© 2021 IJNRD | Volume 6, Issue 8 August 2021 | ISSN: 2456-4184 | INRD.ORG

IJNRD.ORG ISSN : 2456-4184 -

INTERNATIONAL JOURNAL OF NOVEL RESEARCH
\ S AND DEVELOPMENT (IJNRD) | IJNRD.ORG
NRD An International Open Access, Peer-reviewed, Refereed Journal

Des1gn and Cost Optimization of Highly Available
Infrastructure on AWS Using

Terraform and CloudWatch
Harish Govinda Gowda
Engineer,

Cardinal Health International India

Abstract

In today’s dynamic digital landscape, building highly available and cost-efficient infrastructure is essential for
business continuity, user satisfaction, and operational agility. This article explores the integration of Terraform
and Amazon CloudWatch as a unified approach to provisioning and monitoring scalable infrastructure on AWS.
Terraform enables consistent, automated deployments across multiple Availability Zones using Infrastructure as
Code (laC), while CloudWatch provides real-time observability through metrics, logs, and intelligent alerts. The
paper outlines strategies for architecting high availability using AWS services like EC2, RDS, Load Balancers,
and Auto Scaling Groups, all deployed through Terraform modules. It also dives into key cost optimization
techniques including right-sizing compute, storage lifecycle management, and the use of Savings Plans.
CloudWatch’s monitoring capabilities are examined in depth, showing how automated dashboards, alarms, and
anomaly detection help maintain service health and resilience. A real-world case study demonstrates the

application of these tools to deliver a fault-tolerant, cost-conscious multi-AZ web application.

Keywords: Terraform, CloudWatch, AWS, Infrastructure as Code (IaC), High Availability, Cost Optimization.

IJNRD2108002 International Journal of Novel Research and Development (www.ijnrd.org)

http://www.ijrti.org/

© 2021 IJNRD | Volume 6, Issue 8 August 2021 | ISSN: 2456-4184 | INRD.ORG

Introduction

Code Application CloudWatch
Load Balancer

P

]

m — .H! Terraform — (¢

Application

¥ "

Remote backend instance instance
(e.g. S3+DynamoDB) @ 4

Load Balancer I Multi-AZ RDS
R e R e ey !
i AWS Availability !
\ Availability zone |
' zone i
. o |
' e :
] 1
: "

Ginate Backend AWS Availability zone

(e.g. S3 +DynamoDB)

AWS high availability setup

As organizations increasingly migrate to the cloud to achieve greater scalability, flexibility, and innovation
velocity, ensuring high availability (HA) becomes a non-negotiable requirement. Services must be reliably
accessible to end-users and internal stakeholders without interruption, even under unexpected conditions such as
hardware failure, network issues, or traffic spikes. In the AWS ecosystem, the architecture for high availability
must be thoughtfully planned to exploit cloud-native advantages while avoiding unnecessary cost overheads. At
the same time, cost optimization is equally critical. A high-availability design that is financially unsustainable or

inefficient negates the business value of cloud adoption.

This article focuses on building highly available infrastructure on AWS using two powerful tools: Terraform and
Amazon CloudWatch. Terraform, as an Infrastructure as Code (IaC) tool, allows engineers to define and provision
cloud resources programmatically and consistently. It supports multi-cloud strategies but shines particularly well
in AWS environments where modularization, version control, and automated deployment reduce human error and
accelerate scalability. On the other hand, CloudWatch serves as the nerve center for operational visibility, offering
real-time metrics, logging, alarms, and event-based automation—all essential for maintaining uptime and

proactive troubleshooting.

Together, Terraform and CloudWatch offer a synergistic approach: Terraform builds infrastructure with
availability principles embedded, while CloudWatch monitors and reacts to operational conditions to maintain

system health. The article also emphasizes a balanced approach—where infrastructure is not just resilient but also

IJNRD2108002 International Journal of Novel Research and Development (www.ijnrd.org)

http://www.ijrti.org/

© 2021 IJNRD | Volume 6, Issue 8 August 2021 | ISSN: 2456-4184 | INRD.ORG

economically efficient. This means deploying only the resources necessary for operational excellence, scaling

them dynamically, and retiring unused or underutilized components in a timely manner.

This discussion will explore core high availability principles in AWS, best practices for writing reusable
Terraform code, design patterns for deploying resilient services, and actionable cost-optimization strategies. We
will also cover CloudWatch integration for intelligent monitoring and demonstrate real-world outcomes through
a case study. Whether you’re building a mission-critical application or modernizing legacy workloads, this article
aims to provide a practical blueprint for cloud architects, DevOps engineers, and technology leaders seeking

resilient yet cost-effective cloud infrastructure.
2. Core Principles of High Availability on AWS

High availability (HA) in the context of AWS refers to designing systems that continue to operate correctly even
in the event of failure or degradation in a portion of the infrastructure. AWS provides a robust foundation for HA
through its global infrastructure, which includes multiple Regions, each subdivided into multiple Availability
Zones (AZs). These AZs are physically isolated but interconnected data centers designed to reduce single points
of failure. Leveraging these zones allows architects to design fault-tolerant systems that maintain service

continuity even during data center-level outages.

At the heart of an HA design are AWS services purpose-built for resilience. Elastic Load Balancers (ELB)
distribute traffic across multiple EC2 instances or containers deployed in different AZs. Auto Scaling Groups
(ASGs) automatically adjust the number of compute resources based on demand, enabling systems to scale out
during peak usage and scale in during quiet periods. For persistent data, services like Amazon RDS offer Multi-
AZ deployments, ensuring failover capabilities and minimal downtime for relational databases. Additionally,
Amazon Route 53 enables DNS-based health checks and routing policies that can redirect traffic away from

unhealthy resources to functioning ones.

Designing for high availability also requires an understanding of Recovery Time Objectives (RTO) and Recovery
Point Objectives (RPO)—key metrics in defining what “acceptable” downtime and data loss mean for your
organization. Systems must be architected to meet these targets through backup strategies, cross-AZ redundancy,
and automated failover mechanisms. Network design is another critical consideration. Redundant VPN or Direct
Connect links, properly subnetted VPCs, and NAT Gateways placed in multiple AZs can help prevent outages

due to network failure.

Another core principle is the elimination of single points of failure. Whether in compute, storage, networking, or
DNS layers, redundant paths and distributed systems are necessary to ensure that individual component failures
do not cascade into service-level outages. It’s also important to adopt immutable infrastructure patterns, where
new deployments replace existing ones rather than altering them, reducing the risk of configuration drift and

failure.

IJNRD2108002 International Journal of Novel Research and Development (www.ijnrd.org)

http://www.ijrti.org/

© 2021 IJNRD | Volume 6, Issue 8 August 2021 | ISSN: 2456-4184 | INRD.ORG

By leveraging these principles within AWS, architects can create foundational blueprints that not only meet high

availability requirements but also remain agile, scalable, and aligned with evolving business needs.

3. Infrastructure as Code with Terraform

Git Source of Target Cluster
Truth

* ArgoCD |[— >
: Continuous .
Kubernetes manifests synchronization engine Options Features
o/ Helm charts ungine v Automated”syncing
Kubemetes manifests Robust Health & Status
Helm Charts state monitoring

v Roll back configurations

An Infrastructure as Code (1aC) using Terraform

Terraform has become the de facto tool for defining and managing cloud infrastructure due to its declarative
approach, cloud-agnostic design, and strong community support. Within the AWS ecosystem, it offers a reliable
way to enforce consistency, improve scalability, and reduce manual provisioning errors. At its core, Terraform
allows infrastructure to be written as code, versioned in Git repositories, and deployed using CI/CD pipelines—

bringing modern software engineering principles into infrastructure management.

The structure of a well-designed Terraform project begins with modularization. Instead of writing monolithic
code for each service, engineers can break down infrastructure into reusable modules—for VPCs, EC2 instances,
security groups, IAM roles, and more. These modules promote reusability across environments and teams while
enabling easier testing and validation. For instance, a compute module could accept parameters such as instance

type, region, and tags, making it flexible and adaptable across staging, development, and production.

Another crucial practice is state management. Terraform maintains a state file that tracks the current configuration
of deployed infrastructure. To enable collaboration and avoid state conflicts, this file should be stored in a
centralized backend such as Amazon S3 with state locking enabled via DynamoDB. This ensures multiple users
or pipelines can safely manage shared infrastructure. Sensitive data like secrets or passwords should never be
hard-coded and instead handled through Terraform variables integrated with secret management tools like AWS

Secrets Manager or HashiCorp Vault.

Teams should also enforce linting, formatting, and validation via Terraform commands such as fmt, validate, and
plan. These provide a safety net before actual deployments and help ensure that changes align with organizational

standards. Terraform also integrates well with CI/CD systems like GitHub Actions, GitLab CI, or Jenkins,

IJNRD2108002 International Journal of Novel Research and Development (www.ijnrd.org)

http://www.ijrti.org/

© 2021 IJNRD | Volume 6, Issue 8 August 2021 | ISSN: 2456-4184 | INRD.ORG

enabling changes to be tested, reviewed, and deployed automatically. This brings the power of continuous delivery

to infrastructure layers.

By using Terraform, teams can codify high availability into infrastructure by explicitly defining multi-AZ
configurations, autoscaling parameters, and monitoring hooks. Instead of relying on documentation or tribal
knowledge, HA designs become part of the executable infrastructure plan, enforceable and repeatable across all
environments. This level of automation not only increases resilience but also sets the foundation for cost-efficient

scaling and proactive incident response.
4. Architecting Highly Available Components with Terraform

To implement a highly available architecture using Terraform on AWS, engineers must combine design best
practices with the precision of infrastructure code. The goal is to build redundancy, scalability, and fault tolerance
into each layer—compute, storage, networking, and DNS—so that the failure of any one component does not
degrade the overall system. Terraform facilitates this by enabling infrastructure to be provisioned in a declarative,

parameterized, and repeatable manner.

Starting with compute, Terraform can be used to deploy EC2 instances across multiple Availability Zones (AZs)
using Auto Scaling Groups (ASGs). This allows workloads to scale horizontally while remaining resilient to AZ-
level failures. A typical Terraform module for ASGs includes launch templates, scaling policies, health checks,
and user data for bootstrapping. These instances can be fronted by Elastic Load Balancers (ELBSs) that are also

defined in Terraform to distribute incoming traffic based on health checks and routing policies.

For databases, highly available configurations can be provisioned using Amazon RDS with Multi-AZ
deployment. Terraform resources allow teams to define automated backups, failover mechanisms, and encryption
settings within the same plan, ensuring both durability and compliance. In the case of NoSQL, DynamoDB’s

global tables or replica configurations can be leveraged for availability and regional resilience.

Network infrastructure also plays a crucial role. Redundant NAT Gateways, multi-AZ subnets, and resilient VPC
peering or Transit Gateway setups can be deployed using Terraform to maintain connectivity during outages.
Route 53 health checks and DNS failover policies can ensure traffic is dynamically routed away from failing
endpoints, reducing downtime. All these resources can be parameterized in modules that enforce best practices

while supporting customization per environment.

Terraform’s ability to provision IAM roles and policies also ensures that permission boundaries are consistent,
minimizing security risks that often accompany distributed high-availability systems. Additionally, lifecycle rules

can be defined within Terraform to manage resource destruction behavior safely, preventing accidental downtime.

By codifying these patterns into Terraform modules, enterprises can deploy robust infrastructure that aligns with

AWS’s well-architected framework. Not only does this streamline HA deployments, but it also simplifies disaster

IJNRD2108002 International Journal of Novel Research and Development (www.ijnrd.org)

http://www.ijrti.org/

© 2021 IJNRD | Volume 6, Issue 8 August 2021 | ISSN: 2456-4184 | INRD.ORG

recovery planning, compliance audits, and capacity expansion—paving the way for scalable, resilient cloud

environments that respond predictably to demand and disruption alike.

5. Cost Optimization Techniques on AWS

While high availability is critical to system reliability and user satisfaction, it must be implemented with an
awareness of cost. Unchecked spending can quickly spiral when deploying multi-AZ architectures, redundant
services, and auto-scaling compute. Fortunately, AWS provides a wide array of cost optimization mechanisms,
and when paired with Infrastructure as Code (laC) like Terraform, organizations can proactively manage and
reduce unnecessary expenses. The first step is understanding key cost drivers, which typically include compute
(EC2, Lambda), storage (S3, EBS, RDS), and data transfer charges.

Compute optimization starts with proper instance sizing. AWS offers tools like Compute Optimizer to analyze
usage patterns and recommend right-sized EC2 instances. Terraform supports flexible configurations where
instance types and counts are parameterized, making it easy to scale down or switch to newer, more efficient
families. Utilizing Reserved Instances (RIs) or Savings Plans—especially for predictable workloads—can lead to
significant discounts over on-demand pricing. Terraform can also automate the provisioning of Rls and track

coverage across environments.

Storage costs can be mitigated by choosing appropriate S3 storage classes (e.g., Intelligent-Tiering, Glacier for
archival) and by using lifecycle policies to automatically transition or delete unused objects. EBS volume
optimization includes deleting unattached volumes and resizing active ones based on usage trends. Terraform can
enforce storage class and volume type standards via variables and constraints, ensuring consistency in

provisioning and avoiding accidental waste.

Networking costs, often overlooked, can accumulate quickly due to data egress or inefficient routing. Architects
should minimize cross-AZ traffic unless necessary, use VPC endpoints instead of NAT gateways where
applicable, and monitor inter-region transfers. Terraform modules can be built to create cost-efficient network

topologies using these principles.

Lambda functions, while cost-efficient for sporadic workloads, can become expensive under high invocation rates
or long runtimes. Developers should optimize code execution and avoid unnecessary processing. Terraform

allows easy deployment and version control of Lambda functions, making it easier to iterate on performance.

Lastly, cost visibility is essential. Tools like AWS Cost Explorer and Budgets should be integrated with Slack or
email alerts. Terraform can deploy budget alerts and dashboards automatically. By embedding cost-awareness
into the design and deployment process, teams can maintain high availability without overprovisioning—

balancing performance and efficiency effectively.

IJNRD2108002 International Journal of Novel Research and Development (www.ijnrd.org)

http://www.ijrti.org/

© 2021 IJNRD | Volume 6, Issue 8 August 2021 | ISSN: 2456-4184 | INRD.ORG

6. Monitoring and Intelligent Alerts with CloudWatch

Monitoring is a non-negotiable component of a highly available architecture, and Amazon CloudWatch plays a
central role in providing real-time observability into AWS environments. Whether tracking infrastructure metrics,
application logs, or custom performance indicators, CloudWatch enables teams to detect, diagnose, and respond
to issues proactively. Terraform further enhances this by allowing repeatable, automated deployment of

monitoring resources—ensuring that observability is not an afterthought but an embedded practice.

At a basic level, CloudWatch Metrics collect data on EC2 CPU utilization, disk 1/O, network traffic, ELB health,
RDS performance, and more. These metrics can be visualized using CloudWatch Dashboards, which allow teams
to monitor key system health indicators in real time. Terraform scripts can define these dashboards with JSON

configurations, allowing rapid rollout across all environments.

Beyond metrics, CloudWatch Alarms offer proactive alerting. For instance, alarms can be configured to notify
teams via Amazon SNS when CPU exceeds 80% for more than 5 minutes, or when RDS read latency spikes.
Terraform enables teams to create these alarms programmatically, ensuring that new services are always
monitored without relying on manual setup. More advanced features include Composite Alarms, which evaluate
multiple conditions simultaneously, and Anomaly Detection, which uses machine learning to baseline metrics

and identify deviations automatically.

CloudWatch Logs provide deep insight into application and system behavior. Logs from Lambda, EC2, and ECS
can be centralized, filtered, and analyzed using Logs Insights, an interactive query tool. Terraform can automate
the creation of log groups, retention policies, and metric filters. Teams can build alarms based on error rates or
specific log patterns—e.g., "disk full” or "unauthorized access" messages—enabling fast response to critical

issues.

Furthermore, CloudWatch Events and EventBridge can trigger automated actions in response to system changes.
These include scaling operations, rebooting instances, or invoking Lambda functions to remediate issues.
Terraform can configure these workflows as part of the infrastructure code, embedding self-healing behaviors

directly into the environment.

By integrating CloudWatch comprehensively—metrics, alarms, logs, dashboards, and automation—organizations
gain complete visibility and control over their infrastructure. When used in tandem with Terraform, monitoring
becomes scalable, repeatable, and tightly coupled with deployment, closing the loop between infrastructure health

and operational excellence.
7. Case Study: Multi-AZ Web Application Architecture

To demonstrate the practical application of highly available and cost-optimized infrastructure using Terraform

and CloudWatch, this section presents a real-world case study of a mid-sized e-commerce company transitioning

IJNRD2108002 International Journal of Novel Research and Development (www.ijnrd.org)

http://www.ijrti.org/

© 2021 IJNRD | Volume 6, Issue 8 August 2021 | ISSN: 2456-4184 | INRD.ORG

to AWS. The organization needed to deploy a scalable, secure, and highly available web application that could
handle seasonal spikes in traffic while remaining cost-conscious. The architecture was built using Terraform to

provision all AWS components and CloudWatch for monitoring and alerting.

The solution began with a multi-AZ deployment. Using Terraform, the team provisioned a VPC spanning two
Availability Zones, each with public and private subnets. An Application Load Balancer (ALB) directed traffic
to EC2 instances deployed in Auto Scaling Groups across both zones. These EC2 instances hosted containerized
microservices using ECS on EC2 mode, ensuring low startup latency and predictable compute performance. Auto

Scaling policies were configured via Terraform based on CPU utilization and request count metrics.

On the database layer, Amazon RDS with Multi-AZ failover was used to ensure high availability of transactional
data. Terraform modules were used to create the RDS instance, define parameter groups, configure backup
windows, and enable encryption at rest. Data at rest in S3 and EBS volumes was encrypted using KMS keys
managed through Terraform. For DNS routing and health checks, Route 53 was used with active-passive failover

and health-based routing configured via Terraform scripts.

Cost optimization was a key concern. Terraform variables allowed the team to deploy different instance types
based on environment (e.g., T3 for development, M6i for production). Unused resources were identified using
CloudWatch and decommissioned automatically during scheduled downtimes. Lifecycle policies in S3 and EBS
snapshot pruning ensured that storage costs remained minimal. Savings Plans were purchased and tracked

centrally via Terraform-managed budgets and Cost Explorer integrations.

Monitoring and alerting were fully automated. CloudWatch Dashboards provided visibility into application and
infrastructure health, and alarms were set for metrics such as CPU, memory, RDS latency, and error rates. Logs
from ECS tasks and application services were shipped to CloudWatch Logs with alerts configured on specific

patterns like “500 Internal Server Error.”

By combining Terraform and CloudWatch, the organization achieved a fault-tolerant and cost-effective
architecture that required minimal manual intervention, greatly improving both operational efficiency and

customer experience.
8. Conclusion and Future Outlook

The modern cloud landscape demands infrastructure that is not only resilient and scalable but also cost-effective
and easy to manage. AWS, with its extensive ecosystem of services, offers the tools necessary to meet these
demands, and when paired with Terraform and CloudWatch, organizations can achieve a high degree of
automation, observability, and optimization. This article demonstrated how combining these technologies enables
teams to build infrastructure that adheres to best practices in availability and cost management—without

compromising on agility or control.

IJNRD2108002 International Journal of Novel Research and Development (www.ijnrd.org)

http://www.ijrti.org/

© 2021 IJNRD | Volume 6, Issue 8 August 2021 | ISSN: 2456-4184 | INRD.ORG

Terraform empowers infrastructure teams to implement Infrastructure as Code (laC), providing consistency,
versioning, and repeatability. By codifying design patterns such as multi-AZ deployment, auto-scaling, and
modular provisioning, teams can enforce standards and reduce human error. In parallel, AWS CloudWatch offers
deep observability through metrics, logs, alarms, and automation triggers, ensuring that systems are monitored
continuously and intelligently. Together, these tools create an ecosystem where infrastructure not only runs but

self-regulates and adapts to changes in demand, failures, and cost signals.

The case study showcased how a practical implementation of Terraform and CloudWatch can deliver both high
availability and operational efficiency. From modular resource creation to automated alarms and dashboards, the

architecture reflected a mature DevOps practice—Dbuilt on principles of automation, transparency, and scalability.

Looking forward, the landscape is evolving rapidly. Terraform continues to grow with support for dynamic
providers and policy as code (e.g., Sentinel), which can further enhance compliance and governance. CloudWatch
is also integrating more with AWS AI/ML services for predictive analytics and anomaly detection. These

advancements signal a future where infrastructure management becomes even more intelligent and proactive.

Moreover, with the rise of GitOps and Kubernetes-native tooling, Terraform and CloudWatch may increasingly
serve as foundational layers in hybrid architectures. Organizations will likely integrate these with tools like

ArgoCD, AWS Control Tower, and Service Catalog to build fully automated, governed infrastructure platforms.

In conclusion, designing highly available infrastructure on AWS using Terraform and CloudWatch is not merely
a technical achievement—it represents a strategic advantage. It positions organizations to innovate faster, scale

confidently, and operate with precision in an increasingly complex cloud environment.
References

1. Sheikh, S., Suganya, G., & Premalatha, M. (2019). Automated Resource Management on AWS Cloud
Platform. Proceedings of 6th International Conference on Big Data and Cloud Computing Challenges.

2. (2019). CloudTrail, CloudWatch, and AWS Config. AWS Certified Solutions Architect Study Guide.

3. Guduru, S. (2019). AUTOMATED DISASTER RECOVERY ORCHESTRATION LEVERAGING
TERRAFORM, ANSIBLE, AND AWS CLOUDFORMATION FOR RPORTO
OPTIMIZATION. INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND
TECHNOLOGY.

4. Ivanova, D., Borovska, P., & Zahov, S. (2018). Development of PaaS using AWS and Terraform for
medical imaging analytics.

5. Medina, O., & Schumann, E. (2018). Provisioning the SharePoint Farm to AWS Using Terraform and
Ansible.

6. Campbell, B. (2019). Terraform In-Depth.

7. Anand, A. (2017). Managing Infrastructure in Amazon using EC2, CloudWatch, EBS, IAM and

CloudFront. International Journal of Engineering Research and, 6.

IJNRD2108002 International Journal of Novel Research and Development (www.ijnrd.org)

http://www.ijrti.org/

© 2021 IJNRD | Volume 6, Issue 8 August 2021 | ISSN: 2456-4184 | INRD.ORG

8. Medina, O., & Schumann, E. (2018). Scaling the Farm Using Terraform and Ansible.

9. Campbell, B. (2019). The Definitive Guide to AWS Infrastructure Automation: Craft Infrastructure-as-
Code Solutions. The Definitive Guide to AWS Infrastructure Automation.

10. Campbell, B. (2019). The AWS CDK and Pulumi.

11. Shetty, R., Paul Daley, S.D., & Prasanth Reddy, C. (2019). Orchestration of SAS Data Integration
Processes on AWS.

12. Raheja, Y., Borgese, G.A., & Felsen, N. (2018). Effective DevOps with AWS Ed. 2.

IJNRD2108002 International Journal of Novel Research and Development (www.ijnrd.org)

http://www.ijrti.org/

