to a longer dependency and

aids in lowering runtime overhead when the number of

data's rows is sizable. Each thread allots an internal

buffer, retrieves the gradient statistics into it, and then

executes accumulation in a mini-batch fashion. 3.

Blocks for Out-of-core computation: XGBoost

uses out-of-core computation by dividing

the dataset into multiple blocks and storing these

blocks into discs to handle big data that does not fit

into the memory of our systems.

Evolved Supports:

1. In-built cross-validation method: Now that XG-

Boost has a built-in cross validation method, it can

automatically search and determine how many

hosting iterations are needed.

2. Continued Training: On a fresher dataset, an XG-

Boost model that has already been trained can be

fine-tuned.

These features and supports are growing continuously as

the XG-Boost library is open source.

Working: The XGBoost has a tree learning algorithm

as well as linear model learning, and because of that, it

is able to do parallel computation on a single machine.

This makes it 10 times faster than any of the existing

gradient boosting algorithms.

1. System Optimization

1) Tree Pruning – The XGBoost algorithm uses the

depth-first approach, unlike the stopping criterion

for tree splitting used by GBMS, which is greedy in

nature and it also depends upon the negative loss

criterion. The XGBoost instead uses the max depth

feature/parameter, and hence it prunes the tree in a

backward direction.

2) Parallelization – The process of sequential tree

building is done using the parallelized

implementation in the XGBoost algorithm. This is

made possible due to the outer and inner loops that

are interchangeable. The outer loop lists the leaf

nodes of a tree, while the inner loop will calculate

the features. Also, in order for the outer loop to

start, the inner loop must get completed. This

process of switching improves the performance of

the algorithm.

3) Hardware Optimization – Hardware optimization

was also considered during the design of the

XGBoost algorithm. Internal buffers are allocated

for each of the threads to store the gradient

statistics.

2. Algorithmic Enhancements

1) Awareness of Sparsity – XGBoost is known to handle

all different types of sparsity patterns very efficiently.

This algorithm learns the nest missing value by seeing

the training loss.

2) Regularization – In order to prevent overfitting, it

corrects more complex models by implementing both

the LASSO (also called L1) and Ridge regularization

(also called L2).

3) Cross-Validation: It is having built-in crossvalidation

features that are being implemented at each iteration in

the model creation. This prevents the need to calculate

the number of boosting iterations needed.

4) Distributed Weighted Quantile Sketch – It uses the

distributed weighted quantile sketch to get the optimal

number of split points among the weighted datasets.

Comparative Analysis of XGBoost algorithm with

Random Forest and Gradient Boosting:

Fig: Performance comparison using “SKLearn's

Make classification dataset”

 Boosting is an example of iterative learning, which

means that after making an initial prediction, the model will

analyze its errors as a predictive worker and give more

weight to the data points where it was incorrect in the

subsequent iteration. After the second iteration, it analyzes

its incorrect predictions once more and gives more weight

to the data points that were incorrectly predicted in the

subsequent iteration. This cycle of events keeps going.

Therefore, theoretically, if a prediction has been made,

there is a high probability that it did not occur by chance

but rather as a result of careful analysis and data patterns.

The most reliable model is one that avoids making

predictions based solely on chance. Each tree in a random

forest provides a prediction, and when all the trees have

produced results, the mean, median, or mode of the

collection is taken into account as the forest's prediction

depending on the type of data (either continuous or

categorical). On the surface, this appears to be fine, but

there is a good chance that most of the trees could have

predicted outcomes using some random chance, given that

http://www.ijnrd.org/

© 2022 IJNRD | Volume 7, Issue 12 December 2022 | ISSN: 2456-4184 | IJNRD.ORG

IJNRD2212198 International Journal of Novel Research and Development (www.ijnrd.org)

b895

each tree had its own set of unique conditions, such as class

imbalance, duplicate samples, overfitting, improper node

splitting, etc. Recently, the family of gradient boosting

algorithms has grown with a number of intriguing proposals

(such as XGBoost, LightGBM, and CatBoost) that place a

dual emphasis on speed and accuracy. Scalable ensemble

technique XGBoost has proven to be a dependable and

effective machine learning problem solver. With the use of

selective sampling from high gradient instances,

LightGBM is an accurate model that is dedicated to

offering incredibly quick training performance. In order to

increase the model's accuracy, CatBoost modifies the

computation of gradients to prevent the prediction shift. In

terms of training efficiency, generalization effectiveness,

and hyper-parameter configuration. Additionally, both

using carefully tuned models and their default settings, a

thorough comparison of XGBoost, LightGBM, CatBoost,

random forests, and gradient boosting has been carried out.

The comparison's results show that CatBoost, despite the

small differences, achieves the best generalization accuracy

and AUC in the datasets under study. Although LightGBM

is the fastest method, it is not the most precise. Last but not

least, XGBoost comes in second place for both accuracy

and training speed.

Conclusion: XGBoost is a faster algorithm when

compared to other algorithms because of its parallel and

distributed computing. XGBoost is developed with both

deep considerations in terms of systems optimization

and principles in machine learning. The goal of this

algorithm is to push the extreme of the computation

limits of machines to provide a scalable, portable, and

accurate library.

References:

1] Towards Data Science. The Random Forest

Algorithm - Towards Data Science. [online]

https://towardsdatascience.com/the-randomforest-

algorithmd457d499ffcd [Accessed 14 Nov. 2018].

[6]"

2] XGBoost Documentation — XGBoost 0.81

documentation. [Accessed 29 Nov. 2018]"

https://xgboost.readthedocs.io/en/latest/

3] Quora. (2015). What are the

advantages/disadvantages of using Gradient

Boosting over Random Forests? [online] Available

at:https://www.quora.com/What-arethe-

advantages-disadvantages-ofusing-

Gradient-Boosting-over-Random-Forests.

4] https://www.enjoyalgorithms.com/blog/xgboost-

algorithm-in-ml

5] Candice Bentéjac, Anna Csörgő & Gonzalo

Martínez-Muñoz A comparative analysis of

gradient boosting algorithms [published:24 Aug

2022] Springer.

6] https://towardsmachinelearning.org/boostingalgori

thms/

7] https://analyticsindiamag.com/top-

xgboostinterview-questions-for-data-scientists/

http://www.ijnrd.org/
https://www.enjoyalgorithms.com/blog/xg-boost-algorithm-in-ml
https://www.enjoyalgorithms.com/blog/xg-boost-algorithm-in-ml
https://www.enjoyalgorithms.com/blog/xg-boost-algorithm-in-ml
https://www.enjoyalgorithms.com/blog/xg-boost-algorithm-in-ml
https://www.enjoyalgorithms.com/blog/xg-boost-algorithm-in-ml
https://www.enjoyalgorithms.com/blog/xg-boost-algorithm-in-ml
https://www.enjoyalgorithms.com/blog/xg-boost-algorithm-in-ml
https://www.enjoyalgorithms.com/blog/xg-boost-algorithm-in-ml
https://www.enjoyalgorithms.com/blog/xg-boost-algorithm-in-ml
https://www.enjoyalgorithms.com/blog/xg-boost-algorithm-in-ml
https://link.springer.com/article/10.1007/s10462-020-09896-5#auth-Candice-Bent_jac
https://link.springer.com/article/10.1007/s10462-020-09896-5#auth-Gonzalo-Mart_nez_Mu_oz
https://link.springer.com/article/10.1007/s10462-020-09896-5#auth-Gonzalo-Mart_nez_Mu_oz
https://link.springer.com/article/10.1007/s10462-020-09896-5#auth-Gonzalo-Mart_nez_Mu_oz
https://link.springer.com/article/10.1007/s10462-020-09896-5#auth-Gonzalo-Mart_nez_Mu_oz
https://link.springer.com/article/10.1007/s10462-020-09896-5#auth-Gonzalo-Mart_nez_Mu_oz
https://link.springer.com/article/10.1007/s10462-020-09896-5#auth-Gonzalo-Mart_nez_Mu_oz
https://towardsmachinelearning.org/boosting-algorithms/
https://towardsmachinelearning.org/boosting-algorithms/
https://towardsmachinelearning.org/boosting-algorithms/
https://towardsmachinelearning.org/boosting-algorithms/
https://towardsmachinelearning.org/boosting-algorithms/
https://towardsmachinelearning.org/boosting-algorithms/
https://analyticsindiamag.com/top-xgboost-interview-questions-for-data-scientists/
https://analyticsindiamag.com/top-xgboost-interview-questions-for-data-scientists/
https://analyticsindiamag.com/top-xgboost-interview-questions-for-data-scientists/
https://analyticsindiamag.com/top-xgboost-interview-questions-for-data-scientists/
https://analyticsindiamag.com/top-xgboost-interview-questions-for-data-scientists/
https://analyticsindiamag.com/top-xgboost-interview-questions-for-data-scientists/
https://analyticsindiamag.com/top-xgboost-interview-questions-for-data-scientists/
https://analyticsindiamag.com/top-xgboost-interview-questions-for-data-scientists/
https://analyticsindiamag.com/top-xgboost-interview-questions-for-data-scientists/
https://analyticsindiamag.com/top-xgboost-interview-questions-for-data-scientists/
https://analyticsindiamag.com/top-xgboost-interview-questions-for-data-scientists/
https://analyticsindiamag.com/top-xgboost-interview-questions-for-data-scientists/
https://analyticsindiamag.com/top-xgboost-interview-questions-for-data-scientists/
https://analyticsindiamag.com/top-xgboost-interview-questions-for-data-scientists/
https://analyticsindiamag.com/top-xgboost-interview-questions-for-data-scientists/
https://analyticsindiamag.com/top-xgboost-interview-questions-for-data-scientists/

